MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS FACULDADE DE AGRONOMIA ELISEU MACIEL DEPARTAMENTO DE ZOOTECNIA MELHORAMENTO ANIMAL

Parâmetros Genéticos

1. INTRODUÇÃO

Os parâmetros genéticos são definidos pelos componentes de variância, nas diversas populações, ou seja, são específicos para determinada população.

- Três tipos de parâmetros genéticos:
 - Herdabilidade (h²);
 - Repetibilidade (R);
 - Correlação genética (r).

A herdabilidade e a repetibilidade referem-se à determinados caracteres quantitativos.

A correlação refere-se a dois caracteres quantitativos SIMULTANEAMENTE.

2. HERDABILIDADE:

- É o parâmetro de maior importância, pois determina a estratégia a ser usada no melhoramento da característica em questão;
- Para características quantitativas, uma parte da variação observada tem origem genética e outra é resultado de fatores ambientais;
- Se a maior parte da variação é genética de origem, esperamos que as diferenças de produção sejam devidas aos genes que os indivíduos possuem e então serão em grande parte transmitidos a sua progênie;
- Se a proporção maior das diferenças entre os animais é devida ao ambiente, estes efeitos não são transmitidos à progênie;

- A HERDABILIDADE expressa a confiança que se pode ter no fenótipo do animal como um guia para predizer seu valor de cria;
- HERDABILIDADE: É a fração da variância fenotípica (que tem origem genética aditiva).

$$h^2 = Vg / Vp$$
 $h^2 = Vg / Vg + Ve$ $h^2 = Vg / Va + Vd + Vi + Ve$

- Os valores podem variar de 0 a 1:
 - Se for zero ou perto de zero, indica que a variação fenotípica observada entre os animais não é de origem genética aditiva, sendo mais devida ao ambiente;
 - Se for mais perto de 1, a variação fenotípica observada entre os animais tem mais origem genética aditiva;
 - Indica o ganho ou progresso genético que vai ser atingido, através da seleção para este caráter.

h² BAIXA => SELEÇÃO NÃO EFICIENTE h² ALTA => SELEÇÃO EFICIENTE = GANHO GENÉTICO Caracteres reprodutivos: baixas herdabilidades (5 a 15%);

Ex.: Intervalo entre partos 5 – 10%

N.º de serviços por concepção 0 - 5%

Fertilidade 5 - 15%

Caracteres produtivos: médio-altas (20 a 40%);

Ex.: Produção de leite 20 - 30%

Eficiência de ganho de peso 30 - 40%

Peso final 30 - 50%

Caracteres relacionados com a qualidade dos produtos: altas (45 a 60%);

Ex.: Maciez da carne 50 – 60% Peso do ovo 40 – 70%

Caracteres anatômicos: muito altas (>50%).

Ex.: Altura nas cruzes > 50% Conformação 60%

COMENTÁRIOS FINAIS SOBRE HERDABILIDADE:

- Para planejar e executar programas de seleção devemos possuir as estimativas da herdabilidade das diferentes características de importância para produção;
- Ao se selecionar por vários caracteres simultaneamente, a herdabilidade determina a importância relativa que devemos dar a cada um deles, em um índice de seleção;
- A herdabilidade se refere a variação genética da média da população e descreve somente a variância genética dentro desta;

IMPRESCINDÍVEL NO DESENVOVIMENTO DE PROGRAMAS DE SELEÇÃO PARA OBTENÇÃO DO GANHO GENÉTICO NA POPULAÇÃO.

3. REPETIBILIDADE:

- É um parâmetro que se aplica a características medidas mais de uma vez na vida do animal;
- Em geral, aplica-se a produções anuais do mesmo animal;
- É a correlação entre as medidas repetidas do animal;
- NÃO é uma constante biológica de um caractere, depende da composição GENÉTICA da população E das circunstâncias AMBIENTAIS os quais a população está submetida

- Quando os caracteres são medidos várias vezes no mesmo animal, o efeito de ambiente pode ser dividido em:
- Efeito de ambiente temporário (Et): afetam uma determinada medida, mas não outras. Ex.: Um ano com seca e pouca disponibilidade forrageira, causará a uma vaca uma menor produção de leite naquela lactação; No ano seguinte, se houver chuva normal, haverá maior disponibilidade de forragem e a mesma vaca apresentará uma maior produção de leite, devido as melhores condições ambientais;
- <u>Efeito de ambiente permanente (Ep):</u> afetam o animal permanentemente, em todas as medidas que se realizam. Ex.: Uma vaca perder um quarto do úbere por mastite na 1º lactação, esse efeito ambiental é permanente, afetará todas as lactações.

