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Preface

The text is intended to form a bridge between calculus and analysis. It is based
on the author’s lecture notes, notes used and revised nearly every year over the last
decade or so. The students typically were a mixture of students intending to go on to
graduate work in mathematics and students intending to teach mathematics in grades
9–12. The later students typically only take the first semester of the two semester
sequence. In order to cover the material, the prospective teachers might need to
teach one variable calculus in high school; the text is designed to comfortably allow
coverage of the standard calculus topics including the Fundamental Theorem of
Calculus in the first semester. The material needed to prepare the remaining students
for a graduate level Real Analysis course can comfortably be covered in the second
semester.

To learn something new, for example, some mathematical topic or a foreign lan-
guage, requires exposure to many examples, practice, and the passage of time. To
quote one of the famous mathematicians of the twentieth century:

"... in mathematics you don’t understand things. You just get used to them." – John Von
Neumann

Hence, to help the reader learn from the text, the text includes many examples and
a variety of interesting applications are included, several dealing with surprising
properties of irrational numbers. The applications include some of the “jewels” of
analysis, for example, e is transcendental, π is irrational, a space filling curve, and
examples of nowhere differentiable continuous functions. Many of the applications
are not standard, but of interest to the students. There are exercises embedded in the
text and problem sections at the end of each chapter. The exercises in the text are in-
tended to slow the reader down and allow immediate engagement with some aspect
of the material being discussed. Essential ideas related to limits and continuity are
treated early and revisited in greater depth later. Topics are broken into small easily
digestible modules containing detailed explanations. Brief biographical material is
included for many of the mathematicians who contributed to the development of the
subject.

The text is basically a one variable treatment, in many places this variable is a
complex variable. Using a complex variables (i) places emphasis on the triangle
inequality, hence aids in the transition to more advanced analysis courses, (ii) keeps
the level of abstraction at the same level as the standard one variable treatment, and
(iii) some two (real) variable topics are easily accessible.
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Introduction

We define the set of real numbers to be the set of infinite decimals. Apart from
leaving the arithmetic of infinite decimals as a mystery, we attempt an axiomatic
approach to the subject.

The chapters are intended to be read in the order in which they are presented.
Chap. 13 on topology is special, and could perhaps be regarded as an appendix.
Most of Chap. 13 can be covered at the same time as Chap. 5. It could also be
covered instead of parts of that chapter. The subsection on sequential compactness in
Sect. 13.3, requires Sect. 9.1. The appendices contain various kinds of background
material. The author has found it useful for students to begin with Appendix D. In
addition to reinforcing the rules for working with inequalities, this gets the students
used to proving things they already “know.” Since most students have taken calculus
prior to taking this course that is in itself useful, this appendix also introduces the
students to do work based on a set of axioms.

Some sections are marked with a star. This does not indicate they are less im-
portant or more difficult than other section. It only signifies that they are not used
elsewhere in the text. Some of these sections contain the most “interesting” results in
this text. Several of the starred sections involve investigating properties of irrational
and transcendental numbers. Among these are proofs that e and π are irrational as
well as the explicit construction of some transcendental numbers.

Except in a few clearly labeled places, we do not use functions whose existence
we have not established. We establish the existence of roots, logarithms, exponen-
tials, and the trigonometric functions using the methods of analysis.

The ideas in some proofs reoccur multiple times. In fact, some proofs have been
chosen specifically for this reason. Examples include the proof that a number is a
root of a polynomial if and only if there is a corresponding linear factor and the proof
that the square root of two is irrational. Consequently, some of the proofs in the text
are deliberately not the most elegant proof of the statement under consideration.

The early parts of the text uses formal notation. Writing a statement in this man-
ner indicates what must be done to prove this statement and in which order this must
be done. Using formal notation also makes it clear how a statement can be used in a
proof. Hence, using formal notation aids the beginning analysis student understand
and construct proofs. In places, the formality is relaxed to help the student transition
to the standard writing style used in many mathematics books.
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x Introduction

Many results in the text are credited to one or two persons, in many (most?) cases
this is misleading. Most likely the result was know to earlier mathematicians in
some form or other. Dates in the text may only be approximate. At least the author
found contradictory information in several instances. Despite these shortcomings,
mentioning names and dates serves to illustrate that analysis was developed by many
people over a long period of time.

Note to the Student Reader

Working the exercises embedded in the text is intended to help you assimilate the
material. Working these exercises without assistance of any kind, for example, from
friends, other books, or the internet is necessary in order to gain a basic understand-
ing of the subject. Each chapter contains a section of solutions and hints that can
be consulted after a significant amount of time has been spent attempting to find a
solution. Once you have written down a complete solution to an exercise, it is useful
to compare this solution to other solutions. This is where friends, other books, and
the Internet are useful.

Each chapter also contains a selection of problems. Working these problems will
give the reader additional practice with the concepts and tools developed in the text.
The results established in these problems are not used elsewhere.

When solving exercises and problems try only to rely on the definition and the
major theorems: the named theorems. Try not to use the various minor results con-
tained in un-named theorems, lemmas, and exercises. When solving exercises and
problems do not refer to other problems in the text. An exception to rule is that some
problems are part of a sequence of problems leading to up to a major conclusion.

Some easy exercises are stated because they are useful when proving some of the
more interesting statements. Claims stated without proofs as well as all claims made
in exercises/problems are meant to be proven by the reader.

When reading a proof (including your own proofs/solutions) you need to be able
to: (a) explain why the proof proves the theorem/problem, (b) identify the main
steps in the proof, (often they take the form of smaller claims made in the proof) (c)
fill in all missing details (go through the proof line by line to check the details), (d)
identify where each hypothesis in the theorem is used.
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Part I



Calculus

The theory of differential and integral calculus is the main focus of this part.
This includes discussions of number, sets of numbers, limits, continuity, derivative,
and Riemann integral. Applications includes a proof of the Steinhaus three distance
conjecture, Liouville’s theorem on transcendental numbers, convex function theory,
a construction of the exponential and logarithmic functions, an example of a com-
pactly supported smooth function, and a proof that the number e is transcendental.



Chapter 1
Limits

The set real numbers is defined as the set of infinite decimals. Density of the set of
rational numbers and of the set of irrational numbers in the set of real numbers is
established. This naturally leads to a discussion of accumulation points that serves
as a precursor for the main part of this chapter: the theory of limits of functions.
Convergence of sequences and series of numbers are discussed briefly. A bounded
function, the Dirichlet function, that does not have a limit at any real number is
presented. Section 1.8 contains a proof of Steinhaus’ three distance conjecture.

1.1 Infinite Decimals

The basis set underlying all of our considerations is the set of all real numbers, that
is, the set of all infinite decimals. In this section we investigate a few basic properties
of infinite decimals. We begin by introducing some terminology.

An infinite decimal is an expression of the form

±d0.d1d2 · · · ,

where d0 ∈ N0, and for k ≥ 1, dk is a decimal digit meaning

dk ∈ {0,1,2,3,4,5,6,7,8,9}.

For example, if our infinite decimal is 13.23674 · · · , then d0 = 13, d1 = 2, d2 = 3,
d3 = 6, d4 = 7, etc.

An infinite decimal
±d0.d1d2 · · ·

is repeating, if there are k,m ∈ N, such that d j+m = d j for all j ≥ k. The digits
dkdk+1 · · ·dk+m−1 are the repeating part of the infinite decimal and the repeating
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part has length m. We will write

d0.d1d2 · · ·dk−1dkdk+1 · · ·dk+m−1 := d0.d1d2 · · · .

For example, 1.67234523452345 · · · = 1.672345 is an infinite decimal with repeat-
ing part 2345 of length 4. Another example of a repeating decimal is 0 = 0.0. More
generally, we will say that decimals of the form 2.453 := 2.4530 are finite decimals.

We assume the reader is familiar with the usual properties of addition and multi-
plication, including the associative, commutative, and distributive properties. These
properties are, for example, encoded in the field axioms. Inequality between two in-
finite decimals has the usual meaning, in particular, inequality satisfies the Axioms
of Trichotomy and Positive Closure. Consequently, we can freely use the conse-
quences of these axioms derived in Sects. D.1 and D.2.

Finite Decimals

Let x := 0.9, then 10x = 9.9 = 9+ x, hence 9x = 9, so x = 1. That is

0.999 · · ·= 0.9 = 1.

Similarly, any infinite decimal terminating in 9 equals a finite decimal. Con-
versely, any finite decimal equals an infinite decimal terminating in 9. For example,
1.239 = 1.24. We have shown:

Theorem 1.1.1. The set of finite decimals equals the set of infinite decimals termi-
nating in repeating nines.

Repeating Decimals

The set of rational numbers is

Q :=

{
p
q
| p ∈ Z,q ∈ N

}
.

We provide a characterization of the rationals in terms of decimals.
The number 0.234 is rational. In fact, if x := 0.234, then 1000x = 234+x, hence

x = 234/999. Similarly, any repeating decimal is a rational number.
Calculating the decimal form of 1/7 by long division, there are at most 7 dif-

ferent remainders, namely 0,1,2,3,4,5, and 6. Hence, after at most 7 divisions, the
division problem repeats itself. Thus the infinite decimal form of 1/7 is a repeating
decimal whose repeating part has length at most 6 (If the remainder is zero, the pro-
cess stops). Similarly, the repeating decimal form of any rational p/q, with 1 < q,
is a repeating decimal whose repeating part has length at most q−1.
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We have shown:

Theorem 1.1.2. An infinite decimal is a rational number iff it is repeating.

Example 1.1.3. By long division 1
3 = 0.3, and 2

3 = 0.6. Since 1
3 +

2
3 = 1

1 and 3
1

1
3 = 1

1
we have

0.3+0.6 = 1 and

3 ·0.3 = 1.

Leading to two further verifications that 0.9 = 1.

A real number that is not rational is called irrational. Irrational numbers exist be-
cause non-repeating decimals exist. For example, the infinite decimal

0.1010010001 · · · (1.1)

(keep increasing the number of zeros) is non-repeating, hence an irrational number.
We will prove that

√
2, e, and π exist and are irrational. For

√
2 existence is

contained in Theorem 3.5.1 and irrationality is established by Theorem 3.5.4. We
construct e in Sect. 8.2 and show e is irrational (even transcendental) in Sect. 8.3. In
Sect. 11.2 we construct π and in Sect. 11.5 we show π is irrational.

Density

Let A and B be two sets. We say A is dense in B, if any ball centered at a point in B
must contain at least one point from A. In symbols,

∀b ∈ B,∀r > 0,A∩Br(b) �= /0.

Alternatively, using the definition of an open ball, we can rewrite the definition of A
being dense in B as

∀b ∈ B,∀r > 0,∃a ∈ A, |a−b|< r.

Usually, when we say A is dense in B, the set A is a subset of the set B, but this is
not required by the definition.

Lemma 1.1.4. If r > 0, then there is an integer N ≥ 1, such that r > 1/10N .

Proof. Let r = d0.d1d2 · · · be the infinite decimal representation of r. Since r �= 0,
for at least one n, dn is non-zero. Consequently, r > 1/10n+1. �

A direct consequence of this result is that there is no infinitely small positive real
number:

Corollary 1.1.5. If 0≤ r and r < 1/10n for all integers n, then r = 0.
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The following theorems establish the density of the set of rational numbers and of
the set of irrational numbers in the set of all real numbers.

Theorem 1.1.6 (Density of Rationals). The set of all rational numbers is dense in
the set of all real numbers.

Proof. Let real number x and r > 0 be given. We must show that Br(x) contains at
least one rational number. Suppose x > 0. Let x = d0.d1d2 · · · be an infinite decimal
representation of x. Let N ≥ 1 be an integer such that r > 1/10N . Let y := d0.d1 · · ·dN

and z := d0.d1 · · ·dN9 = y+1/10N . Then y and z are rationals.
Since y is obtained from x = d0.d1d2 · · · by replacing the dk with k > N by 0’s

and z is obtained from x by replacing the dk with k > N by 9 ’s we have

y≤ x≤ z, and z = y+
1

10N . (1.2)

Hence,

x≤ z = y+
1

10N ≤ x+
1

10N < x+ r.

Where the last inequality follows from the choice of N. Consequently, z is a rational
in Br(x).

The case where x < 0 is similar. If x = 0, then x is already a rational in Br(x). �
Exercise 1.1.7. If r �= 0 is rational and x is irrational, then 1/x, x/r, rx and r+ x are
irrational.

Theorem 1.1.8 (Density of Irrationals). Any open interval contains an irrational
number.

Proof. Let real numbers x and r > 0 be given. We will show that Br(x) contains at
least one irrational number. Let t be the irrational in (1.1). Then 0 < t < 1. Suppose
x > 0. Let x = d0.d1d2 · · · be an infinite decimal representation of x. Let N ≥ 1 be
an integer such that r > 1/10N . Then

y := d0.d1 · · ·dN +
t

10N

is an irrational such that |x− y| ≤ 1
10N < r.

The case x < 0 is similar. If x = 0, then t/10N is an irrational in Br(x). �

1.2 Accumulation Points

Let D be a subset of C and let a be some complex number. We say a is an accumu-
lation point of D, if there are points in D\{a} arbitrarily close to a. Hence, a point
a is an accumulation point of D, if given any distance ε > 0, there is at least one
point in D\{a} whose distance to a is less than ε . We restate this as:
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Definition 1.2.1. Let D be a subset of C and let a be some complex number. We
say a is an accumulation point of D, if for all ε > 0, there is an x ∈ D, such that
0 < |x−a|< ε . In symbols,

∀ε > 0,∃x ∈ D,0 < |x−a|< ε .

Accumulation points are also called limits points.

A ball without its center is called a punctured ball; hence a punctured ball is a set of
the form

B′r(c) := Br(c)\{c}= {z ∈ C | 0 < |z− c|< r}.
A punctured ball is also called a punctured neighborhood of c. In the same manner
the open ball Br(a) is sometimes called a neighborhood of a.

In terms of balls, we can rewrite the definition of an accumulation point as

∀ε > 0,B′ε(a)∩D �= /0. (1.3)

The following exercise shows that it is sufficient to consider small values of ε > 0.

Exercise 1.2.2. Let m > 0 be given. If for all 0 < r ≤ m, D∩B′r(c) �= /0, then c is an
accumulation point of D.

Example 1.2.3. The number 0 is an accumulation point of B1(0).

Proof. To see this consider an arbitrary ε > 0. We may assume ε ≤ 1. Let x := ε/2.
Then 0 < x = |x−0|< 1 (so x ∈ B1(0),) and 0 < |x−0|< ε . See Fig. 1.1. �

0 1

2

Fig. 1.1 Illustrating Example 1.2.3 using balls as in (1.3). In the notation of (1.3) the large disk is
D and the small disk is Bε (a), with a = 0

Example 1.2.4. The number 1 is an accumulation point of B1(0).

Proof. To see this, consider ε > 0. We may assume ε ≤ 1. Then 0 < ε/2 ≤ 1/2.
Hence, 0 < 1

2 ≤ 1− ε
2 < 1. Consequently, if x := 1− ε

2 , then 0 < x < 1. Thus x ∈
B1(0) and 0 < |x−1|< ε , as we needed to show. See Fig. 1.2. �
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0 11 11 2

Fig. 1.2 Illustrating Example 1.2.4 using balls as in (1.3). In the notation of (1.3) the large disk is
D and the small disk is Bε (a), with a = 1

Example 1.2.5. The number 2 is not an accumulation point of B1(0).

