Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Variáveis Complexas Prof. Dr. Maurício Zahn

Lista IX de Exercícios (aulas 8.3, 9.1 e 9.2+9.3) - Integração em $\mathbb C$

- 1. Descreva a curva $z(t) = a \cos t + ib \sin t, -\pi \le t \le \pi$, onde a, b > 0.
- 2. Descreva a curva $z(t)=t^3+it^2,\,t\in[-1,1].$ Essa curva é suave?
- 3. Mostre que a curva γ parametrizada por

$$z(t) = \begin{cases} t(\cos\frac{1}{t} + i \sin\frac{1}{t}), & \text{se } 0 < t \le 1\\ 0, & \text{se } t = 0 \end{cases}$$

não é retificável.

- 4. Calcule o comprimento da curva $z(t) = 3e^{2it} + 2$ em $[-\pi, \pi]$.
- 5. Calcule as seguintes integrais:

(a)
$$\int_{\gamma} y dz$$
, onde γ é a linha que une 0 ao i e i ao $2+i$. (Resp.: $2+\frac{i}{2}$)

(b)
$$\int_{\gamma} z e^{z^2} dz$$
, onde γ é o círculo unitário. (Resp.: zero)

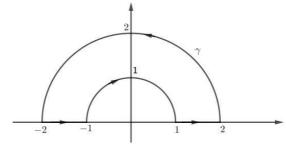
(c)
$$\int_{\gamma} (z^2 + 2z + 3)dz$$
, onde γ é a linha que une 1 ao $2 + i$.

(d)
$$\int_{\gamma} z^n dz$$
, onde γ é a poligonal com vértices em $-i$, $2i$ e $1+i$.

(e)
$$\int_{\gamma} \frac{dz}{z-1}$$
, onde γ é o círculo de raio 2 e centro em 1, virando uma vez em volta do seu centro com direção anti-horária. (Resp.: $2\pi i$)

(f)
$$\int_{\gamma} \frac{z+2}{z} dz$$
, onde γ é o semicírculo $z=2e^{i\theta}, \theta \in [0,\pi]$. (Resp.: $-4+2\pi i$)

6. Calcule $\int_{\gamma} \frac{z}{\overline{z}} dz$, onde γ é o caminho dado abaixo:



- 7. Calcule $\int_{\gamma} z|z|dz$ ao longo da semicircunferência superior |z|=R de R a -R, e do segmento de linha [-R,R].
- 8. Mostre que todas as integrais $\int_{\gamma} f(z)dz$ a seguir são nulas, justificando.

(a)
$$f(z) = \frac{z+1}{z-3}$$
 e γ o círculo $|z| = 2$.

(b)
$$f(z) = \frac{3z^2}{z+2i} e \gamma \text{ o círculo } |z| = \frac{3}{2}.$$

(c)
$$f(z) = \frac{3ze^z}{z^2 + 3} e \gamma$$
 o círculo $|z| = \frac{5}{4}$.

- (d) $f(z) = \frac{\log(z-2i)}{z+2}$ e γ o quadrado de vértices em 1, -1, -i e i.
- 9. Calcule $\int_{\gamma} \overline{z} dz$ sendo:
 - (a) γ o caminho dado pela linha que liga 0 a 1+i.
 - (b) γ o caminho que liga 0 a 1 e de 1 a 1+i.

Se observarmos os resultados dos item (a) e (b) acima são diferentes, ou seja, a integral dada não independe do caminho. Você sabe explicar por quê?

10. Mostre que:

(a)
$$\int_{|z=1|} \frac{dz}{z} = 2\pi i$$
 (b) $\int_{|z|=1} \frac{dz}{|z|} = 0$ (c) $\int_{|z|=1} \frac{|dz|}{z} = 0$ (d) $\int_{|z|=1} \left| \frac{dz}{z} \right| = 2\pi i$

11. Sem calcular as integrais seguintes, mostre as desigualdades

$$\left| \int_{\gamma} \frac{z+2}{z} dz \right| \le 3, \text{ e } \left| \int_{\gamma} \frac{dz}{z} \right| \le 1,$$

onde γ é o segmento de 1 a 1+i.

- 12. Calcule $\int_{\gamma} \frac{(3z-1)dz}{z^2-3z-4}$, sendo γ a circunferência |z|=2.
- 13. Seja γ o arco do círculo |z|=2 que se situa no primeiro quadrante. Mostre que

$$\left| \int_{\gamma} \frac{dz}{z^2 + 1} \right| \le \frac{\pi}{3},$$

sem calcular o valor da integral. (Sugestão: Use $|v+w| \geq |v| - |w|.)$

14. Seja $z_0=re^{i\theta_0}$ e γ o caminho $\gamma(\theta)=re^{i\theta},\ \theta_0\leq\theta\leq\theta_0+2\pi.$ Mostre que

$$\int_{\gamma} z^a dz = \frac{z_0^{a+1}}{a+1} [e^{(a+1)2\pi i} - 1].$$

- 15. Mostre que $\int_{\gamma} \log z \, dz = 2\pi i$, onde γ é um caminho fechado envolvendo a origem uma vez no sentido positivo.
- 16. Seja $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ a função multiforme dada por

$$f(z) = \operatorname{Log} z.$$

- (a) Redefina f de modo a ser holomorfa, verificando sua holomorficidade. Mostre também que sua primitiva é dada por $F(z) = z \log z z$.
- (b) Calcule $\int_{|z|=2} \log z \, dz$.
- 17. Seja C_r o contorno $z=re^{i\theta},\, 0\leq \theta\leq 2\pi$ e f uma função contínua na origem. Prove que

$$\lim_{r \to 0} \int_{C_r} \frac{f(z)}{z} dz = 2\pi i f(0).$$

Sugestão: escreva f(z) = f(0) + [f(z) - f(0)].