Fundação Universidade Federal de Pelotas Cursos de Física e Química

Disciplina de Cálculo 3 - Prof. Dr. Maurício Zahn

Lista 11 de Exercícios - Integrais de Linha. Teoremas de Green, da divergência e de Stokes

- 1. Calcule a integral de linha de cada campo vetorial \vec{F} dado, ao logo da curva orientada indicada em cada item:
 - (a) $\vec{F}(x,y) = (x^2, xy)$, ao longo do segmento de reta de (0,0) a (2,2).
 - (b) $\vec{F}(x,y) = (4,y)$, no quarto de círculo $x^2 + y^2 = 1$ com $x,y \le 0$, e orientação anti-horária.
 - (c) $\vec{F}(\frac{1}{n^3+1}, \frac{1}{z+1}, 1), \ \gamma(t) = (t^3, 2t, t^2), \ \text{com } 0 \le t \le 1.$
- 2. Calcule $\int_{\gamma} \vec{F} d\vec{r}$, sendo $\vec{F}(x,y) = 9x^2y\vec{i} + (5x^2 y)\vec{j}$, onde γ é a curva $y = x^3 + 1$, de (1,2) a (3,28).
- 3. Mostre que a integral $\int_{\gamma} (\ln x + 2y) dx + (e^y + 2x) dy$ é independente do caminho. Depois, calcule esta integral sendo γ uma curva do ponto A(3,1) ao ponto B(1,3).
- 4. Mostre que a integral $\int_{\gamma} (\sin y \sinh x + \cos y \cosh x) dx + (\cos y \cosh x \sin y \sinh x) dy$ é independente do caminho. Em seguida, calcule esta integral do ponto A(1,0) ao ponto $B(2,\pi)$.
- 5. Calcule $\int_C \vec{F} d\vec{r}$, onde $\vec{F}(x,y,z) = (e^x + e^{z^2})\vec{i} + (e^y + z)\vec{j} + (2xze^{z^2} + y)\vec{k}$, ao longo de qualquer caminho do ponto A(1,1,0) ao ponto B(1,2,-1). Por quê por qualquer caminho serve?
- 6. Determine as seguintes integrais ao longo dos caminhos fechados:
 - (a) $\oint_{\gamma} (2xy+4)dx + (x^2+z^2)dy + 2zydz$, onde $\gamma(t) = (\sec t, \cos t, t), t \in [0, 2\pi]$.
 - (b) $\oint_{\gamma} (xy+z)dx + (x-y)dy + 4zdz, \text{ onde } \gamma(t) = (\operatorname{sen} t, \cos t, t), \ t \in [0, 2\pi].$
- 7. Calcule a integral de linha em cada item a seguir de duas formas: (i) diretamente, através de parametrizações; (ii) usando o teorema de Green.
 - (a) $\oint_{\gamma} xy^2 dx + x^3 dy$, onde γ é o retângulo com vértices em $(0,0),\,(2,0),\,(2,3)$ e (0,3).
 - (b) $\oint_{\gamma} y dx x dy,$ onde γ é o circunferência unitária com centro na origem.
- 8. Use o teorema de Green para calcular cada integral de linha a seguir, ao longo da curva dada com orientação positiva.
 - (a) $\int_{\gamma}e^{y}dx+2xe^{y}dy,$ onde γ é o quadrado de lados $x=0,\,x=1,\,y=0$ e y=1.
 - (b) $\int_{\gamma} (ye^{\sqrt{x}})dx + (2x + \cos y^2)dy$, onde γ é a fronteira da região delimitada pelas parábolas $y=x^2$ e $x=y^2$
 - (c) $\int_{\gamma} xe^{-2x}dx + (x^4 + 2x^2y^2)dy$, onde γ é a região entre as circunferências $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$.
 - (d) $\int_{\gamma} \frac{x^2y}{x^2+1} dx \arctan x dy$, onde γ é a elipse $4x^2 + 25y^2 = 100$.
 - (e) $\int_{\gamma} (6y+x)dx + (y+2x)dy$, onde γ é a circunferência $(x-2)^2 + (y-3)^2 = 4$.

- 9. Utilize o Teorema de Green para calcular $\oint_{\gamma} \cos(x-3y)dx + \ln(x+y)dy$, onde γ é o quadrilátero ABCD de vértices $A(\frac{7}{4},\frac{1}{4}),$ $B(\frac{9}{4},-\frac{1}{4}),$ $C(\frac{3}{2},-\frac{1}{2})$ e D(1,0).
- 10. Use o Teorema de Green para calcular $\oint_{\gamma} e^{x+y} dx + e^{x+y} dy$, onde γ é a circunferência $x^2 + y^2 = 4$.
- 11. Em cada item, verifique o Teorema da divergência no plano e o Teorema de Stokes no plano para \vec{F} e Ω dados.
 - (a) $\vec{F}(x,y)=3x\vec{i}+2y\vec{j}$, e Ω é a região limitada pela circunferência $x^2+y^2=1$.
 - (b) $\vec{F}(x,y) = (x^2, y^2)$, e Ω a região limitada pela elipse $4x^2 + 25y^2 = 100$.
- 12. Sejam u e v funções escalares possuindo derivadas parciais primeiras contínuas no domínio aberto e conexo Ω do plano xy. Seja γ uma curva suave fechada simples em Ω . Mostre que

$$\oint_{\gamma} uv \, dx + uv \, dy = \iint_{\Omega} \left[v \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} \right) + u \left(\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} \right) \right] dA.$$

13. Use o Teorema da Divergência para mostrar que, dado um campo escalar $g:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ com derivadas parciais contínuas até a segunda ordem no aberto Ω e γ uma curva suave fechada simples em Ω , então

$$\oint_{\gamma} g \frac{\partial g}{\partial \overrightarrow{n}} ds = \iint_{\Omega} (g \Delta g + ||\nabla g||^2) dA.$$

Obs.: a quantidade $\nabla g \cdot \overrightarrow{n} := \frac{\partial g}{\partial \overrightarrow{n}}$ aparece na integral de linha. A derivada direcional de g na direção do vetor normal \overrightarrow{n} é chamada de derivada normal de g.

14. Use o Teorema de Green na forma vetorial para provar a primeira identidade de Green:

$$\iint_{\Omega} f \Delta g dA = \oint_{\gamma} f(\nabla g) \cdot \overrightarrow{n} ds - \iint_{\Omega} \nabla f \cdot \nabla g dA,$$

onde Ω e γ satisfazem as hipóteses do Teorema de Green e as derivadas parciais apropriadas de f e g existem e são contínuas.

15. Use a primeira identidade de Green do exercício anterior para provar a segunda identidade de Green:

$$\iint_{\Omega} (f\Delta g - g\Delta f) dA = \oint_{\gamma} (f\nabla g - g\nabla f) \cdot \overrightarrow{n} ds$$

onde Ω e γ satisfazem as hipóteses do Teorema de Green e as derivadas parciais apropriadas de f e g existem e são contínuas.