Proof. Let ε := 1
2 . Let x ∈ B1(0). Then |x− 2| � ε , because |x− 2| ≥ ||x|− |2||

= 2−|x| ≥ 2−1 > 1/2 = ε . See Fig. 1.3. �

0 1 22 2

Fig. 1.3 Illustrating Example 1.2.5 using balls as in (1.3). In the notation of (1.3) the large disk is
D and the small disk is Bε (a), with a = 2

Remark 1.2.6. Using the methods from Examples 1.2.3 to 1.2.5 it follows that the
set of accumulation points of an open ball in the corresponding closed ball.
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1.3 Limits of Functions

Understanding the definition of limits is central to understanding a modern devel-
opment of calculus. The modern concept of limits is highly nontrivial: It took math-
ematicians several hundred years, after the discovery of calculus, to organize the
logical development of calculus around the concept of the limits and another hun-
dred years or so to write down the modern (precise) definition of the limit.

Definition of Limits

If A and B are sets, then the notation f : A → B is used to indicate that f is defined
on all of A and has values in B. If every element of B is a value of f , then f is said
to be onto or surjective. See Sect. A.4 for more background information regarding
functions.

Let D be a subset of C. Let function f : D→ C and suppose a ∈ C is an accumu-
lation point of D. Let L ∈ C. We would like to turn the vague statement

f (x) is close to L, when x is close to a

into a precise mathematical statement, that is, into a statement that can be described
using set theory and logic. As a step in this direction we reformulate the previous
vague statement as:

we can arrange that f (x) is as close to L, as we wish,

for all x sufficiently close to a

The first part “that f (x) is as close to L, as we wish” can be made precise as follows:

for any (small) ε > 0, | f (x)−L|< ε .

The second part “for all x sufficiently close to a” can be made precise by saying that

0 < |x−a|< δ for some δ > 0 depending on ε ,

where 0 < |x−a| < δ says x is close to a and “sufficiently” is encoded in the de-
pendence of δ on ε . We want a to be an accumulation point of D, because that guar-
antees that D∩B′δ (a) is nonempty, that is, 0 < |x− a| < δ for at least one x ∈ D.
Hence we have arrived at:

Definition 1.3.1. Let D⊆ C, a,L ∈ C, and f : D→ C. If a is an accumulation point
of D, we will say that f (x) converges to L as x goes to a provided: Given any ε > 0,
there is a δ > 0, such that for any x∈D with 0< |x−a|< δ , we have | f (x)−L|< ε .
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In symbols,

∀ε > 0,∃δ > 0,∀x ∈ D,0 < |x−a|< δ =⇒ | f (x)−L|< ε . (1.4)

This definition of limit is due to Karl Theodor Wilhelm Weierstrass (31 October
1815 Ostenfeldeto 19 February 1897 Berlin). Using neighborhoods, as in Sect. 1.2,
Eq. (1.4) can be written as

∀ε > 0,∃δ > 0,∀x ∈ D,x ∈ B′δ (a) =⇒ f (x) ∈ Bε(L). (1.5)

If g : A → B and C ⊆ A, then g(C) := {g(x) | x ∈ C} is the image of C. Clearly,
g(A) ⊆ B. Note that g is onto, if g(A) = B. Using this image notation we can write
(1.5) and therefore (1.4) as

∀ε > 0,∃δ > 0, f (D∩B′δ (a))⊆ Bε(L). (1.6)

Restating (1.6) in words: Given a ball B centered at L, there is a punctured ball B′

centered at a, such that f maps B′ into B.
We will abbreviate Eq. (1.4) as

lim
x→a

f (x) = L

and say that L is the limit of f as x goes to a. Using notation that is similar to saying
that f (x) goes to L as x goes to a, we will also abbreviate (1.4), and therefore also
the equivalent formulations (1.5) and (1.6), as

f (x)→ L, as x→ a

and as
f (x)−→

x→a
L.

Model Nothing moves in the definition of convergence. Hence, notation using
arrows to describe convergence is somewhat deceptive. Here we discuss a more
appropriate model of limx→a f (x) = L.

Preamble The model below is chosen because traditionally, at least in Europe
during times of war, mathematicians were employed calculating ballistic or-
bits, sometimes even on the battlefield.

Set-up Suppose we have a canon. When this canon is fired at an angle x to
the horizon the projectile lands a distance f (x) from the canon. The intended
target is a distance L from the canon and a is an angle such that f (a) = L. In
practice, it is not possible to set up the canon in such a way that the angle x
is determined with absolute precision, i.e., such that x = a. However, we only
need the projectile to land so close to the target that the target is destroyed.
We call this the target tolerance.

Discussion The function f (x) encodes a lot of information, e.g., how far the
target is above (or below) the canon (or more complicated information about
the terrain), wind speed, atmospheric pressure, etc. How close to the target
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we need the projectile to land depends on how well the target is fortified.
Considering both the angle to the horizon x and the direction y in which the
canon is fired, leads to a problem where f (x+ iy) is a function mapping the
plane into the plane—into the plane because the projectile can land left or
right of the target as well as in front of or behind the target.

Problem Given a target, set up the canon such that the target is destroyed.
Solution For any target tolerance, there is an angle tolerance, such that, if the

angle adjustment of the canon falls within the angle tolerance, then the projec-
tile will land within the target tolerance. Using the symbols a,x,L, and f (x)
we restate this as: Given any target tolerance ε > 0, there is an angle tolerance
δ > 0, such that, if 0 < |x−a|< δ , then | f (x)−L|< ε . See Table 1.1.

Ballistic model Definition (1.4) of limit
For any target tolerance ∀ε > 0

there is an angle tolerance ∃δ > 0
such that such that

if ..., then ... =⇒
angle adjustment falls within angle tolerance 0 < |x−a|< δ

projectile lands within the target tolerance | f (x)−L|< ε

Table 1.1 Comparison of the ballistic model to the definition (1.4) of the limit of a function

Remark The condition 0 < |x−a| in Table 1.1 corresponds to the fact that it is
not possible to adjust the angle of the canon with absolute precision.

End-of-Model

It is a consequence of Exercise 1.2.2 that when working with limits only “small”
values of ε > 0 and δ > 0 need to be considered. This is illustrated in the following
two remarks. We give the arguments both in terms of (1.4) and in terms of (1.6).

Remark 1.3.2. If we can find a δ corresponding to ε = 1/2, then that δ also works
for ε = 1. Simply

0 < |x−a|< δ =⇒ | f (x)−b|< 1
2

=⇒ | f (x)−b|< 1

by transitivity of inequality. In terms of ball, if f (B′δ (a))⊆B1/2(b), then f (B′δ (a))⊆
B1(b), because B1/2(b)⊆ B1(b).

Thus, when trying to verify (1.4), it is sufficient to consider small values of ε .
That is, if it is convenient to assume, for example, ε < 1/3, you can safely do so.

Remark 1.3.3. Suppose δ = 1 works for some value of ε , then δ = 1/2 also works
for that value of ε . Again, this is by transitivity of inequalities:

0 < |x−a|< 1
2

=⇒ 0 < |x−a|< 1 =⇒ | f (x)−b|< ε .
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In terms of ball, if f (B′1(a))⊆ Bε(b), then f
(

B′1/2(a)
)
⊆ Bε(b), because B′1/2(a)⊆

B′1(a).
Since we only need to find one value of δ , this means that, if it is convenient

to assume, for example, δ < 1/3, we can safely do so. We are not looking for the
“best” or largest δ , or trying to classify all the possible δ ’s that might work.

The arguments in Remarks 1.3.2 and 1.3.3 show that we can replace 0 < |x−a|< δ
by 0 < |x− a| ≤ δ and/or | f (x)−L| < ε by | f (x)−L| ≤ ε , if convenient. That is,
we can use closed balls in place of open balls, or a mixture of open and closed balls,
whenever it is convenient.

Simple, but important, limits are established in the following two examples.

Example 1.3.4. Let a,k ∈ C. If f (x) := k for all x ∈ C, then f (x)→ k as x→ a.

Proof. Let ε > 0 be given. Let δ := 1. Then 0< |x−a|< δ = 1, implies | f (x)−k|=
|k− k|= 0 < ε . Hence, δ = 1 works for any ε . �
Example 1.3.5. Let a ∈ C. If f (x) := x for all x ∈ C, then f (x)→ a as x→ a.

Proof. Let ε > 0 be given. Let δ := ε , then δ > 0 and

0≤ |x−a|< δ =⇒ | f (x)−a|= |x−a|< δ = ε .

Hence, δ = ε works. �
In order to analyze more interesting examples we need some techniques. Using
(1.6) is often intuitive, since it allows us a pictorial argument. (The reader may
want to illustrate Remarks 1.3.2 and 1.3.3 using drawings of appropriate balls.)
However, in concrete cases (1.4) is often more useful because it allows us to “solve”
| f (x)−L|< ε for δ . This is illustrated in the examples below.

Example 1.3.6. Let f : C→ C be determined by f (x) := 3x− 5. Then f (x)→ 7 as
x→ 4.

Proof. To prove this, let ε > 0 be given. We need to find a δ > 0, such that | f (x)−
7|< ε , when 0 < |x−4|< δ . A useful algebraic manipulation is

| f (x)−7|= |3x−12|= 3 |x−4| (1.7)

since this displays |x−4| as a factor of | f (x)−7|. The choice of δ will control the
size of |x−4|. Our goal

| f (x)−7|< ε

takes the form
3|x−4|< ε .

Dividing by 3, gives

|x−4|< ε
3
.
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So, let δ := ε/3. Then δ > 0 since ε > 0. Having constructed a δ , we must verify
that it works. Using (1.7) it follows that

|x−4|< δ =⇒ 3|x−4|< 3δ =⇒ | f (x)−7|< 3
ε
3
= ε .

Thus δ = ε/3 works. �
Having constructed δ , one should in principle verify that it works, as we did

above. This step is often left for the reader.

Example 1.3.7. Let f : C→C be determined by f (x) := x2. Then f (x)→ 9 as x→ 3.

Proof. To prove this, let ε > 0 be given. We need to find a δ > 0, such that | f (x)−
9|< ε , when 0 < |x−3|< δ . A useful algebraic manipulation is

| f (x)−9|= |x+3| |x−3| (1.8)

since this displays |x−3| as a factor of | f (x)−9|. The choice of δ will control the
size of |x− 3|, but before we can choose δ , we need to control the size of |x+ 3|.
Since we want x to be close to 3, we can restrict our deliberations to |x−3|< 1 and
see what that says about |x+3|. By the triangle inequality

|x+3|= |x−3+6| ≤ |x−3|+ |6|< 1+6 = 7

when |x−3|< 1. Hence, using (1.8)

|x−3|< 1 =⇒ | f (x)−9| ≤ 7|x−3|.

The last inequality suggests we want 7|x−3|< ε . In fact, if |x−3|< 1 and |x−3|<
ε/7, then

| f (x)−9| ≤ 7|x−3|< 7
ε
4
= ε .

Thus δ := min{1,ε/7} works. �
The choice of the 1 in |x−3|< 1 above, was arbitrary. Replacing that 1 by any other
positive number would work in this example.

The proof above could be written using neighborhood notation, to summarize:

x ∈ B1(3) =⇒ |x+3|< 7 and

x ∈ Bε/7(3) =⇒ |x−3|< ε/7 hence

x ∈ B1(3)∩Bε/7(3) =⇒ |x+3| |x−3|< 7(ε/7).

The assignment δ := min{1,ε/7} then results from

B1(3)∩Bε/7(3) = Bmin{1,ε/7}(3).

Example 1.3.8. Let f : C\{0} → C be determined by f (x) := 1
x . Then f (x)→ 2 as

x→ 1
2 .



14 1 Limits

Proof. Let ε > 0 be given. We need to find a δ > 0, such that | f (x)−2|< ε , when
0 <

∣
∣x− 1

2

∣
∣< δ . A useful, since it displays |x−1/2| as a factor of | f (x)−2|, alge-

braic manipulation is

| f (x)−2|=
∣
∣
∣
∣
1
x
−2

∣
∣
∣
∣

=

∣
∣
∣
∣
1−2x

x

∣
∣
∣
∣

=

∣
∣
∣
∣
2
x

∣
∣
∣
∣

∣
∣
∣
∣x−

1
2

∣
∣
∣
∣ .

Since we want x to be close to 1
2 , we can restrict our deliberations to

∣
∣x− 1

2

∣
∣ < 1

and see what that says about
∣
∣ 2

x

∣
∣ .We would like to find a number M > 0 (M = 7

worked in the previous example), such that
∣
∣ 2

x

∣
∣ < M, that is, such that 2 < M|x|,

when
∣
∣x− 1

2

∣
∣< 1. Unfortunately, this does not work. In fact,

∣
∣x− 1

2

∣
∣< 1 is satisfied

by values of x that are arbitrarily close to 0, and 2<M|x| fails, when |x|< 2/M. �
Exercise 1.3.9. Repair the proof by considering

∣
∣x− 1

2

∣
∣< 1

4 in place of
∣
∣x− 1

2

∣
∣<1.

Example 1.3.10 (Pseudo-sine Function). We have not yet constructed the trigono-
metric functions. This example introduces a function that roughly behaves like the
sine function. Let

f (x) :=

{
4x(1− x) when 0≤ x≤ 1

4x(1+ x) when −1≤ x≤ 0

Note f is an odd function: f (−x) =− f (x). Extend f to all of R as a periodic func-
tion σ with period 2 :

σ(x+2n) := f (x), when x ∈ [−1,1] and n ∈ Z.

σ is well-defined because f (−1) = f (1).
The graph of σ roughly looks like the sine function, more precisely, roughly like

the graph of sin(πx), see Fig. 1.4. We call σ the pseudo-sine function. The sine
function is constructed in Sect. 11.2.

Exercise 1.3.11. Let g(x) := σ(1/x) when x �= 0. Suppose every real number y≥ 0
has a square root (this is established in Theorem 3.5.1). Sketch proofs of:

(i) For all δ > 0, σ ({x ∈ R | 0 < |x−0|< δ})⊇ {−1,1}. See Fig. 1.5.
(ii) The limit limx→0 g(x) does not exists.
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Fig. 1.4 Pseudo-sine function

Fig. 1.5 A part of the graph of σ(1/x) with some important values of x indicated

Some Consequences of the Existence of a Limit

The results in this subsection may appear simple. But they are very useful when we
want to use the existence of some limit(s) to establish the existence of related limits.
They also serve to give us some experience using the assumption f (x)→ L as x→ a
in proofs.

In the following D is some subset of C and a is an accumulation point of D.
We say f : D → C has a property P near a, if there is a δ > 0, such that f (x)

satisfies P for all x in D∩B′δ (a). If f has a limit at a, then f is bounded near a. More
precisely:

Theorem 1.3.12 (Local Boundedness). Let f : D → C. If limx→a f (x) exists, then
there is a δ > 0 and an M > 0, such that for all x ∈D, 0 < |x−a|< δ =⇒ | f (x)| ≤
M.

Proof. Suppose f (x)→ L as x→ a. Let ε := 1. Since f (x)→ L as x→ a, there is a
δ > 0, such that for all x ∈D, 0 < |x−a|< δ =⇒ | f (x)−L|< 1. Hence, for x ∈D
with 0 < |x−a|< δ , we have

| f (x)| ≤ | f (x)−L|+ |L|< 1+ |L|.
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Thus M = 1+ |L| works (Fig. 1.6). �

Fig. 1.6 Illustrating the proof of local boundedness (Theorem 1.3.12) in the case where f (x) = 1/x
and a = 1/3. In this case L = 3, hence M = 1+ |L|= 4 and the proof gives δ ≤ 1

3 −
1
4 = 1

12

Example 1.3.13. Suppose f (x) := 1
x and a := 1

2 . If 0 < δ < 1
2 , then any M ≥ 2

1−2δ
satisfies the conclusions of the previous theorem. Note if δ = 1

2 , then f is defined
at all points with

∣
∣x− 1

2

∣
∣< 1

2 , but there is no corresponding value for M. In fact, let
M > 0 be given. Then

f

(
1

M+2

)
= M+2 > M

and 1/(M+2)< 1/2. In particular, we must choose M, i.e., ε , before we can deter-
mine δ . This is what we did in the proof of Theorem 1.3.12, and it corresponds to
the structure of our definition (1.4) of limits.