 A REPETIBILIDADE é a fração ou percentagem da variação fenotípica entre os animais, que é devida ao genótipo do animal, junto com o ambiente permanente:

$$R = (Vg + Vep) / Vp$$

- O valor da repetibilidade oscila entre 0 e 1;
- O principal uso da repetibilidade em M. A. é para predizer a futura produção de um animal baseado em uma ou mais produções anteriores. Esta predição é chamada PRODUÇÃO MAIS PROVÁVEL.

■ PMP = Mp + R (Mi – Mp)

Em que:

Mp= média da população

R= repetibilidade

Mi= medida anterior no ambiente i

Ex1.: Uma vaca produz 3.500 kg de leite em uma lactação, e a produção média do rebanho é de 3.000 kg. Se a repetibilidade da produção leiteira é R=0,28 então podemos calcular a PMP da vaca como:

$$PMP = 3.000 + 0.28 (3.500 - 3.000) = 3.140 kg$$

 (Mi – Mp) = desvio do animal da média da população. Muitas vezes só se conhece esse desvio: Ex2.: Uma vaca de corte produz um bezerro 20 kg acima da média do rebanho. Qual será a predição do peso à desmama do próximo bezerro desta mesma vaca? A repetibilidade de PD é 0,40 ou 40%

$$PMP = 0,40 (20) = 8 \text{ kg acima da média}$$

Ex3.: Uma outra vaca produz um bezerro 10 kg abaixo da média do rebanho, a predição do PD do próximo bezerro desta mesma vaca é:

$$PMP = 0.40 (-10) = -4 \text{ kg} => 4 \text{ kg abaixo da média}$$

Quando se tem várias medidas, a PMP é:

$$PMP = Mp + \underline{nR}$$
 (Mi – Mp)
1 + (n-1)R

Em que:

n = número de produções ou medidas;

Mp = média da população;

Mi = média das n medidas do animal

R = repetibilidade

O uso desta fórmula é a comparação entre animais com diferentes quantidades de informação, para selecionar.

Exemplo: comparar 5 vacas, pela sua produção de bezerros (PD)

VACA A: 3 bezerros com desvios 27, 12 e 13 kg acima da média;

VACA B: 2 bezerros com desvios 19 e 15,6 kg acima da média;

VACA C: 3 bezerros com desvios -10, 5 e -3 kg;

VACA D: 1 bezerro -20 kg abaixo;

VACA E: 1 bezerro 20 kg acima;

•
$$R = 0,40 PD$$

• PMP: Vaca A = 11,5

Vaca B = 9,9

Vaca C = -1.8

Vaca D = -8,0

Vaca E = 8,0

A seleção das vacas em ordem de preferência é A, B, E, C e D.

4. CORRELAÇÃO GENÉTICA:

Indica o grau de associação genética entre dois caracteres:

- Selecionando por um caráter X, obtemos uma resposta à seleção, nas seguintes gerações;
- Simultaneamente obtemos respostas em outros caracteres Y => RESPOSTA CORRELACIONADA (direção e magnitude depende do coeficiente de correlação genética entre X e Y);
- Coeficiente de correlação: entre -1 e +1

Correlação	Resposta Direta (X)	Resposta Indireta (Y)
Positiva	aumenta X	aumenta Y
Zero	aumenta X	não muda Y
Negativa	aumenta X	diminui Y

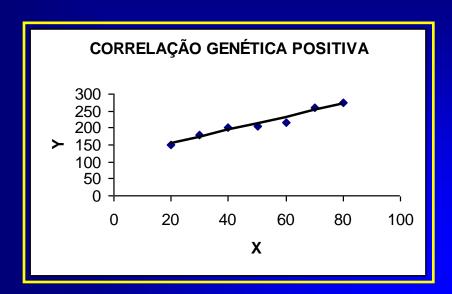
Exemplos:

