Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática

Disciplina de Análise Real I - Prof. Dr. Maurício Zahn Lista 05 de Exercícios - Sequências ilimitadas e sequências de Cauchy

- 1. Se (x_n) é uma sequência tal que $x_n \to +\infty$, mostre que $\frac{1}{x_n} \to 0$.
- 2. Mostre que se (x_n) e (y_n) forem sequências tais que $x_n \leq y_n, \forall n \geq n_0, e x_n \to +\infty$, então $y_n \to +\infty$.
- 3. Prove que

$$\lim_{n\to +\infty} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \ldots + \frac{1}{\sqrt{2n}}\right) = +\infty.$$

- 4. Sejam (x_n) e (y_n) sequências de termos positivos. Se existir c > 0 tal que $x_n > c$, $\forall n \in \mathbb{N}$ e se $\lim_{n \to +\infty} y_n = 0$, mostre que $\lim_{n \to +\infty} \frac{x_n}{y_n} = +\infty$.
- 5. Mostre que $\lim_{n\to +\infty} n(\sqrt[n]{n}-1) = \infty$. (Sugestão: escreva $\sqrt[n]{n} = e^{\frac{\ln n}{n}}$ e utilize a desigualdade $e^x > 1+x$, $\forall x > 0$).
- 6. Mostre com um exemplo que o Teorema dos intervalos fechados encaixados é falso se os intervalos encaixados I_n não forem fechados. Mostre também que se os intervalos I_n não forem limitados o Teorema também é falso.
- 7. Mostre que a sequência (x_n) dada por $x_n = (-1)^n \frac{1}{n}$ é limitada. Extraia, em seguida, uma subsequência convergente.
- 8. Mostre que a sequência (x_n) definida por

$$x_n = \frac{(n^2 + 20n + 35)\sin n^3}{n^2 + n + 1}$$

possui uma subsequência convergente.

- 9. Prove que a sequência (x_n) dada por $x_n = \frac{\cos n\pi}{n}$ é de Cauchy.
- 10. Sejam 0 < r < 1 e (x_n) uma sequência tais que $|x_{n+1} x_n| < r^n$, para todo $n \in \mathbb{N}$. Mostre que a sequência (x_n) é de Cauchy.
- 11. Seja (x_n) sequência dada por $x_n = \sqrt{n}$. Mostre que (x_n) satisfaz

$$\lim_{n \to \infty} |x_{n+1} - x_n| = 0,$$

mas que a sequência não é de Cauchy.

12. Seja (a_n) uma sequência definida recursivamente pela fórmula

$$a_1 = 1, \ a_{n+1} = \frac{2 + a_n}{1 + a_n} \text{ para } n \in \mathbb{N}.$$

Mostre que a sequência é de Cauchy e encontre o seu limite.

13. Mostre que a sequência (x_n) definida por

$$x_n = \int_1^n \frac{\cos t}{t^2} dt$$

é de Cauchy.

14. Sejam (x_n) uma sequência e seja $s=\sup\{x_n:n\in\mathbb{N}\}$. Mostre que se $s\not\in\{x_n:n\in\mathbb{N}\}$, então existe uma subsequência de (x_n) convergente para s.