If a real valued function has a positive limit as x → a, then the function is positive
near a. More precisely:

Theorem 1.3.14 (Local Positivity). If f : D → R is a function such that f (x)→ L
as x → a and L > 0, then there is a δ > 0, such that for all x ∈ D, 0 < |x− a| < δ
=⇒ L

2 < f (x).

Proof. Let ε := L/2. Then ε > 0 since L > 0. Since f (x)→ L as x → a, there is a
δ > 0, such that for all x ∈D, 0 < |x−a|< δ =⇒ | f (x)−L|< ε = L/2. For x ∈D,
with 0 < |x−a|< δ we have

f (x) = L− (L− f (x))

≥ L−|L− f (x)|
> L− ε

=
L
2
.
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This calculation completes the proof (Fig. 1.7). �

Fig. 1.7 Illustrating the proof of local positivity (Theorem 1.3.14) in the case where f (x) = 2
x −4

and a = 1/3. In this case L = 2, hence ε = L/2 = 1 and the proof gives δ ≤ 1
3 −

2
7 = 1

21

Exercise 1.3.15. If f : D→ C, f (x)→ L as x→ a, and L �= 0, then there is a δ > 0,
such that for all x ∈ D, 0 < |x−a|< δ =⇒ |L|

2 < | f (x)|.

1.4 Calculating with Limits

The following allows us to perform basic algebra with limits. All the ideas needed
for the proofs are present in the examples above.

Theorem 1.4.1 (Linearity). Let D be a subset of C, f ,g : D→C, and x0,a,b,L,M ∈
C. Suppose x0 is an accumulation point of D. If

f (x)→ L and g(x)→M as x→ x0,

then
(a f +bg)(x)→ aL+bM as x→ x0.

Here (a f +bg)(x) := a f (x)+bg(x) for x ∈ D.

Linearity is a direct consequence of the constant multiple and sum rules below.

Lemma 1.4.2 (Constant Multiple Rule). Let D be a subset of C, f : D → C, and
a,k,L∈C. If a is an accumulation point of D and f (x)→ L as x→ a, then (k f )(x)→
kL as x→ a.
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Proof. Let ε > 0 be given. The proof is based on the equality

|(k f )(x)− kL|= |k| | f (x)−L|.

Suppose k �= 0. Since ε/|k|> 0 and f (x)−→
x→a

L, there is a δ > 0, such that, if x ∈ D,

then 0 < |x−a|< δ =⇒ | f (x)−L|< ε/|k|. Multiplying the last inequality by |k|
yields, 0 < |x−a|< δ =⇒ |k f (x)− kL|< ε . Thus (k f )(x) −→

x→a
kL. �

Example 1.4.3. If a := 5, k := 3 and f (x) := x, we get 3x→ 3 ·5 = 15 as x→ 5.

Lemma 1.4.4 (Sum Rule). Let D be a subset of C and a,L,M ∈ C. Suppose f ,g :
D → C, a is an accumulation point of D, f (x)→ L as x → a, and g(x)→ M as
x→ a, then ( f +g)(x)→ L+M as x→ a.

Proof. Let ε > 0 be given. The proof is based on the triangle inequality

|( f +g)(x)− (L+M)| ≤ | f (x)−L|+ |g(x)−M|.

Since f (x)−→
x→a

L, there is a δ1 > 0, such that, if x ∈D, then x ∈ B′δ1
(a) =⇒ | f (x)−

L| < ε/2. Similarly, since g(x)−→
x→a

M, there is a δ2 > 0, such that, if x ∈ D, then

x∈ B′δ2
(a) =⇒ |g(x)−M|< ε/2. Hence, x∈ B′δ1

(a)∩B′δ2
(a) implies |( f +g)(x)−

(L+M)| < ε/2+ ε/2. Thus δ := min{δ1,δ2} works. �
Example 1.4.5. If a = 5, f (x) := 7 and g(x) := x, we get 7+ x → 7+ 5 = 12 as
x→ 5.

Theorem 1.4.6 (Product Rule). Let D be a subset of C and let a,L,M ∈C. Suppose
f ,g : D→ C and a is an accumulation point of D. If

f (x)→ L and g(x)→M as x→ a,

then
( f g)(x)→ LM as x→ a.

Here ( f g)(x) := f (x)g(x).

Proof. Let ε > 0 be given. The proof is based on the triangle inequality

|( f g)(x)−LM|= | f (x)g(x)−Lg(x)+Lg(x)−LM|
≤ | f (x)−L| |g(x)|+ |L| |g(x)−M|.

By Local Boundedness (Theorem 1.3.12) there is a constant K > 0 and a δ1 > 0,
such that |g(x| ≤ K, when 0 < |x−a|< δ1. Hence

|( f g)(x)−LM| ≤ K | f (x)−L|+ |L| |g(x)−M|

when 0 < |x−a|< δ1.



1.4 Calculating with Limits 19

Using f (x)→ L, and g(x)→ M as x → a, we conclude there are δ2 > 0 and
δ3 > 0 such that

| f (x)−L|< ε
2K

when 0 < |x−a|< δ2

|g(x)−M|< ε
2|L|+1

when 0 < |x−a|< δ3

The +1 is there in case L = 0. Consequently, if 0 < |x−a| < min{δ1,δ2,δ3}, then
the last three inequalities displayed above all hold. Plugging the last two of these
into the first gives us

|( f g)(x)−LM|< K
ε

2K
+ |L| ε

2|L|+1
< ε .

Thus, δ := min{δ1,δ2,δ3} works. �
Exercise 1.4.7. Let n ∈ N and a ∈ C. Show that xn → an as x→ a.

A polynomial is a function p : C→ C of the form

p(x) = a0 +a1x+a2x2 + · · ·+anxn

for some n ∈ N0 and some complex numbers ak, k = 0,1, . . . ,n. The degree of p is
the largest subscript k such that ak �= 0.

Exercise 1.4.8. If a ∈ C and p is a polynomial, then p(x)→ p(a) as x→ a.

Theorem 1.4.9 (Quotient Rule). Let D be a subset of C. Suppose f ,g : D→C, and
a,L,M ∈ C. Let a be an accumulation point of D. If M �= 0 and

f (x)→ L and g(x)→M as x→ a,

then
f
g
(x)→ L

M
as x→ a.

Here f
g (x) := f (x)

g(x) for x ∈ D.

Proof. We showed in Exercise 1.3.15 above that |g(x)| > |M|/2 for all x ∈ D near
a. In particular, g(x) �= 0 for all x ∈D near a. Consequently, f (x)/g(x) makes sense
near a.

Let ε > 0 be given. The proof is based on the triangle inequality
∣
∣
∣
∣

f (x)
g(x)

− L
M

∣
∣
∣
∣=
∣
∣
∣
∣

f (x)
g(x)

− L
g(x)

+
L

g(x)
− L

M

∣
∣
∣
∣

=

∣
∣
∣
∣

f (x)
g(x)

− L
g(x)

+L
M−g(x)

Mg(x)

∣
∣
∣
∣

≤
∣
∣
∣
∣

1
g(x)

∣
∣
∣
∣ | f (x)−L|+

∣
∣
∣
∣

L
M

∣
∣
∣
∣

∣
∣
∣
∣

1
g(x)

∣
∣
∣
∣ |M−g(x)| .
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Exercise 1.4.10. Complete the proof of the Quotient Rule. �
The derivation of the inequalities that form the basis for the proofs of the rules

above are all based on the desire to find expressions we know something about,
for example, in the proof of the quotient rule we began by looking for the factor
| f (x)−L| and then we “found” the factor |g(x)−M|.

A rational function is the ratio of two polynomials,

f (x) :=
p(x)
q(x)

where p and q are polynomial functions. If q(a) �= 0, then the quotient rule shows
that

p(x)
q(x)

→ p(a)
q(a)

as x→ a.

Actually, this requires that a is an accumulation point of {x ∈ C | q(x) �= 0}. But,
this is true because, the set of roots {x ∈ C | q(x) = 0} is finite:

Proposition 1.4.11. If p is a polynomial of degree n, then p has at most n roots.

This is part of the Fundamental Theorem of Algebra. The full version of the Funda-
mental Theorem of Algebra is established in Sect. 9.4. We precede the proof by two
lemmas. The idea of the proof of the first lemma is used at several points in the text.

Lemma 1.4.12. If p is a polynomial of degree n and z0 is a constant, then q(z) :=
p(z+ z0) is a polynomial of degree n.

Proof. Write p(z) = ∑n
k=0 akzk. Then

q(z) := p(z+ z0) =
n

∑
k=0

ak(z+ z0)
k,

where an �= 0. Expanding each (z+ z0)
k completes the proof. We include one ver-

sion of the details below. Simply expanding everything using the Binomial Theorem
and collection the coefficients to the powers of z is an alternative way to finish the
argument

Expanding (z+ z0)
k, we see rk(z) := (z+ z0)

k is a polynomial of degree k. Since
the sum of two polynomials of degree ≤ m is a polynomial of degree ≤ m, we
conclude

q(z) =
n

∑
k=0

akrk(z) = anrn(z)+
n−1

∑
k=0

akrk(z)

is a polynomial of degree ≤ n. The polynomial anrn(z) has degree n since rn has
degree n and an �= 0. And the polynomial ∑n−1

k=0 akrk(z) has degree ≤ n−1, since it
is a sum of polynomials whose degrees all are ≤ n−1. Consequently, the only term
in q(z) containing zn is the term in anrn(z).Thus q has degree n. �
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Lemma 1.4.13. If p is a polynomial of degree n+ 1 and p(z0) = 0, then there is a
polynomial q of degree n, such that p(z) = (z− z0)q(z).

Proof. Suppose p is a polynomial of degree n+1 and p(z0) = 0. Let q(z) := p(z+
z0). By the first lemma q is a polynomial of degree n+ 1. Write q(z) = ∑n+1

k=0 bkzk.
Now

b0 = q(0) = p(0+ z0) = 0.

Hence, z is a common factor of the terms in q(z) :

q(z) =
n+1

∑
k=0

bkzk =
n+1

∑
k=1

bkzk = z
n+1

∑
k=1

bkzk−1.

So, r(z) := ∑n+1
k=1 bkzk−1 is a polynomial of degree n and q(z) = zr(z). Finally,

p(z) = q(z− z0) = (z− z0)r(z− z0) = (z− z0)s(z),

where, s(z) := r(z− z0) = r(z+ (−z0)) is a polynomial of degree n, by the first
lemma. �

We are now ready for the proof of Proposition 1.4.11.

Proof. Let Rp be the set of roots of the polynomial p. That is Rp = {z | p(z) = 0}.
We must show that if p has degree n, then Rp has at most n elements.

The proof is by induction on the degree of the polynomial. If p has degree one,
then p(x) = a+bx, where b �= 0. Hence, Rp = {−a/b}. This set has one element.

Let n ∈ N. Suppose any polynomial of degree n has at most n roots. Let p be
some polynomial of degree n+ 1. If Rp = /0, then we are done, since 0 ≤ n+ 1.
If Rp �= /0, let z0 ∈ Rp. Then p(z0) = 0. Hence, by the second lemma, there is a
polynomial q of degree n, such that p(z) = (z− z0)q(z). Since p(z) = (z− z0)q(z)
we have Rp = {z0}∪Rq. By the inductive hypothesis Rq has at most n elements,
hence Rp has at most n+1 elements. �
Theorem 1.4.14 (Composition Rule). Let A,B, and C be subsets of C. Suppose
f : A → B, g : B →C, a is an accumulation point of A, b is an accumulation point
of B, and f (x) �= b when x �= a is close to a. If

f (x)→ b as x→ a and g(x)→ c as x→ b,

then
g◦ f (x)→ c as x→ a.

Here, g◦ f : A→C is determined by g◦ f (x) := g( f (x)) . And f (x) �= b when x �= a
is close to a, means that there is a γ > 0, such that ∀x ∈ A, 0 < |x− a| < γ =⇒
f (x) �= b.

Proof. Let ε > 0 be given. Since g(y)→ c as y→ b, there is a δ1 > 0 be such that

0 < |y−b|< δ1 =⇒ |g(y)− c|< ε .
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Since f (x)→ b as x→ a, there is a δ2 > 0 such that

0 < |x−a|< δ2 =⇒ | f (x)−b|< δ1.

Let γ > 0 be such that 0 < |x−a|< γ =⇒ f (x) �= b. Let δ := min{γ ,δ2}, then

0 < |x−a|< δ =⇒ 0 < | f (x)−b|< δ1

=⇒ |g( f (x))− c|< ε .

As we needed to show. �
Exercise 1.4.15. Let D := R. Supposing

√
x → 2 as x → 4, explain why the Com-

position Rule can be used to show
√

1+ x→ 2 as x→ 3.

Fig. 1.8 Illustrating the Squeeze Rule (Theorem 1.4.16)

Theorem 1.4.16 (Squeeze Rule). Let f ,g,h : D → R. Suppose f (x) ≤ g(x) ≤ h(x)
for all x �= a near x0. If

f (x)→ L and h(x)→ L as x→ x0,

then
g(x)→ L as x→ x0.

See Fig. 1.8

Proof. Let ε > 0 be given. Let δ f > 0 and δh > 0 be such that x ∈ B′δ f
(a) implies

| f (x)−L| < ε and x ∈ B′δh
(a) implies |h(x)−L| < ε . Let δ := min{δ f ,δh}. Then

x ∈ B′δ (a) implies x ∈ B′δ f
(a) and x ∈ B′δh

(a) hence −ε < f (x)−L < ε and −ε <

h(x)−L < ε . Hence, for x ∈ B′δ (a) we have

−ε < f (x)−L≤ g(x)−L≤ h(x)−L < ε .

Consequently, 0 < |x−a|< δ implies −ε < g(x)−L < ε . As we needed to show.�
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Example 1.4.17. Let f (x) := x
1+x2 be defined on D := R. Then −|x| ≤ f (x) ≤ |x|.

Since |x| → 0 as x→ 0, the Squeeze Rule implies x
1+x2 → 0 as x→ 0.

Restrictions

Let f be a function defined on D. Sometimes it is useful to consider f on some subset
of its domain. This is called a restriction of f . If E ⊆ D, we define the restriction of
f to E, to be the function f

∣
∣
E with domain E and having the same values as f on E.

Hence f
∣
∣
E(x) := f (x) for all x ∈ E and f

∣
∣
E(x) is not defined when x /∈ E.

Exercise 1.4.18. Suppose D = D1∪D2.

(i) If a is an accumulation point of D1 or of D2, then a is an accumulation
point of D.

(ii) If a is an accumulation point of D, then a is an accumulation point of
D1 or of D2.

Theorem 1.4.19. Suppose D = D1∪D2. Let a be an accumulation point of D1 and
of D2. Let f : D→ C be a function.

1. If f (x)→ L as x→ a, then f
∣
∣
D1
(x)→ L as x→ a.

2. If f
∣
∣
D1
(x)→ L as x→ a and f

∣
∣
D2
(x)→ L as x→ a, then f (x)→ L as x→ a.

Proof. 1. Let ε > 0 be given. Let δ > 0 be such that

∀x ∈ D,0 < |x−a|< δ =⇒ | f (x)−b|< ε .

For x ∈ D1 we have x ∈ D1∪D2 = D and

0 < |x−a|< δ =⇒ | f (x)−b|< ε

=⇒
∣
∣
∣ f
∣
∣
D1
(x)−b

∣
∣
∣< ε−− since f

∣
∣
D1
(x) = f (x).

Hence the δ that works for f also works for f
∣
∣
D1
.

2. Let ε > 0 be given. For j = 1,2, there are δ j > 0, such that

∀x ∈ D j,0 < |x−a|< δ j =⇒
∣
∣
∣ f
∣
∣
D j
(x)−b

∣
∣
∣< ε .