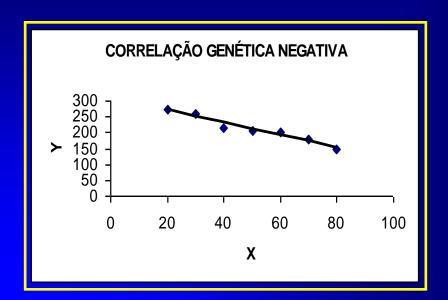
■ PN / PD: 0,30

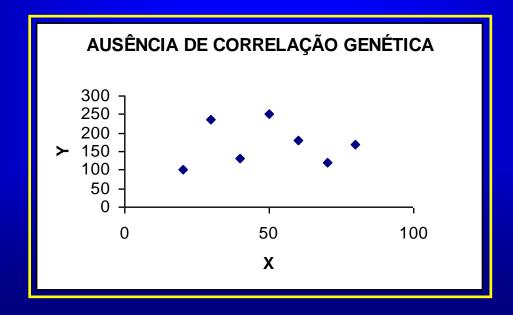
PN / PS: 0,30

PN / PMaturidade: 0,40

■ PD / GPD: 0,90


Rendimento de carcaça / PS: 0,30


Rendimento de carcaça / gordura na carcaça: - 0,15


 A maneira de cálculo da correlação genética mais usual é através dos estimadores de variância e covariância genética:

$$r_{GX/Y} = (COV G X/Y) / \sqrt{(V_{GX} V_{GY})}$$

 Os valores e os sinais das diferentes correlações são independentes uns dos outros.

5. CORRELAÇÃO FENOTÍPICA E CORRELAÇÃO AMBIENTAL:

A correlação medida diretamente com os valores fenotípicos observados na população é a CORRELAÇÃO FENOTÍPICA entre os caracteres.

As causas das correlações fenotípicas são **GENÉTICAS** e **AMBIENTAIS**, e por isso, pode-se decompor a correlação fenotípica em seus diversos componentes como a seguir:

$$r_{FX/Y} = h_X r_{GX/Y} h_Y + e_X r_{Ax/y} e_Y$$

Onde:

r_{FX/Y} = Correlação fenotípica entre as características X e Y;

r_{GX/Y} = Correlação genética entre as características X e Y;

r_{Ax/v} = Correlação ambiental entre as características X e Y;

h_X e h_Y = raizes quadradas das herdabilidades dos caracteres X e Y;

e_X e e_Y = são as raizes quadradas das influências ambientais sobre os caracteres X e Y (incluindo efeitos de dominância e epistase).

COMENTÁRIOS FINAIS SOBRE CORRELAÇÃO:

- Para planejar executar programas de seleção devemos ter estimações das correlações genéticas entre as características de importância na produção;
- Na seleção por vários caracteres simultaneamente, em especial para construir índices de seleção, as correlações são importantes para decidir quais caracteres que se incluem e o peso relativo de cada um;
- Seus valores não são constantes: dependem da composição genética da população e da média ambiental;
- Há necessidade de obter estimativas locais e repetí-las com freqüência a medida que a população evolui no tempo.

CARACTERES	r _F	r _G	r _A
Bovinos de Leite			
Produção de Leite - Produção de	0,93	0,85	0,96
Gordura			
Produção de Gordura - % de Gordura	0,23	0,26	0,22
Produção de Leite - % de Gordura	-0,14	-0,20	-0,10
Produção de Leite - Tipo de Animal	-	0,05	-
Produção de Gordura - Tipo de Animal	-	-0,15	-
Produção de Leite - Ganho de Peso	-	0,16	-
Produção de Gordura - Ganho de Peso	-	0,10	-
<u>Ovinos</u>			
Peso de Velo - Comprimento da Fibra	0,30	-0,02	1,17
Peso de Velo - Número de Ondulações	-0,21	-0,56	0,10
Peso de Velo - Peso Corporal	0,36	-0,11	1,05
<u>Suínos</u>			
Comprimento do Corpo - EGC	-0,24	-0,47	-0,01
Ganho de Peso - Eficiência Alimentícia [2]	-0,84	-0,96	-0,50
EGC - Eficiência Alimentícia	0,31	0,28	0,32
Bovinos de Corte			
Ganho dePeso - Eficiência Alimentícia [3]	-	0,98	-
Peso Desmame – Ganho de Peso Pós-	-0,18	-0,09	-
Desmame			

^[1]Espessura da Gordura de Cobertura

^[2]Em realidade "ineficiência", ou seja, alimento consumido por unidade de crescimento.

^[3]Definido como unidades de crescimento por unidades de alimento consumido