Início do conteúdo
    Notícias
  • Banca de TCC – Maurício Dorneles Caldeira Balboni

    UNIVERSIDADE FEDERAL DE PELOTAS
    CENTRO DE DESENVOLVIMENTO TECNOLÓGICO
    TRABALHO DE CONCLUSÃO DE CURSO
    Apresentações Finais (2019/2)

    Avaliando a Precedência de Operadores na Matemática Intervalar utilizando C-XSC e IntPy
    por
    Maurício Dorneles Caldeira Balboni

    Curso:
    Ciência da Computação

    Banca:
    Prof. Marilton Sanchotene de Aguiar (orientador(a))
    Profa. Alice Fonseca Finger (coorientador(a))
    Profa Aline Brum Loreto
    Profa. Larissa Astrogildo de Freitas

    Data: 06 de dezembro de 2019

    Hora: 14h

    Local:Lab 2 – Sala 435 (campus Anglo)

    Resumo do Trabalho:

    Um dos grandes problemas na computação científica é a representação de números reais como números de máquina, uma vez que devem ser representados de uma forma discreta. O sistema de ponto flutuante, é uma aproximação prática dos números reais. Por se tratar de um sistema algébrico, suas características são extremamente pobres se comparados ao conjunto dos reais. A aritmética intervalar surgiu com o intuito de resolver os erros numéricos em computadores, pois ela inclui em seu resultado todos os possíveis erros. A aritmética intervalar utiliza intervalos reais para representar valores infinitos, valores desconhecidos ou valores contínuos que podem conter erros de aproximação e de truncamento. A precedência dos operadores matemáticos pode ser um fator impactante no resultado final, tal que muitas vezes o valor pode ser uma dízima periódica, impossibilitando a representação deste valor com sua total exatidão. Neste contexto, o presente trabalho se propõe a testar qual a precedência de operações de mesma ordem que gera um melhor intervalo solução. Para tanto, fez-se uso de linguagens de programação que têm suporte para o dado intervalar oferecendo bibliotecas para desenvolvimento de aplicações neste contexto. Mais especificamente, avaliou-se a C-XSC (extensão intervalar de C++) e a IntPy (extensão intervalar de Python). Frente a isso, se pode inferir através dos resultados, que a subtração obteve uma maior ocorrência no que se refere a um melhor intervalo solução em relação a soma, do mesmo modo em que a multiplicação resultou em mais casos superiores a divisão. Por fim, também foi analisado que, dentre os métodos de multiplicação intervalar, o método que analisa os extremos dos intervalos teve uma predominância no que se refere a melhores resultados. Além isso, foi realizada uma análise estatística para compreender como os intervalos solução, se comportam no decorrer dos testes.