Let δ := min{δ1,δ2}. Let x ∈ D with 0 < |x− a| < δ . Since D = D1 ∪D2 either
x ∈ D1 or x ∈ D2.

If x ∈ D1, then

0 < |x−a|< δ =⇒ 0 < |x−a|< δ1−− since δ ≤ δ1

=⇒
∣
∣
∣ f
∣
∣
D j
(x)−b

∣
∣
∣< ε−− construction of δ1

=⇒ | f (x)−b|< ε−− since f
∣
∣
D1
(x) = f (x).
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The case x ∈ D2 is similar. �
Corollary 1.4.20. Suppose D = D1∪D2. Let a be an accumulation point of D1 and
of D2. If f : D→ C is a function, then

limx→a f exists

iff

limx→a f
∣
∣
D j
(x), j = 1,2 both exists and are equal.

For a set A let

1A(x) :=

{
1 if x ∈ A

0 if x /∈ A
.

The function 1A is called the characteristic function of A.

Example 1.4.21 (Dirichlet Function). Let f : R→ R be the characteristic function
of the set of rational, f := 1Q. Let a be a real number. By density of the rationals
and of the irrationals a is an accumulation point of Q and of R\Q. Clearly,

lim
x→a

f
∣
∣
Q
(x) = lim

x→a
1 = 1, and

lim
x→a

f
∣
∣
R\Q(x) = lim

x→a
0 = 0.

Since 0 �= 1, Corollary 1.4.20 with D1 := Q and D2 := R\Q, shows that f does not
have a limit at the point a. Since a was arbitrary, f does not have a limit at any point.

1.5 Variations on Limits

In this section D ⊆ R. We consider one-sided limits, limits at infinity, and infinite
limits. The treatment is brief; most of the details are very similar to the ones for
“ordinary” limits.

One-Sided Limits

When considering the limit of
√

x at a = 0, we are necessarily only considering
positive values for x. This is an example of a one-sided limit. But the real interest in
one-sided limits is when f is defined on both sides of a. When considering one-sided
limits, it is convenient to use one-sided neighborhoods

B+
r (a) := B′r(a)∩]a,∞[= {x | a < x < a+ r}

B−r (a) := B′r(a)∩]−∞,a[= {x | a− r < x < a}
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Limits from above (from the right) are denoted by

lim
x↘a

f (x) = b or f (x)→ b as x↘ a

and means that, a is an accumulation point of D∩]a,∞[ and

∀ε > 0,∃δ > 0,∀x ∈ D,x ∈ B+
δ (a) =⇒ | f (x)−a|< ε .

Sometimes x↘ a is written as x→ a+ . Limits from below (from the left) are defined
in a similar manner. The reader will not experience any difficulty in transcribing the
results in Sects. 1.3 and 1.4 to the one-sided case. In fact, one-sided limits are really
the same as limits of restrictions. For example, the considering limx↘a f (x) is the
same as considering limx→a f

∣
∣
D∩]a,∞[(x).

Exercise 1.5.1. The two-sided limit of f exists at a iff both one-sided limits of f
exists at a and are equal.

Example 1.5.2. As an example of one-sided limits consider

f (x) :=
|x−2| |x+2|

x−2

on D := {x ∈ R | x �= 2}. This is an example where f is not defined at the point of
interest, in this case at a = 2. Since

f (x) =

{
|x+2| when 2 < x

−|x+2| when x < 2

we have limx↘2 f (x) = 4 and limx↗2 f (x) = −4. Consequently, limx→2 f (x) does
not exist.

Limits at Infinity

A limit at infinity is essentially a kind of one-sided limit. In fact,

lim
x→∞

f (x) = L or f (x)→ L as x→ ∞

means that D contains arbitrarily large real numbers (roughly ∞ is an accumulation
point of D, precisely, ∀N ∈ R,∃x ∈ D,N < x) and

∀ε > 0,∃N ∈ R,∀x ∈ D,N < x =⇒ | f (x)−L|< ε .

That is, if we can arrange that f (x) is as close to L as we please, by choosing x
sufficiently large. Writing x↗ ∞ is consistent with writing x↗ a, but is redundant,
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since there in only one way to approach ∞. Similarly,

lim
x→−∞

f (x) = L or f (x)→ L as x→−∞

means that D contains arbitrarily small real numbers and

∀ε > 0,∃N ∈ R,∀x ∈ D,x < N =⇒ | f (x)−L|< ε .

Since the limits at infinity are very similar to one-sided limits, the reader will not
experience any difficulty in transcribing the results in Sects. 1.3 and 1.4 to the cases
of limits at infinity.

Example 1.5.3. 1
x2 → 0 as x→ ∞.

Proof. Let ε > 0 be given. We want to find N such that N < x =⇒ 1
x2 < ε . Rewriting

1
x2 < ε as

1
ε
< x2

we see N := 1√
ε does the job. �

Exercise 1.5.4. Let n ∈ N. Prove

lim
x→∞

1
xn = 0 and

lim
x→−∞

1
xn = 0.

Infinite Limits

Suppose a is an accumulation point of D and f : D→ R. We write

lim
x→a

f (x) = ∞ or f (x)→ ∞ as x→ a

if
∀N ∈ R,∃δ > 0,∀x ∈ D,0 < |x−a|< δ =⇒ N < f (x).

Clearly, it is sufficient to consider large N, e.g., N ≥ 1. In this case, we will not say
that f converges, rather we say f diverges to infinite as x→ a.

Exercise 1.5.5. If limx→a f (x) = ∞, then limx→a
1

f (x) = 0.

Similarly, we can define limx→a f (x) =−∞, as well as one-sided infinite limits and
four variants involving infinite limits at infinity: limx→±∞ f (x) =±∞. For example,



1.5 Variations on Limits 27

limx→∞ f (x) = ∞ means D contains arbitrary large numbers and

∀N,∃M,∀x ∈ D,x > M =⇒ f (x)> N.

Appropriate versions of the rules for calculating with limits remain valid. Some
care is needed, in addition to 0/0, expressions of the forms 0 ·∞, ∞/∞, and ∞−∞
should be avoided. While others, for example ∞+∞=∞, a+∞=∞, 0/∞= 0, and
if a > 0, a∞= ∞ are valid.

Example 1.5.6. We calculate the limits at infinity of polynomials. Let p(z) := anzn+
an−1zn−1 + an−2zn−2 + · · ·+ a1z+ a0 be a polynomial, suppose n ≥ 1 and an �= 0.
For z �= 0 we can rewrite p(z) as

p(z) = zn
(

an +
an−1

z
+

an−2

z2 + · · ·+ a1

zn−1 +
a0

zn

)
.

• Considering a real variable x we see

p(x) = xn
(

an +
an−1

x
+

an−2

x2 + · · ·+ a1

xn−1 +
a0

xn

)
.

Using limx→±∞ 1/xk = 0, shows that the expression in the parenthesis → an as
x→±∞. Hence, |p(x)| → ∞ as x→±∞.

• For a complex variable z, we must modify this slightly:

|p(z)|= |z|n
∣
∣
∣
∣an +

an−1

z
+

an−2

z2 + · · ·+ a1

zn−1 +
a0

zn

∣
∣
∣
∣

≥ |z|n
(
|an|−

|an−1|
|z| − |an−2|

|z|2 −·· ·− |a1|
|z|n−1 −

|a0|
|z|n
)

since the expression in the parenthesis → |an| as |z| → ∞, we have |p(z)| → ∞ as
|z| → ∞.

Example 1.5.7. The limits at infinity of rational functions can be calculated in a
similar manner. For example, if

p(x) := amxm +am−1xm−1 +am−2xm−2 + · · ·+a1x+a0

q(x) := bnxn +bn−1xn−1 +bn−2xn−2 + · · ·+b1x+b0

where am �= 0 and bn �= 0 are real numbers, then

p(x)
q(x)

=
xm

xn ·
am +

am−1
x +

am−2
x2 + · · ·+ a1

xn−1 +
a0
xn

bn +
bn−1

x +
bn−2

x2 + · · ·+ b1
xn−1 +

b0
xn

.
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Consequently,

p(x)
q(x)

→

⎧
⎪⎨

⎪⎩

0 if m < n
am
bn

if m = n

±∞ if m > n

as x→ ∞. The sign in ±∞ equals the sign of am/bn.

1.6 Sequences

In this section we will consider the limit limx→∞ f in the case D := N. Hence, es-
sentially this section is a special case limits at infinity considered in Sect. 1.5. We
include some proofs here since we left the corresponding proofs to the reader in
Sect. 1.5.

A sequence of complex numbers is a function x : N → C. When working with
sequences we will usually write xn in place of x(n) and (xn) or (xn)

∞
n=1 in place of

x, or x : N→ C. The definition of a limit at infinite specializes to: (xn) converges to
x, if given any ε > 0, there is a K, such that |xn− x|< ε for all n > K.

A sequence (xn) is bounded, if there is a K, such that |xn| ≤ K for all n.

Example 1.6.1. The sequence (1+(−1)n) is bounded. For example, K = 2 and K =
17 both work.

Example 1.6.2. The sequence (n) is not bounded. Since, given any real number K
there are integers larger than K.

Convergence of Sequences

We establish local boundedness and positivity for sequences. Essentially, this is con-
tained in Sects. 1.3 and 1.5. We include proofs here for the readers convenience. The
following is Theorem 1.3.12 (local boundedness) specialized to sequences.

Theorem 1.6.3. A convergent sequence is bounded.

Proof. Suppose xn → x. Since ε := 1 > 0 there is an N such that n > N implies
|xn− x|< 1. Since

|xn|= |xn− x+ x| ≤ |xn− x|+ |x|< 1+ |x|

when n > N, K := max{|x1|, |x2|, . . . , |xN |,1} has the desired property. �
Specializing the exercise after Theorem 1.3.14 (local positivity) to sequences

yields:

Theorem 1.6.4. Suppose xn → p and p �= 0. There is an N, such that n > N implies
|xn|> |p|/2.
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Proof. Since |p|/2 > 0, there is an N, such that n > N implies |xn − p| < |p|/2.
Since

|xn|= |p− (xn− p)| ≥ |p|− |xn− p|> |p|/2

when n > N, we are done. �
Theorem 1.3.14 itself specializes to:

Exercise 1.6.5. Suppose (xn) is a sequence of real numbers and xn → p. If p > 0,
show there is an N, such that n > N implies xn > p/2.

Having established the two basic properties of convergent sequences, we can repeat
the proofs about the algebra of limits of functions from Sect. 1.4 to establish:

Theorem 1.6.6. Suppose an → a, bn → b, and k ∈ C. Then

1. kan → ka
2. an +bn → a+b
3. anbn → ab
4. an

bn
→ a

b , provided b �= 0
5. If an ≤ bn ≤ cn for all n, an → a and cn → a, then bn → a.

If (an) is a sequence of real numbers, then we will write an → ∞, if given any real
number K, there is an N, such that, for any integer n, n > N =⇒ an > K.

Similarly, we write an →−∞, if given any real number K, there is an N such that
for any integer n, n > N =⇒ an < K.

As for limits of functions appropriate versions of the theorem above are valid for
infinite limits. See Sect. 1.5.

Null Sequences

A sequence (xn) is null, if given any ε > 0, there is an N ∈N, such that for all n∈N,
n > N =⇒ |xn| < ε . Hence (xn) is null iff xn → 0. Clearly, xn → x iff (xn− x) is
null.

Example 1.6.7. (1/n) is null.

Proof. Let ε > 0. Let N := �1/ε� be the ceiling of 1/ε , that is the integer integer
satisfying N−1 < 1/ε ≤ N. Then n > N implies

0 <
1
n
<

1
N
≤ ε .

Hence (1/n) is null. �
Exercise 1.6.8. (1+(−1)n) is not null.

Theorem 1.6.9. If M ∈ C and (xn) is null, then (Mxn) is null.

Proof. Let ε > 0 be given. Since ε/(1+ |M|)> 0 and (xn) is null there is an N, such
that n≥N =⇒ |xn|< ε/(1+ |M|) . Hence, n≥N =⇒ |Mxn| ≤ (1+ |M|) |xn|< ε .
Thus, (Mxn) is null. �
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1.7 Geometric Progression

An arithmetic progression is obtained by continually adding the same number, hence
a, a+b, a+2b, . . . is a arithmetic progression. A geometric progression is obtained
by continually multiplying by the same number, hence a, ab, ab2, ab3,. . . is a ge-
ometric progression. Geometric progressions are also called geometric sequences.

Our first result about geometric progressions states that a certain class of geo-
metric progressions are null sequences:

Theorem 1.7.1. Let x ∈ R. Suppose 0 < x < 1. For any real number ε > 0, there is
an N ∈ N, such that n≥ N =⇒ xn ≤ ε .

Exercise 1.7.2 (Outline of a Proof of the Previous Theorem). Fix 0 < x < 1 and let
y := 1

x −1. Let 0 < ε < 1 be given.

1. Prove y > 0.
2. Use Bernoulli’s inequality to prove

(
1
x

)n ≥ 1+ny for all n ∈ N.

3. Prove 0 < xn ≤ 1
1+ny for all n ∈ N.

4. Let N := 1+
⌊
ε
y

⌋
. Prove n≥ N =⇒ xn < ε . [If t is a real number, then the floor

of t is the integer �t� satisfying �t� ≤ t < �t�+1.]

Hence, if 0 < x < 1, then the sequence (xn) is null.

Corollary 1.7.3. Let z be a complex number such that |z|< 1. Then (zn) is null.

Proof. By the theorem |zn|= |z|n → 0. �
Example 1.7.4. Let x be a positive real number with infinite decimal representation
x = d0.d1d2 · · · . If xn := d0.d1d2 · · ·dn is the corresponding sequence of finite deci-
mals, then xn → x.

Proof. Let ε > 0. Since (1/10n) is null we can pick an integer N such that 1/10N <
ε . Then

0≤ x− xn = 0.0 · · ·0dn+1dn+2 · · ·
≤ 0.0 · · ·099 · · ·= 1/10n.

Hence, if n≥ N, then |x− xn| ≤ 10−n ≤ 10−N < ε . �

Series

For a sequence (xn)
∞
n=0 let

n−1

∑
k=0

xk := x0 + x1 + · · ·+ xn−2 + xn−1.
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Then
(
∑n−1

k=0 xk
)∞

n=1 is a sequence. We define ∑∞
k=0 xk in terms of convergence of this

sequence. Let
∞

∑
k=0

xk := lim
n→∞

n−1

∑
k=0

xk

provided the limit exists, in that case we say ∑∞
k=0 xn is convergent and the number

limn→∞∑n−1
k=0 xk is called the sum of ∑∞

k=0 xk. An expression of the form ∑∞
k=0 xk is

called a series or an infinite series.
If x0,x1,x3, · · · is a geometric progression, then ∑∞

k=0 xk is a geometric series.

Theorem 1.7.5. If |z|< 1, then the geometric series ∑n
k=0 zk is convergent and

∞

∑
k=0

zk =
1

1− z
. (1.9)

Proof. For a complex number z, let

sn := 1+ z+ z2 + · · ·+ zn−2 + zn−1 =
n−1

∑
k=0

zk.

Then zsn = z+ z2 + · · ·+ zn−1 + zn, hence zsn− sn = zn−1. Consequently,

n−1

∑
k=0

zk =
zn−1
z−1

=
1− zn

1− z
.

If |z|< 1, then (zn) is null, hence

1− zn

1− z
→ 1−0

1− z
=

1
1− z

as n→ ∞.

