Fundação Universidade Federal de Pelotas

Cursos de Bach. em Química e Bach. em Química industrial Disciplina de Álgebra linear e Geometria analítica

Prof. Dr. Maurício Zahn

Lista 08 de Exercícios - Vetores L.I. e L.D. Base e dimensão.

1. Escreva a matriz $A=\begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$ como uma combinação linear das matrizes

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \quad \mathbf{e} \quad P = \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}.$$

- 2. Considere o espaço vetorial $P_2 = \{at^2 + bt + c : a, b, c \in \mathbb{R}\}$ e os vetores $p_1 = t^2 2t + 1$, $p_2 = t + 2$ e $p_3 = 2t^2 t$.
 - (a) Escreva o vetor $p = 5t^2 5t + 7$ como combinação linear de p_1, p_2 e p_3 .
 - (b) Determine uma condição para $a, b \in c$ de modo que o vetor $at^2 + bt + c$ seja uma combinação linear de $p_2 \in p_3$.
- 3. Os vetores $\vec{u}_1=(1,1,2,4),\ \vec{u}_2=(2,-1,-5,2),\ \vec{u}_3=(1,-1,-4,0)$ e $\vec{u}_4=(2,1,1,6)$ do \mathbb{R}^4 são L.I. ou L.D. ?
- 4. Mostre que o conjunto de vetores $\{1+x; 3x+x^2; 2+x-x^2\}$ é um conjunto linearmente independente em P_2 .
- 5. Se $\beta = \{\vec{u}, \vec{v}, \vec{w}\}$ é um conjunto de vetores L.I. de um espaço vetorial V, prove que o conjunto $\{\vec{u} \vec{v}, \vec{u} + \vec{w}, 2\vec{u} \vec{v} + 2\vec{w}\}$ também é L.I.
- 6. Se $\beta = \{\vec{u}, \vec{v}, \vec{w}\}$ é um conjunto de vetores L.I. de um espaço vetorial V, prove que o conjunto $\{2\vec{u} \vec{v} + \vec{w}, \vec{u} + 2\vec{v} 3\vec{w}, 3\vec{u} 4\vec{v} + 5\vec{w}\}$ é L.D.
- 7. Mostre que, se u, v e w são vetores LI, então u + v, u + w e v + w também são LI.
- 8. Quais dos seguintes conjuntos formam uma base para \mathbb{R}^3 ?
 - (a) $\{(1,1,-1); (2,-1,0); (3,2,0)\}$
- (b) $\{(1,0,1);(0,-1,2);(-2,1,-4)\}$
- (c) $\{(2,1,-1); (-1,0,1); (0,0,1)\}$
- (d) $\{(1,2,3);(4,1,2)\}$
- 9. Mostrar que os vetores $\overrightarrow{u}=(1,1,1), \ \overrightarrow{v}=(1,2,3), \ \overrightarrow{w}=(3,0,2)$ e $\overrightarrow{s}=(2,-1,1)$ geram o \mathbb{R}^3 e encontrar uma base dentre estes vetores.
- 10. Mostre que $\mathbb{R}^3 = [(1,1,1); (1,1,0); (0,1,1)].$
- 11. Mostre que $P_3 = [x^2 + x^3; x; 2x^2 + 1; 3].$
- 12. Mostre que os polinômios $1-t^3$, $(1-t^2)$, 1-t e 1 geram o espaço vetorial dos polinômios de grau ≤ 3 .
- 13. Seja $V = \mathbb{R}^3$ e o conjunto $\beta = \{(0,1,1); (1,1,0); (1,2,1)\} \subset \mathbb{R}^3$.
 - (a) Mostre que β não é uma base para \mathbb{R}^3 .
 - (b) Determine uma base para \mathbb{R}^3 que possua dois elementos de β .

- 14. (a) Um certo espaço vetorial V é gerado por cinco vetores LI. O que se pode dizer sobre a dimensão de V?
 - (b) Um certo espaço vetorial V é gerado por cinco vetores LD. O que se pode dizer sobre a dimensão de V?
- 15. Ache uma base e a dimensão do subespaço $W=\{(x,y,z)\in\mathbb{R}^3:\,x+y+z=0\}$ do $\mathbb{R}^3.$
- 16. Sejam $W=\{(x,y,z)\in\mathbb{R}^3:x+2z=0\ \mathrm{e}\ y=-z\}\ \mathrm{e}\ V=\{(x,y,z)\in\mathbb{R}^3:2x-3y+4z=0\}$ subespaços do \mathbb{R}^3 . Determine $W+V,\ W\cap V$ e suas dimensões.
- 17. No espaço vetorial \mathbb{R}^3 consideremos os seguintes subespaços: $S = [(1,-1,2);(2,1,1)]; T = [(0,1,-1);(1,2,1)]; U = \{(x,y,z): x+y=4x-z=0\}$ e $V = \{(x,y,z): 3x-y-z=0\}$. Determine as dimensões de S,T,U,V,S+T e $S\cap T$.
- 18. Sejam S, T subespaços do \mathbb{R}^4 dados por

$$S = [(1, -1, 2, 3); (1, 1, 2, 0); (3, -1, 6, -6)]$$

e

$$T = [(0, -2, 0, -3); (1, 0, 1, 0)].$$

Determine as dimensões de $S, T \in S \cap T$.