Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática

Disciplina de Cálculo IV - Prof. Dr. Maurício Zahn

Lista 01 de Exercícios - Integrais múltiplas (primeiros conceitos)

1. Sejam $P = \prod P_i$ e $Q = \prod Q_i$ partições de um bloco $A \subset \mathbb{R}^m$. Justifique através de um exemplo que a união $P \cup Q$ não é, em geral, uma partição de A. Em seguida, conclua que a partição P + Q definida por

$$P + Q = \prod_{i=1}^{m} (P_i \cup Q_i)$$

é um refinamento para P e para Q.

2. Sejam $A \subset \mathbb{R}^m$ um bloco do \mathbb{R}^m , $f: A \to \mathbb{R}$ integrável, e sejam

$$m = \inf\{f(x) : x \in A\} \in M = \sup\{f(x) : x \in A\}.$$

Mostre que

$$m \le \frac{\int_A f(x)dx}{\operatorname{Vol}(A)} \le M.$$

3. Adicionando a hipótese no exercício anterior de que f é contínua no bloco A, conclua que existe $c \in A$ tal que¹

$$\int_{A} f(x)dx = f(c) \cdot \text{Vol}A.$$

- 4. Encontre um intervalo fechado que contenha o valor da integral dupla dada em cada caso (Obs.: use o exercício 2).
 - (a) $\int_{\mathbb{R}} \int (x^2 + y^2) dA$, onde R é a região retangular com vértices em (0,0), (1,0), (1,1) e (0,1).
 - (b) $\int_{\mathbb{R}} \int e^{xy} dA$, onde R é a região retangular com vértices em $(0,0),\,(1,0),\,(1,1)$ e (0,1).
 - (c) $\int_A (x+y)e^{yz} dx dy dz$, onde $A \in \text{o bloco } [1,3] \times [0,2] \times [1,4]$.
- 5. Usando a definção de integral dupla como limite de somas de Riemann, calcule a integral $\int_A f(x,y) dx dy$, sendo:
 - (a) f(x,y) = x + 4y, e A o bloco $[0,2] \times [0,1]$. (Resp.: 6)
 - (b) $f(x,y) = 3x^2 + 2y$, e A o bloco $[0,2] \times [0,1]$. (Resp.: 10)
 - (c) $f(x,y) = x^2 + 3y$, e A o bloco $[0,2] \times [1,5]$.
- 6. Justifique por que a bola fechada $B[a,r] \subset \mathbb{R}^m$ é um conjunto J mensurável.

¹usar o Teorema do valor intermediário