We conclude the geometric series ∑∞
k=0 zk converges and (1.9) holds. �

1.8 Steinhaus’ Three Distance Conjecture�

Let τφ be an irrational rotation of the unit circle. Meaning φ is irrational and τφ (z)
is obtained from φ by rotation z by 2πφ radians in the counterclockwise direction.
For any N, the points 1, τφ (1), τφ2 = τφ

(
τφ (1)

)
, . . . , τN

φ (1) divides the circle into
“subintervals”. In this section it is shown that there are numbers a,b, and c such
that the length of any of these “subintervals” is one of these three numbers. This
was part of a group of conjectures Władysław Hugo Dionizy Steinhaus (14 January
1887 Jasło to 25 February 1972 Wrocław) made regarding the lengths of the inter-
vals generated by irrational rotations. The corresponding problem in the closed unit
interval [0,1] is solved in this section.

This section can be covered any time after Sect. 1.1.
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The Problem

Let N be a positive integer and let φ be some positive irrational number. Pick m and
M in {1, . . . ,N} such that

{mφ} ≤ { jφ} ≤ {Mφ} for all j ∈ {1, . . . ,N}.

Here {x} denotes the fractional part of the real number x.
For k = 0,1, . . . ,N with k �= M let k′ ∈ {0, . . . ,N} be such that

{kφ}< {k′φ} and

{kφ}< { jφ} =⇒ {k′φ} ≤ { jφ} for all j ∈ {1, . . . ,N}.

Thus {k′φ} is the point “after” {kφ}. Clearly, 0′ = m. If we set M′ = 0, then k → k′

is a bijection of {0, . . . ,N} onto itself. For irrational φ the points are dense in the
closed interval [0,1], see Sect. 12.6.

Theorem 1.8.1 (Steinhaus’ Three Distance Conjecture). For any k = 0, . . . ,N
with k �= M

{k′φ}−{kφ} ∈ {{mφ},1−{Mφ},{mφ}+1−{Mφ}}.

That is, any one of the intervals [{kφ},{k′φ}], has length {mφ}, 1−{Mφ}, or
{mφ}+1−{Mφ}.

This is also true for negative irrationals φ and for rational φ . For negative numbers,
the details depends to some extend on how the fractional part of a negative number
is determined. Is {−1.23}=−0.23? or is {−1.23}= 0.77? The latter corresponds
to the interpretation {x} := x−�x� , the former might seem more natural, just lop
off the stuff before the decimal point.

Exercise 1.8.2. If α is irrational and m �= n are integers, then {mα} �= {nα} .

If we order the numbers

{0,1, . . . ,N}= {k0,k1, . . . ,kN}

such that k′j = k j+1 for j = 0,1, . . . ,N−1, then k0 = 0, k1 = m, and kN = M. And

0 = {k0φ}< {k1φ}< · · ·< {kNφ}< 1 (1.10)

is a partition of the interval [0,1] and the theorem states that this partition contains
intervals of at most three different lengths (Fig. 1.9).

Fig. 1.9 Illustrating (1.10) in the case φ = 3/7 and N = 3
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Arithmetic Modulo One

Before presenting a proof of the Steinhaus Three Distance Conjecture we develop
some useful properties of arithmetic of fractional parts. As an application we estab-
lish a criterion for the irrationality of a real number.

Let N0 = [0,1,2, . . .}. Denote the fractional part of a real number a by {a}. If
a≥ 0 then

{a}= a−�a�
where �a�= max{n ∈ N0 | n≤ a} is the floor of a. Alternatively, {a} is the unique
real such that

0≤ {a}< 1, and a = {a}+n for some integer n. (1.11)

It is immediate that

{a+b}=
{
{a}+{b} if {a}+{b}< 1

{a}+{b}−1 if {a}+{b} ≥ 1
. (1.12)

To see this write
a+b = {a}+{b}+ �a�+ �b�

and use the alternative characterization of the fractional part. Alternatively (1.12)
can be written as

{a}+{b}=
{
{a+b} if {a}+{b}< 1

1+{a+b} if {a}+{b} ≥ 1
. (1.13)

Also, if {a}> {b}, then

{a}−{b}=
{
{a−b} if a≥ b

1−{b−a} if a < b
.

The first follows from

a−b = {a}−{b}+(�a�−�b�)

and the second from

b−a = 1+{b}−{a}+(�b�−�a�−1)

and the alternative characterization (1.11) of the fractional part.

Exercise 1.8.3. Show {a+{na}}= {(n+1)a} for all n ∈ N.

Exercise 1.8.4. Show {m{na}}= {mna} for all m,n ∈ N.

As an application of fractional parts let us prove a very special case of a theorem,
Theorem 6.5.3, due to Liouville.
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Theorem 1.8.5 (Baby Liouville). Let a be a real number. Then a is irrational iff for
any ε > 0 there is an m ∈ Z and an n ∈ N such that a �= m

n and
∣
∣a− m

n

∣
∣< ε

n .

Proof. Suppose a is irrational. Divide the closed interval [0,1] into a finite number
of subintervals each with length < ε . If j �= k are integers, then { ja} �= {ka} , since a
is irrational. Hence, the set {{ka} | k ∈ N} is infinite. Hence, one of the subintervals
must contain an infinite number of the fractional parts {ka} , k ∈ N. In particular,
there are two integers 0 < m < n such that

|{na}−{ma}|< ε .

Hence,
|(na−�na�)− (ma−�ma�)|< ε .

Setting k = �na�−�ma� and dividing by n−m gives
∣
∣
∣
∣a−

k
n−m

∣
∣
∣
∣<

ε
n−m

.

Conversely, suppose a is rational. Then a = j
k for some integers j,k with k ≥ 1.

Let ε := 1
k . For any integers m,n such that m≥ 1 and a �= m

n , we have

∣
∣
∣a− m

n

∣
∣
∣=
∣
∣
∣
∣

j
k
− m

n

∣
∣
∣
∣=

| jn−mk|
kn

≥ 1
kn

=
ε
n
.

Where we used that | jn−mk| ≥ 1, since a �= m
n . �

A Proof of the Steinhaus Three Distance Conjecture

Since {(m + M)φ} is either {mφ}+ {Mφ} or {mφ}+ {Mφ} − 1 either {(m +
M)φ}> {Mφ} or {(m+M)φ}< {mφ} hence

N < m+M.

Fix a k in {0,1, . . . ,N} with k �= M. Recall k′ is chosen to minimize { jφ}−{kφ}>
0.

Suppose k < k′

Then
{k′φ}−{kφ}= {(k′ − k)φ} ≥ {mφ}

where there is equality if k′ − k = m. Thus k′ = k+m if k+m≤ N, that is

if 0≤ k ≤ N−m then m≤ k′ ≤ N and k′ = k+m.



1.8 Steinhaus’ Three Distance Conjecture� 35

Suppose k > k′

Then
{k′φ}−{kφ}= 1−{(k− k′)φ} ≥ 1−{Mφ}

where there is equality if k− k′ = M. Thus k′ = k−M if 0≤ k−M, that is

if M ≤ k ≤ N then 0≤ k′ ≤ N−M and k′ = k−M.

Note this last line includes the case k = M. If N−m+1 = M then we are done. So
for the remainder of the proof it is assumed that

N +1 < m+M.

Suppose N−m < k < M

By the ranges established for k′ above it follows that N−M < k′ < m. In this case
is it shown below that

{k′φ}−{kφ}= {mφ}+1−{Mφ} and k′ = k+m−M.

Note k → k+m−M maps {x | N−m < x < M} onto {y | N−M < y < m}.

Suppose k < k′

Then as above
{k′φ}−{kφ}= {(k′ − k)φ}> {mφ}

and
{(k′ − k)φ}−{mφ}= 1−{(m− k′+ k)φ}

since k′ − k < k′ < m. Hence

{k′φ}−{kφ}= {mφ}+1−{(m− k′+ k)φ}
≥ {mφ}+1−{Mφ}

with equality if m− k′+ k = M, that is for k′ = k+m−M.

Suppose k > k′

Then as above

{k′φ}−{kφ}= 1−{(k− k′)φ}> 1−{Mφ}



36 1 Limits

and
{Mφ}−{(k− k′)φ}= {(M− k+ k′)φ}

since k− k′ < k < M. Hence

{k′φ}−{kφ}= 1−{Mφ}+{(M− k+ k′)φ}
≥ 1−{Mφ}+{mφ}

with equality if M− k+ k′ = m, that is for k′ = k+m−M.

Summary

There are three cases

0≤ k ≤ N−m =⇒ k′ = k+m and {k′φ}−{kφ}= {mφ}
N−m < k < M =⇒ k′ = k+m−M and

{k′φ}−{kφ}= {mφ}+1−{Mφ}
M ≤ k ≤ N =⇒ k′ = k−M and {k′φ}−{kφ}= 1−{Mφ}

Exercise 1.8.6. Prove Steinhaus’ Three Distance Conjecture for rational φ > 0.

Problems

Problems for Sect. 1.1

1. Show that 1.239 = 1.24.

2. Carry out the division algorithm for 17/7.

3. Find the infinite decimal form of 1/7. Show all the steps needed to perform the
long division.

4. When calculating the decimal form of p/q there are q possible remainders. Why
is the length of the repeating part at most q−1?

5. Show 23.6321 is rational.

6. Find integers p and q such that 3.1415 = p
q .

7. Prove that any interval contains a rational number.

8. Show Q+ iQ := {a+ ib | a,b ∈ Q} is dense in C. Hint: A ball contains an open
square with the same center.

9. Give a detailed proof of the density of irrationals in the case x < 0.

10. Let F be the set of finite decimals. Show that F is dense in R.
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Problems for Sect. 1.2.

In the spirit of Exercise 1.2.2, that is, when verifying that a point is an accumula-
tion point, it is not necessary to check all ε > 0. This is explored in the following
problem.

1. A number a is an accumulation point of the set D iff for all k ∈ N, there is an
x ∈D, such that 0 < |x−a|< 1/10k. [Hint for one part: given any ε > 0, there is
k ∈ N, such that ε > 1

10k .]

2. If D⊆ R and Im(c) �= 0, then c is not an accumulation point of D.

3. Prove 0 is the only accumulation point of D :=
{

1
n | n ∈ N

}
.

4. If c is an accumulation point of D and r > 0, then c is an accumulation point of
D∩Br(c).

5. Any real number is an accumulation point of Q.

6. Show the imaginary unit i is not an accumulation point of the set of real numbers
R.

7. Show that if Br(z) ⊆ A ⊆ Br(z), then the set of accumulation points of A equals
Br(z).

8. Let F be the set of finite decimals. Show that every real number is an accumula-
tion point of F.

Problems for Sect. 1.3

1. Show |x| → 0 as x→ 0.

2. Let f : [0,∞[→ R be determined by f (x) :=
√

x+3. Prove f (x)→ 2 as x→ 1.

The following two problems are about limits of the function f : [0,∞[→ R de-
termined by f (x) :=

√
x. Since D = [0,∞[, only x ≥ 0 play a role in Eq. (1.4).

3. Show f (x)→ 2 as x→ 4.

4. Show f (x)→ 0 as x→ 0.

5. If f : R → R is determined by f (x) = x− x2 and a = 1
2 . Then f (a) = f

(
1
2

)

= 1
4 > 0. Find δ > 0 satisfying the conclusions of Theorem 1.3.14.

6. Let f : R→ R be determined by f (x) := 4− x2. Then f (0) = 4. Find a δ > 0,
such that

0 < |x−0|< δ =⇒ 2 < f (x).
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7. If | f (x)| ≤ 7 for all x and g(x) := (x−3) f (x) prove

g(x)→ 0 as x→ 3.

8. Let f : R→ R be determined by

f (x) :=

{
x−3 when x is rational

5− x when x is irrational
.

If x0 �= 4, prove limx→x0 f (x) does not exist.

9. If limx→a f (x) exists and for any δ > 0, there is an x ∈ D with 0 < |x−a|< δ ,
such that f (x)≥ 0, then limx→a f (x)≥ 0.

More generally, if f (x)→ L as x→ a and M �= L, then f is not close to M when
x is close to a. This is the content of the following problem.

10. Let f : D→ C. If f (x)→ L as x→ a and M �= L, then

∃δ > 0,∀x ∈ D,0 < |x−a|< δ =⇒ | f (x)−M|> 1
2
|L−M|.

11. Prove x2 →−1 as x→ i.

12. Let D be a subset of C. Let f ,g : D → C. Suppose 0 is an accumulation point
of D. If |g(x| ≤M and f (x) = xg(x) for all x ∈ D, then f (x)→ 0 as x→ 0.

13. Let f ,g : D→C. Suppose a is an accumulation point of D. If f (x)→ 0 as x→ a
and |g(x)| ≤ 47 for all x ∈ D, then f (x)g(x)→ 0 as x→ a.

14. Let f : D→ C. Suppose a is an accumulation point of D. If f (x)→ L as x→ a,
then Re( f (x))→ Re(L) as x→ a.

15. Let f : D→ C. Suppose x0 is an accumulation point of D. If Re( f (x))→ a and
Im( f (x))→ b as x→ x0, then f (x)→ a+ ib as x→ x0.

16. Prove or disprove: If limx→a f (x) exists and f (x) > 0 for all x �= a, then
limx→a f (x)> 0.

Problems for Sect. 1.4

1. If A is a finite subset of C, prove that any point in A is an accumulation point of
C\A.
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2. What is wrong with the Composition Rule proposed below?
“If f : A→ B, g : B→C, a is an accumulation point of A, b is an accumulation
point of B, f (x)→ b as x → a, and g(x)→ c as x → b, then g ◦ f (x)→ c as
x→ a.”

3. Find two functions f .g : R → R such that neither limx→0 f (x) nor limx→0 g(x)
exists, yet both limx→0 f ((x)+g(x) and limx→0 f (x)g(x) exist.

4. Let σ be the pseudo-sine function. Let f (x) := xσ(1/x), when x �= 0. Prove
f (x)→ 0 as x→ 0.

In the following two problems we assume x1/n exists for all x≥ 0.

5. Let D := [0,∞[. If a > 0 and n ∈ N, then x1/n → a1/n as x→ a.

6. Let D := [0,∞[. For any n ∈ N, x1/n → 0 as x→ 0.

7. Suppose limx→a f (x) = b and given any r > 0, the set f (B′r(a)) contains both
positive and negative real numbers, show that b = 0.

8. Suppose limx→a f (x) = b and there is a r > 0 such that f (B′r(a))⊆ [0,∞[. Show
that b≥ 0.

9. Suppose limx→a f (x) = b and there is a r > 0 such that f (B′r(a))⊆]0,∞[. Must
b > 0?

10. Let D := R. If f (x) :=

{
x when x ∈ Q

1− x when x /∈ Q
, find all values of a ∈ R, such that

limx→a f (x) exists.

11. Let D1 :=
{

1
2n | n ∈ N

}
and D2 :=

{
1

2n−1 | n ∈ N
}
. Let D :=

{
1
n | n ∈ N

}
. Then

D = D1∪D2. Consider the function f : D→ R determined by

f (x) :=

{
1 if x ∈ D1

0 if x ∈ D2
.

Show 0 is an accumulation point of D1 and of D2 and show that limx→0 f (x)
does not exists.

Problems for Sect. 1.5

1. Let f (x) = x
|2x+3| . Find both limits at infinity: limx→∞ f (x) and limx→−∞ f (x).

2. If n ∈ N, prove limx→∞ xn = ∞. What happens as x→−∞?

3. If f and g are real valued and f (x)≤ g(x) for all x, then

lim
x→a

f (x) = ∞ =⇒ lim
x→a

g(x) = ∞.
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4. If f and g are real valued, then

lim
x→a

f (x) = 4 and lim
x→a

g(x) = ∞ =⇒ lim
x→a

f (x)g(x) = ∞.

Give a proof based on the definitions. In particular, do not use the product rule
for limits or use 4 ·∞= ∞.

5. If f (x) > 0 for all x and f (x)→ 0 as x → a, then 1
f (x) → ∞ as x → a. Give a

proof based on the definitions.

