Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Cursos de Física e Química Terceira Prova de Cálculo 3 Prof. Dr. Maurício Zahn

Nome: **Data:** 30/08/2024

Questão 01. [Peso 1.0 cada] Calcule cada integral múltipla abaixo:

(a)
$$\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} dy dx$$

(b)
$$\int_0^\infty \int_0^\infty e^{-x-y} dx dy$$

(a)
$$\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} dy dx$$
 (b) $\int_{0}^{\infty} \int_{0}^{\infty} e^{-x-y} dx dy$ (c) $\int_{0}^{1} \int_{x}^{2x} \int_{0}^{y} 2xyz dz dy dx$

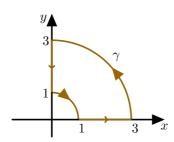
Questão 02. [Peso 1.0] Calcule $\iint_{\Omega} \arctan \frac{y}{x} dy dx$, onde Ω é a região dada por

$$\Omega = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 9, y \ge 0\}.$$

Questão 03. [Peso 1.0] Use integral tripla para determinar o volume do sólido limitado pelo cilindro $y = x^2$ e pelos planos z = 0 e y + z = 1.

Questão 04. [Peso 1.5] Calcule $\iint_{\Omega} \sqrt{2x+3y} \cos(x-y) dx dy$, onde Ω é a região do plano xy definida pelo quadrilátero ABCD de vértices nos pontos $A(\frac{3}{5},-\frac{2}{5}),\ B(\frac{6}{5},-\frac{4}{5}),\ C(\frac{9}{5},-\frac{1}{5})$ e $D(\frac{6}{5},\frac{1}{5})$.

Questão 05. Considere o campo vetorial $\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2$ dado por $\vec{F}(x,y) = (xy, x+y)$, e seja γ o caminho fechado conforme o esquema abaixo, onde temos dois arcos de circunferências.



Calcule a integral de linha $\oint_{\gamma} \vec{F} d\vec{r}$ de duas formas:

- (a) [Peso 1.0] mediante parametrizações;
- (b) [Peso 1.0] via o Teorema de Green.

Questão 06. [Peso 1.5] Use o Teorema da Divergência para mostrar que, dado um campo escalar $g:\Omega\subset$ $\mathbb{R}^2 \to \mathbb{R}$ com derivadas parciais contínuas até a segunda ordem no aberto Ω e γ uma curva suave fechada simples em Ω , então

$$\oint_{\gamma} g \frac{\partial g}{\partial \vec{n}} ds = \iint_{D} (g\Delta g + ||\nabla g||^{2}) dA,$$

onde D é a região interior à γ . Usando a identidade acima, calcule $\oint_{\gamma} g \frac{\partial g}{\partial \vec{n}} ds$ quando $g(x,y) = x^2 + y^2$ e γ é a circunferência de equação $x^2 + y^2 = 1$.

Questão 07. [Peso 1.0] Determine a divergência e o rotacional do campo $\vec{F}(x,y,z) = (x^2z^2, 2xy, y^2 - z^2)$.