Problems for Sect. 1.6

1. If (xn) is bounded and (yn) is null, then (xnyn) is null.

2. If (yn) is null and |xn| ≤ |yn|, then (xn) is null.

3. If xn ≤ yn and xn → ∞, then yn → ∞.

4. If zn �= 0 for all n, then (zn) is null iff 1/|zn| → ∞.
5. Find two sequences (xn) and (yn) such that xn → ∞, yn → 0 and xnyn → 1.

6. Find two sequences (xn) and (yn) such that xn → ∞, yn → 0 and xnyn → 29.

7. Find two sequences (xn) and (yn) such that xn → ∞, yn → ∞ and xn− yn → 1.

Problems for Sect. 1.7

1. Let x ∈ R. Suppose 1 < x. Given any M > 0, prove there is an N ∈ N, such that
n≥ N =⇒ M ≤ xn. That is prove xn → ∞ as n→ ∞.

2. Find the sum of the geometric series

0.999 · · ·=
∞

∑
k=1

9
10k .

Problems for Sect. 1.8

1. Prove Steinhaus’ Three Distance Conjecture for φ = 3
7 .

2. Investigate Steinhaus’ Three Distance Conjecture on the unit circle (Fig. 1.10).
3. If φ and ψ are irrationals and M,N are positive integers, let

0 ={ j0φ}< { j1φ}< · · ·< { jMφ}< { jM+1φ}= 1

0 ={k0ψ}< {k1ψ}< · · ·< {kNψ}< {kN+1ψ}= 1
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Fig. 1.10 Circle version of Fig. 1.9

as in (1.10). Here, jM+1 := 1/φ and kN+1 := 1/ψ are notational devises intro-
duced to simplify the notation below. One version of Steinhaus problem then is to
consider the lengths of the sides of the rectangles whose vertices are at the points
of intersections of the lines in Fig. 1.11. In this case the number of distances is
at most six, by the theorem in Sect. 1.8. A linear ordering on the plane is intro-
duced in the problems for Sect. E. This linear ordering imposes a linear ordering
on the points ({ jmφ} ,{knψ})m,n . This introduces some additional distances into
the problem. Find an upper bound on the number of length of “intervals” corre-
sponding to this ordering.

Fig. 1.11 A two dimensional Steinhaus problem. In the figure M = 5, N = 4, φ = e, and ψ = 5π

4. A different version of the Steinhaus problem would be to consider the “intervals”
obtained by using the linear order from the problems to Sect. E on the points

({kmφ} ,{ jmψ})M+1
m=0 .

In particular, N = M, we are only considering M of the M2 points in the open
square, and of the points on the boundary only ({k0φ} ,{ j0ψ}) = (0,0) and
({kM+1φ} ,{ jM+1ψ}) = (1,1) are included in the list. [The author has not at-
tempted to solve this problem, it may be easy or it may be very difficult.]
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Solutions and Hints for the Exercises

Exercise 1.1.7. If 1/x is rational, then 1/x = p/q, for integers p,q �= 0. Hence
x = q/p contradicting that x is not rational. The other cases are similar.

Exercise 1.2.2. Let ε > 0 be given. If ε ≤ m, then D∩B′ε(c) �= /0 by assumption.
On the other hand, if m < ε , then

D∩B′ε(c)⊇ D∩B′m(c)

and the right hand side is nonempty by assumption.

Exercise 1.3.9. If |x−1/2| < 1/4, then −1/4 < x− 1/2 < 1/4, and therefore
1/4 < x < 3/4. But 1/4 < x, implies 0 < 2/x < 8. Hence,

∣
∣
∣
∣x−

1
2

∣
∣
∣
∣<

1
4

=⇒ 2
x

∣
∣
∣
∣x−

1
2

∣
∣
∣
∣< 8

∣
∣
∣
∣x−

1
2

∣
∣
∣
∣ .

Consequently, if |x−1/2|< 1/4 and |x−1/2|< ε/8, then

2
x

∣
∣
∣
∣x−

1
2

∣
∣
∣
∣< 8

∣
∣
∣
∣x−

1
2

∣
∣
∣
∣< 8

ε
8
= ε .

Thus, δ := min{1/4,ε/8} works.

Exercise 1.3.11. (i). It is easy to justify:

g({x | 0 < |x−0|< δ})⊇ {g(x) | 0 < x < δ}
= {σ(1/x) | 0 < x < δ}
= {σ(t) | 1/δ < t}
⊇ {−1,1}.

(ii). For any real number L, either |L−1| ≥ 1 or |L− (−1)| ≥ 1.

Exercise 1.3.15. This follows from

| f (x)|= |L− (L+ f (x)) | ≥ |L|− |L− f (x)|.

An alternative argument is to show f (x) → L implies | f (x)| → |L| and then use
Local Positivity on g(x) = | f (x)|.

Exercise 1.4.7. Use Example 1.3.5, the Product Rule, and induction on n.

Exercise 1.4.8. One way is to use the Sum Rule and induction on the degree.

Exercise 1.4.10. This is similar to the last part of the proof of the Product Rule.
We need to control the size of the factor |1/g(x)|, hence we need a lower bound on
|g(x)|. This is provided by Local Positivity in the form of Exercise 1.3.15.

Exercise 1.4.15. Comparing to the Composition Rule with f (x) = 1 + x and
g(x) =

√
x. As x→ 3 we have f (x)→ 1+3 = 4, and as x→ 4 we have g(x)→ 2, by
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assumption. To use the Composition Rule we need a γ > 0, such that 0 < |x−3|< γ
implies f (x) = 1+ x �= 4. Since x �= 3 implies 1+ x �= 4 any choice, e.g., γ = 1
works.

Exercise 1.4.18. (i) D1∩B′r(a)⊆ D∩B′r(a).
(ii) If D1∩B′r(a) = D2∩B′r(a) = /0, then (D1∪D2)∩B′r(a) = /0.

Exercise 1.5.1. This is a special case of the Corollary in Sect. 1.4.

Exercise 1.5.4. In one case set N = 1/ε1/n in the other set N =−1/ε1/n.

Exercise 1.6.5. This is a special case of Theorem 1.3.14.

Exercise 1.6.8. Let ε := 3/2. Given N, there is an even integer n > N. Since n is
even, 1+(−1)n = 2 > 3/2 = ε .

Exercise 1.7.2. (1) 1 < 1/x. (2)
(

1
x

)n
= (1+ y)n. (3) Rearrange (2). (4) Since

N > ε/y this follows from (3).



Chapter 2
Introduction to Continuity

In this chapter the algebra of continuous functions is established. A function that is
continuous at each irrational number and discontinuous at each rational number is
constructed. This function is know as the Riemann function, the Thomae function,
the ruler function, or the raindrop function.

Establishing some of the more subtle properties of continuous functions requires
properties of the set of real numbers that do not follow from the ordered field ax-
ioms. The relevant properties of the set of real numbers are contained in Chap. 3.
We revisit continuity in Chap. 5, where we establish global properties of continuous
functions.

2.1 Definition and Algebra

Let D be a subset of C. A function f : D→ C is continuous at a point a ∈ D, if

∀ε > 0,∃δ > 0,∀x ∈ D, |x−a|< δ =⇒ | f (x)− f (a)|< ε . (2.1)

Using neighborhoods this can also be written as

∀ε > 0,∃δ > 0, f (D∩Bδ (a))⊆ Bε ( f (a)) .

If a is not an accumulation point of D, then there is a δ > 0, such that ∀x ∈ D, |x−
a|< δ =⇒ x = a. Such points are isolated. If a is isolated, the limit of f (x) as x→ a
does not exist, but clearly, f is continuous at a. However, if a is an accumulation
point of D, Eq. (2.1) means

f (x)→ f (a) as x→ a.

Consequently, the algebra of limits leads to:

• if f is continuous at a and k ∈ C, then k f is continuous at a;
• if f ,g are continuous at a, then f +g is continuous at a;
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• if f ,g are continuous at a, then f g is continuous at a;
• if f .g are continuous at a and g(a) �= 0, then f

g is continuous at a.

The first two of these are summarized by linearity, if f ,g are continuous at x0 and
a,b are complex numbers, then a f +bg is continuous at x0.

Theorem 2.1.1 (Composition Rule). If f is continuous at a and g is continuous at
b := f (a), then g◦ f is continuous at a.

Proof. Let ε > 0 be given. Since g is continuous at b, there is a γ > 0, such that

|y−b|< γ =⇒ |g(y)−g(b)|< ε . (2.2)

Since f is continuous at a and γ > 0, there is a δ > 0, such that

|x−a|< δ =⇒ | f (x)− f (a)|< γ ,

since b = f (a), Eq. (2.2) with y = f (x) implies

|g( f (x))−g( f (a))|= |g(y)−g(b)|< ε .

Thus g◦ f is continuous at a. �
We say f is continuous on D, if f is continuous at every point in D. We showed

in Sect. 1.4 that any rational function is continuous on the set of points where it is
defined.

Example 2.1.2. f (z) := |z| is continuous on C.

Proof. Let a ∈ C. Let ε > 0 be given. Let δ := ε . Then |z−a|< δ implies

| f (z)− f (a)|= ||z|− |a|| ≤ |z−a|< δ = ε .

Hence Eq. (2.1) holds. �
Exercise 2.1.3. Explain why

f (x) :=
|3+7|x||− |3x2−8|9

5−|1− x2|

is continuous at 2.

Example 2.1.4. Let f : R→ R be determined by f (x) :=

{
1 if x≥ 3

−1 if x < 3
. Then f is

discontinuous, that is not continuous, at 3.

Proof. Since
lim
x↗3

f (x) =−1 �= 1 = lim
x↘3

f (x)

f does not have a limit at 3, in particular, f is not continuous at 3. �
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Example 2.1.5. Let f : C→ R be determined by f (x) :=

{
8 if x �= 5

2 if x = 5
. Then

lim
x→5

f (x) = 8 �= 2 = f (5),

hence f is discontinuous at 5.

In preparation for the next example we need to know more about approximating
irrational numbers by rational numbers:

Exercise 2.1.6. Let a be some irrational number. Given any M ∈N, there is a γ > 0,

such that for all p ∈ Z and q ∈ N, q≤M =⇒
∣
∣
∣a− p

q

∣
∣
∣≥ γ .

Writing the contrapositive of the implication gives: Given any M ∈ N, there is a

γ > 0, such that for all p ∈ Z and q ∈ N,
∣
∣
∣a− p

q

∣
∣
∣< γ =⇒ q > M.

Remark 2.1.7. Exercise 2.1.6 should be compared to Theorem 1.8.5.

The function in the following exercise is a modification of the Dirichlet function.

Exercise 2.1.8 (Riemann Function). Let f : R→ R be determined by

f (x) :=

{
1/q when x = p/q for some p ∈ Z,q ∈ N in lowest terms

0 when x ∈ R\Q
.

Show f is discontinuous at every point in Q and continuous at every point in R\Q.

We named this function after Georg Friedrich Bernhard Riemann (17 September
1826, Breselenz to 20 July 1866, Selasca). It is also called the Thomae function,
after Carl Johannes Thomae (11 December 1840, Laucha an der Unstrut to 1 April
1921, Jena), the ruler function, the raindrop function among many other names.

Remark 2.1.9. Vito Volterra (3 May 1860, Ancona to 11 October 1940, Rome)
showed that we cannot have a function that is continuous at the rational numbers
and discontinuous at the irrationals. In fact, he showed that we cannot have two
functions for which the points of discontinuity of one are the points of continu-
ity of the other and vice versa (See Sect. 3.4). Thus, the roles of the rationals and
irrationals in the previous exercise cannot be reversed by some clever choice of f .

2.2 Removable Discontinuity

Suppose f is discontinuous at a. Then, f has a removable discontinuity at a, if there
is a function g, such that g is continuous at a and g(x) = f (x) for all x �= a. In the
definition of removable discontinuity, it does not matter whether or not f is defined
at a.
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Exercise 2.2.1. Suppose f is discontinuous at a. Then limx→a f (x) exists iff f has a
removable discontinuity at a.

Example 2.2.2. f (x) := x2−1
x−1 has a removable discontinuity at a = 1. Because, if

g(x) := x+1, then f (x) = g(x) for all x �= 1 and g is continuos at a = 1.

2.3 One-Sided Continuity

In this section we assume D⊆ R and f : D→ C.
Let a ∈ D. If

∀ε > 0,∃δ > 0,∀x ∈ D,0 < x−a < δ =⇒ | f (x)− f (a)|< ε ,

then we say f is continuous from the right at a. In particular, if a is an accumulation
point of D, then limx↘a f (x) exists and equals f (a) if and only if f is continuous
from the right at a.

Similarly, f is continuous from the left at a, if

∀ε > 0,∃δ > 0,∀x ∈ D,−δ < x−a < 0 =⇒ | f (x)− f (a)|< ε .

If a is an accumulation point of D, this means limx↗a f (x) exists and equals f (a).

Example 2.3.1. Let f (x) :=

{
2 when x > 3

5 when x≤ 3
. Then f is continuous from the left at

3, since limx↗3 f (x) = 5= f (3). And f is not continuous from the right at 3 because
limx↘3 f (x) = 2 �= 5 = f (3).

Exercise 2.3.2. f is continuous at a iff f is both continuous from the right and left
at a.

Problems

Problems for Sect. 2.1

1. If g is continuous at L and f (x)→ L as x→ a, prove g( f (x))→ g(L) as x→ a.

2. Let f : [0,1]→ [0,1] be determined by f (0) = 0, and for any n ∈ N, f (x) = 1/n,
when 1

n+1 < x ≤ 1
n . Since

⋃∞
n=1

]
1

n+1 ,
1
n

]
=]0,1] and the union is disjoint, f is a

function defined on the closed interval [0,1].

a. Prove that f is increasing, i.e., x < y =⇒ f (x)≤ f (y).
b. Prove that f is continuous at 0.
c. Prove that f is continuous at 1.
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d. Prove that f is continuous on
]

1
n+1 ,

1
n

[
for all n ∈ N.

e. Prove that f is discontinuous at x = 1/n for all n ∈ N with n≥ 2.

3. Let D := [−1,1]∪{3}∪ [5,7] and let f : D→ R. Then f is continuous at 3.

4. If f : R→C is continuous on R and f (x) = x2 for every rational x, show f (x) = x2

for every real x.

5. If f : R→ R is continuous and

f (x+ y) = f (x)+ f (y) for all x,y ∈ R,

then there is constant c ∈ R, such that f (x) = cx, for all x in R. [Hint: f (2) =
f (1+1) = 2 f (1), and f (1) = f (1/2)+ f (1/2) = 2 f (1/2), so f (1/2) = 1

2 f (1)].

6. Let f : C→C be continuous at a. Suppose (xn) is a sequence of complex numbers
converging to a. Prove the sequence ( f (xn)) converges to f (a).

7. Why does the composition rule for limits (Theorem 1.4.14) not imply the com-
position rule for continuity (Theorem 2.1.1)?

Problems for Sect. 2.2

1. Let σ be the pseudo-sine function. Let f (x) := σ(1/x), when x �= 0 and let
f (0) := 0. Show that f is discontinuous at 0.

2. Let σ be the pseudo-sine function. Let g(x) := xσ(1/x) for x �= 0. Prove g has a
removable discontinuity at 0.

Problems for Sect. 2.3

1. Prove the the function in Problem 2 for Sect. 2.1 is continuous from the left at
every point in the half-open interval ]0,1].

Solutions and Hints for the Exercises

Exercise 2.1.6. For a fixed q, there are only finitely many p such that a−γ ≤ p/q
≤ a+ γ . Alternatively, for any integer k ≥ 1, the two integers closest to ka are �ka�
and �ka�+1, in fact �ka�< ka< �ka�+1. Hence, the largest γ satisfying the desired
conclusion is the smallest of the numbers a− �ka�

k , �ka�+1
k −a, k = 1,2, . . . ,M.

Exercise 2.1.8. This is a consequence of Exercise 2.1.6 and Corollary 1.4.20.
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Exercise 2.2.1. Let L := limx→a f (x) exists, then

g(x) :=

{
f (x) when x �= a

L when x = a

is continuous at a.

Exercise 2.3.2. Similar to the corresponding result for one-sided limits.



Chapter 3
Sets of Real Numbers

Most of us believe we have a reasonable understanding of what a real number is.
However, sets of real numbers have some deep and surprising properties. We will
explore some of these properties in this chapter and in Chap. 4 on cardinality. Of
notable interest for future applications are the order completeness of R, the char-
acterization of intervals in terms of the intermediate value property, and the nested
interval theorem. Among other results we establish the existence of roots of positive
real numbers and we introduce the amazing Cantor set as well as related functions.

3.1 Supremum and Infimum

In this section we investigate order completeness of sets of real numbers. These
properties are not all shared by the set of rational numbers.

Let A be a subset of R. A real number u is an upper bound for A, if a ∈ A =⇒
a≤ u. That is, if ∀a ∈ A,a≤ u.

Example 3.1.1. A few illustrative examples are:

1. 56 is an upper bound for A := {x ∈ R | −34 ≤ x ≤ 56} and 56 ∈ A. Of course,
any number greater than 56 is also an upper bound for A.

2. 56 is an upper bound for B := {x ∈ R | x < 56} and 56 /∈ B.
3. Consider the set C :=

{
n

n+1 | n ∈ N
}
= {1/2,2/3, . . .}. Since n < n+1, we have

n
n+1 < 1, hence 1 is an upper bound for C and 1 /∈C.

If u is an upper bound for A and u ∈ A, then u is the maximum of A, in symbols this
is written: u = max(A).

Let A be some set of real numbers. Let u be a real number. If u is an upper bound
for A and no number smaller than u is an upper bound for A, then u is the least upper
bound for A. The least upper bound is also called the supremum and abbreviated by
sup(A).

Example 3.1.2. Using the notation from Example 3.1.1.
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1. sup(A) = 56.
2. sup(B) = 56.
3. sup(C) = 1.

Proof. We give a separate argument for each case.

1. We saw that 56 is an upper bound for A. No number smaller than 56 can be an
upper bound since 56 is in A.

2. We saw that 56 is an upper bound for B. Let v < 56, we will show that v is
not an upper bound for B, hence 56 is the smallest upper bound for B. To see
that v is not an upper bound for B we must find x ∈ B, such that v < x. We
claim that x := v+ ε works, when ε := (56− v)/2. Now v < 56 implies ε > 0.

Fig. 3.1 ν+ ε is the midpoint of [ν ,56]

Hence v < v+ ε = x and x < x+ ε . It remains to check that x+ ε = 56. But,
x+ ε = v+2ε = v+(56− v) = 56 (Fig. 3.1).

3. We saw that 1 is an upper bound for C. Suppose v < 1. We will show that v is not
an upper bound for C. To see this we must show there is an integer N, such that
v < N/(N +1). Since 0 < 1−v and (1/n) is null, there is an integer N, such that
1
n < 1− v for all n > N. Setting n = N +1 yields v < 1− 1

N+1 = N
N+1 .

This completes the verification of the claims. �
Exercise 3.1.3. Let A be a subset of R. Let u and v be real numbers. Suppose

(i) a ∈ A =⇒ a≤ u and
(ii) (a ∈ A =⇒ a≤ v) =⇒ u≤ v.
Prove u = sup(A).

The following theorem establishes the existence of the supremum for any set of real
numbers that has an upper bound. In the proof we will repeatedly use that if we have
a nonempty finite set of integers with some property, then that set of integers has a
largest element. This is a very special case of the well ordering property of the set
of natural numbers.

Remark 3.1.4. For the set A :=
{

x ∈ R | x2 < 2
}

an outline of the proof of the theo-
rem runs as follows: Using 12 < 2 < 22 we see d0 = 1 is not an upper bound for A
and d0 +1 = 2 is an upper bound for A. Using 1.42 < 2 < 1.52 we see d0.d1 = 1.4
is not an upper bound for A and d0.d1 + 1/10 = 1.5 is an upper bound for A.
Since 1.412 < 2 < 1.422 we see d0.d1d2 = 1.41 is not an upper bound for A and
d0.d1d2 + 1/102 = 1.42 is an upper bound for A. Continuing in this manner we
construct the least upper bound d0.d1d2 · · · for A as an infinite decimal.

For the set A := {x ∈ R | x < 56} this process yields the infinite decimal 55.9 as
the least upper bound.
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Theorem 3.1.5 (Order Completeness of R). Let A be a nonempty subset of R. If A
has an upper bound, then A has a least upper bound.

Proof. Step 1: Construction of a candidate for the sup. Let u be an upper bound
for A. If u =±e0.e1e2 · · · , is an infinite decimal representation of u, then u≤ e0+1.
Hence, we have found an integer N := e0 +1 that is an upper bound for A. If a ∈ A,
and a =± f0. f1 f2 · · · is an infinite decimal representation of a, then −( f0 +2)< a.
Hence, we have found an integer M := − f0 − 2 that is not an upper bound for A.
See Fig. 3.2. To begin the construction of sup(A), let

Fig. 3.2 Illustrating that M = −( f0 + 2) is not an upper bound for A and N = e0 + 1 is an upper
bound for A

B0 := {k ∈ Z |M ≤ k and k is not an upper bound for A} .

Then M ∈ B0 and N /∈ B0 is an upper bound for B0. Hence, B0 has at most N−M
elements, in particular, B0 is finite. Let L be the largest element of B0. Then L is not
an upper bound for A and L+1 is an upper bound for A. (A figure similar to Fig. 3.3,
but with N−M+1 tick marks illustrates this.) Assume L≥ 0. Let d0 = L. Then d0

is not an upper bound for A and d0 +1 is an upper bound for A.
Let

B1 :=
{

k ∈ Z | 0≤ k and d0 +
k

10 is not an upper bound for A
}
.

Then 0 ∈ B1, since d0 is not an upper bound for A, and 10 /∈ B1, since d0 + 1 is an
upper bound for A. Hence, B1 is a subset of {0,1, . . . ,9}, in particular, B1 is finite.
Let d1 be the largest element of B1. Then 0 ≤ d1 ≤ 9, d0.d1 is not an upper bound
for A, and d0.d1 +1/10 is an upper bound for A. See Fig. 3.3.

Fig. 3.3 Since d0.0 is not an upper bound and d0 +1 is an upper bound, there is a k such that d0.k
is not an upper bound and d0.k+1/10 is an upper bound

Let

B2 :=
{

k ∈ Z | 0≤ k, and d0.d1 +
k

102 is not an upper bound for A
}
.

Then 0∈B2, since d0.d1 is not an upper bound for A, and 10 /∈B2, since d0.d1+1/10
is an upper bound for A. Hence, B2 is a subset of {0,1, . . . ,9}, in particular, B2 is
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finite. Let d2 be the largest element of B2. Then 0≤ d2 ≤ 9, d0.d1d2 is not an upper
bound for A, and d0.d1d2 +1/102 is an upper bound for A.

Continuing in this manner (i.e., by induction) we end up with a real number

u := d0.d1d2 · · ·

such that for each n∈N, d0.d1d2 · · ·dn is not an upper bound for A and d0.d1d2 · · ·dn+
1/10n is an upper bound for A.

Step 2: Showing the candidate works. To complete the proof we must show (i)
that u is an upper bound for A and (ii) that no v < u is an upper bound for A.

(i) Let a ∈ A. For any n, d0.d1d2 · · ·dn + 10−n is an upper bound for A. Hence
a≤ d0.d1d2 · · ·dn +1/10n for all n. Consequently,

a− 1
10n ≤ d0.d1d2 . . .dn ≤ u.

Since (1/10n) is null, we conclude a≤ u. Thus u is an upper bound for A.
(ii) Suppose v is an upper bound for A. For any n, d0.d1d2 · · ·dn is not an upper

bound for A. Hence there is an an ∈ A such that d0.d1d2 · · ·dn ≤ an. Now ν is an
upper bound for A, in particular, an ≤ ν . By the transitive property of inequalities,
d0.d1d2 · · ·dn ≤ v for all n. Letting n→ ∞, we get u≤ v, since d0.d1d2 · · ·dn → u.�
Exercise 3.1.6. Complete the proof of the order completeness of R by modifying
the proof above such that it works in the case where L < 0.

Define sup( /0) =−∞. Set sup(A) =∞, if A does not have an upper bound. Then any
subset of R has a supremum sup(A). The previous theorem can therefore be restated
as

if A �= /0 has an upper bound, then sup(A) ∈ R.

Infimum

Let A be a subset of R and let m ∈ R. If m ≤ a for all a ∈ A, then m is a lower
bound for A. If m is an lower bound for A and m ∈ A, then m is the minimum of A in
symbols this is written: U = min(A). A number m is a greatest lower bound for A,
if m is a lower bound and no larger number is a lower bound for A. A greatest lower
bound is also called an infimum and denoted by inf(A). Let −A := {−a | a ∈ A} .
Exercise 3.1.7. (i) Prove m is a lower bound for A iff−m is an upper bound for −A.
(ii) Prove inf(A) = sup(−A).

Theorem 3.1.8. If A has a lower bound, then A has a greatest lower bound.

Proof. One approach to the proof is to imitate the proof that the supremum is a real
number above. On the other hand it might be simpler to use that theorem to prove
this one. This is the proof outlined in the previous exercise. �
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Define inf( /0) = ∞. If A does not have a lower bound we will write inf(A) =−∞.
Having established that sets with upper bounds have a least upper bound and sets

with lower bounds have a greatest lower bound we can, and will, from now on, for
the most part forget about infinite decimals.

3.2 Intervals

In this section, we give a characterization of intervals in terms of a property that is
useful in our study of continuous functions. We will establish this as a first conse-
quence of the order completeness of the set of all real numbers.

A closed interval is a set of the form

[a,b] := {x ∈ R | a≤ x≤ b},
[a,∞[ := {x ∈ R | a≤ x}= {x ∈ R | a≤ x < ∞},

]−∞,b] := {x ∈ R | x≤ b}= {x ∈ R | −∞< x≤ b}, or

]−∞,∞[ := {x ∈ R | −∞< x < ∞}= R.

Where a≤ b are real numbers. An open interval is a set of the form

]a,b[ := {x ∈ R | a < x < b},
]a,∞[ := {x ∈ R | a < x}= {x ∈ R | a < x < ∞},

]−∞,b[ := {x ∈ R | x < b}= {x ∈ R | −∞< x < b}, or

]−∞,∞[ := {x ∈ R | −∞< x < ∞}= R.

Where a < b are real numbers. A half-open interval is a set of the form

]a,b] := {x ∈ R | a < x≤ b} or

[a,b[ := {x ∈ R | a≤ x < b}.

Where a < b are real numbers. A half-open interval is also called half-closed. An
interval is a subset of R that is either an open, a closed, or a half-open interval. Note,
the interval ]−∞,∞[ is both open and closed.

A subset A of R has the intermediate value property, if for any x and y in A and
any t in R,

x < t < y =⇒ t ∈ A.

It is easy to see that any interval has the intermediate value property. Conversely,
any subset of R that has the intermediate value property is an interval:

Theorem 3.2.1 (Interval Theorem). Let A be a nonempty subset of R. Then A has
the intermediate value property if and only if A is an interval.

Proof. Clearly, any interval has the intermediate value property. Conversely, sup-
pose A has the intermediate value property. Let a := inf(A) and b := sup(A). As-
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sume a and b both are finite. Then a is a lower bound for A and b is an upper bound
for A, consequently A ⊆ [a,b]. Let t ∈ R be such that a < t < b. Since a < t and
a = inf(A) is the greatest lower bound for A, we see t is not a lower bound for A.
Hence, there is an x ∈ A, such that inf(A) ≤ x < t. Similarly, there is a y ∈ A, such
that t < y ≤ sup(A). We have found x,y in A, such that x < t < y, hence, using the
intermediate value property, t ∈ A. Since t ∈]a,b[ was arbitrary, the open interval
]a,b[ is a subset of A. The points a and b may or may not be in A, hence A is one of
the intervals, ]a,b[, [a,b[, ]a,b], or [a,b]. �
Exercise 3.2.2. Complete the proof of the Interval Theorem by considering the
cases where a =−∞ and/or b = ∞.

3.3 The Nested Interval Theorem

When we say that π = 3.14159 · · · , we usually interpret this to mean that we know
d0 = 3,d1 = 1,d2 = 4,d3 = 1,d4 = 5,d5 = 9 and we do not know anything about the
digits dk with k > 5. If those digits are 0’s then π = 3.14159, if those digits are 9’s
then π = 3.14159+1/105 = 3.14160. In all other cases π is somewhere in between
those two extremes.

More formally, given a positive integer d0 and digits dn ∈ {0,1, . . . ,9} let

Ik :=

[
d0.d1d2 · · ·dk,d0.d1d2 · · ·dk +

1
10k

]
. (3.1)

Then Ik is the set of real numbers that have a decimal expansion beginning with
d0.d1d2 · · ·dk. In particular, Ik+1 ⊂ Ik and

∞⋂

k=1

Ik = {d0.d1d2 · · ·}.

The Nested Interval Theorem is a generalization of this to intervals whose endpoints
need not be finite decimals.

The following results states that if a ∈ A and b ∈ B implies a ≤ b, then there is
a real number t separating A and B, in the sense that a ≤ t ≤ b for all a ∈ A and all
b ∈ B.

Proposition 3.3.1. Let A and B be nonempty subsets of R. If any number in A is less
than or equal to any number in B, then there is a number t, such that any number in
A is less than or equal to t and any number in B is greater than or equal to t.

Proof. Any number b in B is an upper bound for A, hence, sup(A)≤ b for any b∈ B.
So sup(A) is a lower bound for B, and therefore sup(A)≤ inf(B). Consequently, any
number t between sup(A) and inf(B) works. �

A sequence of intervals (In)n∈N , such that In+1 ⊆ In for all n ∈ N, is nested. If
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Fig. 3.4 A few nested intervals [a0,b0]⊃ [a1,b1]⊃ ·· ·

the lengths of the nested intervals form a null sequence, it appears that the intervals
have exactly one point in common, see Fig. 3.4. This is the content of the following
theorem. We repeat the idea of the proof of Proposition 3.3.1 in the proof below.

Theorem 3.3.2 (Nested Interval Theorem, Cantor’s Principle). Suppose the
closed intervals ([an,bn])n∈N are nested and the sequence of lengths of these in-
tervals (bn−an) is null, then there is an x ∈ R, such that

∞⋂

n=1

[an,bn] = {x}.

That is, the intersection contains exactly one point.

Proof. Since the intervals are nested we have

ai ≤ ai+1 ≤ ai+2 ≤ ·· · ≤ a j ≤ b j ≤ ·· · ≤ bi+2 ≤ bi+1 ≤ bi

for all i≤ j. Hence, for i≤ j,

ai ≤ a j ≤ b j ≤ bi.

Consequently, i≤ j implies ai ≤ b j and a j ≤ bi. Since i and j are arbitrary we have
shown that

∀m,n ∈ N,am ≤ bn.

Hence, if A := {am | m ∈ N} and B := {bn | n ∈ N}, then any number in A is less
than or equal to any number in B. Consequently, a := sup(A) and b := inf(B) are
finite and a≤ b.

If a < b, then 0 < b−a≤ bn−an contradicts that (bn−an) is null. Hence, a = b.
It remains to establish that {a}=⋂∞

n=1[an,bn]. We will show ⊆ and ⊇ .
⊆ For all n ∈ N, an ≤ a, since a is an upper bound for {an | n ∈ N}. Similarly,

b ≤ bn for all n ∈ N, since b is a lower bound for the set {bn | n ∈ N}. Hence,
an ≤ a = b ≤ bn for all n ∈ N. So, a ∈ [an,bn] for all n ∈ N. Thus a ∈ ⋂∞

n=1[an,bn]
and consequently {a} ⊆⋂∞

n=1[an,bn].
⊇ Conversely, if x ∈ ⋂∞

n=1[an,bn], then an ≤ x ≤ bn for all n ∈ N. Hence, x is
an upper bound for the set {an | n ∈ N}. Since a is the smallest upper bound for
{an | n ∈ N} it follows that a ≤ x. Similarly, x ≤ b. By transitivity of inequality,
a≤ x≤ b. Hence, b = a implies x = a. Consequently,

⋂∞
n=1[an,bn]⊆ {a}. �

The following result will be used repeatedly when we use the Nested Interval
Theorem.
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Exercise 3.3.3. Adopt the notation from the statement of the Nested Interval Theo-
rem above. Let δ > 0 be given. Prove, there is an N, such that

[aN ,bN ]⊂]x−δ ,x+δ [.

The following version of the Nested Interval Theorem, called the Binary Nested
Interval Theorem, reflects the way we often construct the intervals we apply the
Nested Interval Theorem to. We use the term “binary” because at each stage we
pick the left or right half of the previous interval.

Theorem 3.3.4 (Binary Nested Interval Theorem). Let a < b be real numbers.
Let a0 := a and b0 := b. For each n ≥ 0, let cn := (an + bn)/2 and suppose either
an+1 = an and bn = cn, or an+1 = cn and bn+1 = bn, then

∞⋂

n=0

[an,bn] = {x}

for some real number x.

Proof. Since an < cn < bn the intervals [an,bn] are nested. By construction bn−an =
(b− a)/2n. It remains to check ((b−a)/2n) is null. But this follows from the fact
that (1/2n) is null (Theorem 1.7.1). �
Exercise 3.3.5 (Nested Rectangle Theorem). For each k ∈ N, let [ak,bk]× [ck,dk]
be a rectangle in R2 = C. Suppose for each k ∈ N, [ak+1,bk+1]× [ck+1,dk+1] ⊂
[ak,bk]× [ck,dk] and the sequence of lengths of the diameters

|(ck,dk)− (ak,bk)|=
√
(ck−ak)2 +(dk−bk)2

forms a null sequence. Prove there is a point (x,y) ∈ R2, such that

{(x,y)}=
∞⋂

k=1

[ak,bk]× [ck,dk].

3.4 Sets of Continuity�

As an interesting application of the Nested Interval Theorem we prove Volterra’s
observation regarding sets of continuity. The proof is essentially Volterra’s.

Theorem 3.4.1 (Volterra). Let I be an interval and let f and g be functions I → C.
Let A⊂ I be the set of points where f is continuous and let B⊂ I be the set of points
where g is continuous. If A and B are dense subsets of I, then the intersection of A
and B is nonempty.

The following lemma helps organize the proof. For a closed interval J = [a,b] let
◦
J := ]a,b[ be the corresponding open interval.
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Lemma 3.4.2. Let I, f ,g,A, and B be as in the theorem. If J is a closed and bounded

subinterval of I and ε > 0, then there is a closed interval K ⊂
◦
J such that the length

of K is less than ε and

| f (x)− f (y)|< ε and |g(x)−g(y)|< ε

for all x and y in K.

Proof. Fix two points a < b in I such that J = [a,b] . Let x0 ∈ A∩ (a,b) . Since f is
continuous at x0, there is a δ ′ > 0, such that

∀x ∈ J, |x− x0| ≤ δ ′ =⇒ | f (x)− f (x0)|< ε/2. (3.2)

Let a′ := max{a,x0−δ ′} and b′ := min{b,x0 +δ ′} . Consider the closed interval

I′ := [a′,b′] , then x0 ∈
◦
I′, since a < x0 < b and I′ ⊆ J, since a ≤ a′ and b′ ≤ b. If x

and y are in I′, then (3.2) yields

| f (x)− f (y)| ≤ | f (x)− f (x0)|+ | f (x0)− f (y)|< ε
2 +

ε
2 = ε .

because |x− x0| ≤ δ ′ and |y− x0| ≤ δ ′. Hence,

∀x,y ∈ I′, | f (x)− f (y)|< ε , (3.3)

Similarly, let y0 ∈ B∩ (a′,b′) . Since g is continuous at y0, there is a δ ′′ > 0, such
that

∀x ∈ I′, |x− y0| ≤ δ ′′ =⇒ |g(x)−g(y0)|< ε
2 . (3.4)

Let a′′ := max{a′,y0−δ ′′} and b′′ := min{b′,y0 +δ ′′} . Consider the closed inter-

val I′′ := [a′′,b′′] , then y0 ∈
◦
I′′, since a′ < y0 < b′ and I′′ ⊆ I′, since a′ ≤ a′′ and

b′′ ≤ b′. If x and y are in I′′, then (3.4) yields

∀x,y ∈ I′′, |g(x)−g(y)|< ε .

because |x− y0| ≤ δ ′′ and |y− y0| ≤ δ ′′.
By construction I′′ ⊆ I′ ⊆ J. Let K be a closed subinterval of I′′ with length at

most ε such that K ⊂
◦
J. �

The idea of the proof of the theorem is to apply the lemma inductively to con-
struct a nested sequence of close intervals In such that | f (x)− f (y)|< 1

n for all x,y
in In.

Proof. [Proof of the theorem] Let J := [a,b] be any closed and bounded subinterval

of I and let ε = 1. By the lemma there is a closed interval I1 ⊂
◦
J with length at most

1, such that
| f (x)− f (y)|< 1 and |g(x)−g(y)|< 1
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for all x,y ∈ I1. Let ε := 1/2. By the lemma with J = I1, there is a closed interval

I2 ⊂
◦
I1 with length at most 1/2, such that

| f (x)− f (y)|< 1
2 and |g(x)−g(y)|< 1

2

for all x,y ∈ I2. Continuing in this manner we get a sequence of closed intervals

In = [an,bn] such that (a) the length bn− an of In is at most 1/n, (b) In+1 ⊂
◦
In, and

(c)
| f (x)− f (y)|< 1

n and |g(x)−g(y)|< 1
n (3.5)

for all x,y ∈ In. By the Nested Interval Theorem there is a z0 real number such that

{z0}=
∞⋂

n=1

In.

We claim f and g are continuous at z0. To verify this claim, let ε ′ > 0 be given.

Fix and integer n > 1/ε ′. By construction z0 ∈ In+1 ⊂
◦
In. Let

δ := min{z0−an,bn− z0} . (3.6)

Then δ > 0, since z0 ∈
◦
In = ]an,bn[ . Suppose x is a real number and |x− z0| < δ .

By (3.6), x ∈ In, consequently (3.5) implies

| f (x)− f (z)|< 1
n < ε ′ and |g(x)−g(z)|< 1

n < ε ′.

Establishing continuity of f and g at z0. Hence, z0 is in the intersection of A and B.
Thus A∩B is nonempty. �

Combining the theorem with the Riemann function (Exercise 2.1.8) we conclude:

Corollary 3.4.3. There does not exist an interval I and a function f : I → C, such
that f is continuous at each rational in I and discontinuous at each irrational in I.

This claim is part of Remark 2.1.9.

Corollary 3.4.4. Consider an interval I and a function f : I → C. If f is continuous
at each rational in I then f is continuous at least one irrational in I.

3.5 Roots

In this section, we show that if x is a positive real number and n is a positive integer,
then x has an nth−root in the sense that yn = x for some real number y. We also
present a method that can be used to show that certain roots are not rational numbers.
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Existence of Roots

We will use the Binary Nested Interval Theorem to establish the existence the nth

root x1/n of a positive real number x.
Suppose we want to construct

√
2. Well, 1 < 2 < 4. So taking square roots: 1 <√

2 < 2. Repeatedly dividing the relevant interval, starting with [1,2], in half gives

1 <
√

2 < 3
2 , since 2 <

(
3
2

)2
;

5
4 <

√
2 < 3

2 , since
(

5
4

)2
< 2;

11
8 <

√
2 < 3

2 , since
(

11
8

)2
< 2;

11
8 <

√
2 < 23

16 , since 2 <
(

23
16

)2
.

Continuing this process by induction is the essence of our proof that 2 has a square
root.

Theorem 3.5.1. Let x> 0 be a real number and k ∈N. There is a real number y> 0,
such that yk = x. Thus x1/k = y.

Proof. If k = 1 or x = 1 we may set y := x. Hence, we will assume k > 1 and x �= 1.
If 0 < x < 1, let a0 = x and b0 = 1. If 1 < x, let a0 = 1 and b0 = x. In either case
ak

0 < x < bk.
0 .

Let c0 := (a0 + b0)/2. Then ak
0 < ck

0 < bk
0. If ck

0 = x, let y := c0. If ak
0 < x < ck

0,
let a1 := a0 and b1 := c0. If ck

0 < x < bk
0 let a1 := c0 and b1 := b0. In either case,

ak
1 < x < bk

1.
Let c1 := (a1 + b1)/2. Then ak

1 < ck
1 < bk

1. If ck
1 = x, let y := c1. If ak

1 < x < ck
1,

let a2 := a1 and b2 := c1. If ck
1 < x < bk

1 let a2 := c1 and b2 := b1. In either case,
ak

2 < xk < bk
2.

Continuing in this manner, either the process is stopped at some point because
ck

n = x, or we get an and bn as in the Binary Nested Interval Theorem with ak
n < x <

bk
n for all k ∈ N. Let y be the real number satisfying

∞⋂

n=0

[an,bn] = {y}.

It remains to check that yk = x. Using ak
n < x < bk

n and an ≤ y≤ bn we conclude

{x,yk} ⊆
∞⋂

n=0

[ak
n,b

k
n].

The intervals [ak
n,b

k
n] are nested, since the intervals [an,bn] are nested. Also,

bk
n−ak

n = (bn−an)
k−1

∑
j=0

b j
na(k−1)− j

n ≤ (bn−an)M
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where M := ∑k−1
j=0 b j

0b(k−1)− j
0 = k bk

0. Hence,
(
bk

n−ak
n

)
is null. So by the Nested

Interval Theorem x = yk. �
Remark 3.5.2. The proof is an algorithm that allows us to estimate y = x1/k, because
an ≤ y ≤ bn implies |cn− y| ≤ (bn− an)/2, since cn is the midpoint of [an,bn]. So
bn − an = (b0 − a0)/2n, tell us that y ≈ cn with error at most (b0 − a0)/2n+1 =
|x−1|/2n+1.

Exercise 3.5.3. Prove bk−ak = (b−a)∑k−1
j=0 b jak−1− j.

Irrationality of Roots

We use the case
√

2 to illustrate a method that can be used to show that (p/q)1/n is
irrational for many choices of positive integers p,q, and n.

Theorem 3.5.4.
√

2 is irrational.

Proof. The proof is by contradiction. Suppose
√

2 is rational. Let a,b be positive
integers such that

√
2 = a/b. For any n ∈ N0

√
2

2n
b = 2nb ∈ N and

√
2

2n+1
b = 2n

√
2b = 2na ∈ N

hence, for all k ∈ N0,
√

2
k
b ∈ N.

Since 1 <
√

2 < 2 we have 0 <
√

2− 1 < 1. Since 0 <
√

2− 1 we have 0 <(√
2−1

)n
b for any n ∈ N. But

(√
2−1

)n
b =

n

∑
k=0

(
n
k

)
(−1)n−k

√
2

k
b

is a sum of integers, hence an integer. Hence,
(√

2−1
)n

b ∈ N for all n ∈ N.

Since 0 <
√

2− 1 < 1, the sequence
((√

2−1
)n)

is null. Consequently, the

sequence
((√

2−1
)n

b
)

is null. But a convergent sequence in N has limit ≥ 1,

hence cannot be null. This contradiction completes the proof. �
Alternatively, a contradiction can be obtained using well ordering of N in place

of null sequences as follows. Since,
{(√

2−1
)n

b | n ∈ N
}

is a nonempty subset of N, it has a smallest element. That is, there is an n0 ∈ N,
such that (√

2−1
)n0

b≤
(√

2−1
)n

b for all n ∈ N.
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But
√

2− 1 < 1 implies
(√

2−1
)n0+1

b <
(√

2−1
)n0

b contradicting the choice

of n0.

Remark 3.5.5. The argument illustrates a general method for proving that numbers
are irrational or even transcendental: (a) suppose the number of interest is rational or
algebraic, (b) use (a) to set up equalities xn = yn, (c) establish |xn|< 1, and (d) show
(yn) is a sequence of nonzero integers. See the proofs that e and π are irrational and
e is transcendental for other examples of this strategy in action.

3.6 Cantor Set

Not everyone likes to work with numbers in base 10. Some like base 2. In this text
popular choices are base 2, base 3, and base 10.

A finite decimal is a number of the form d0.d1 · · ·dn = d0 + d1/10+ d2/102 +
· · ·+ dn/10n, where d0 is an integer and dk is in {0,1, . . . ,9} for 1 ≤ k. Given an
integer b > 1 we can replace the 10 by b. That is, we interpret the finite “decimal”
d0 .

b
d1 · · ·dn where d0 ∈ N0 and d j ∈ {0,1, . . . ,b−1} with respect to base b as

d0 .
b
d1 · · ·dn = d0 +

d1

b
+

d2

b2 + · · ·+ dn

bn .

We can then expand this to infinite base b representations d0 .
b
d1d2 · · · . When b = 2

we say binary number, when b = 3 ternary number, and when b = 10 decimal
number.

The discussion of nonunique expansions for decimal numbers carry over without
major changes to base b representations. The details are left for the reader to work
out. For example, any 0≤ x < 1 can be represented as

x = 0.
b
d1d2 . . .

and this representation is unique, if we do not allow representations ending in b−1.
The representation of 0 < x < 1 is also unique, if we do not allow representations
ending in 0. By long division any rational number has a representation in any base.

It remains to check that the set of real numbers does not depend on the choice
of base. That is, for example, that set of ternary numbers coincides with the set of
decimal numbers. Let

x := d0 .
3
d1d2 · · ·

be a ternary number. Then

x ∈
∞⋂

k=1

[
d0 .

3
d1d2 · · ·dk,d0 .

3
d1d2 · · ·dk +

1
3k

]
.
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By the Nested Interval Theorem x is a decimal number. The proof that any deci-
mal number is a ternary number is similar. However, we proved the Nested Inter-
val Theorem for decimal numbers. So to establish that any decimal number is a
ternary number we have to establish the Nested Interval Theorem for ternary num-
bers. Clearly, this can be done using the method we used to establish the Nested
Interval Theorem for decimal numbers.

The Cantor set was introduced by Georg Ferdinand Ludwig Philipp Cantor (3
March 1845 Saint Petersburg - to January 1918 Halle) in 1883 while he was working
on a problem related to Fourier series. The Cantor set, more precisely the middle
thirds Cantor set, or ternary Cantor set, is the set

C :=

{
0.

3
d1d2 . . .

∣
∣
∣d j ∈ {0,2}

}
.

That is, C is the set of base three numbers, in the interval [0,1], that can be con-
structed using only the digits 0 and 2.

The term middle thirds comes from an alternative construction of C. Let C0 :=
[0,1]. Let C1 be obtained from C0 by removing the middle third of the interval in
C0. Inductively, let Ck+1 be obtained from Ck by removing the open middle third of
each intervals in Ck.

Fig. 3.5 The sets C0, C1, C2, C3

For example,

C1 =

[
0,

1
3

]
∪
[

2
3
,1

]
and

C2 =

[
0,

1
9

]
∪
[

2
9
,

1
3

]
∪
[

2
3
,

7
9

]
∪
[

8
9
,1

]
.

See Fig. 3.5. Then C1 is the ternary numbers having a ternary representation with
d1 �= 1, C2 is the ternary numbers having a ternary representation with d1 �= 1 and
d2 �= 1, and so on. Consequently,

C =
∞⋂

k=0

Ck.

Exercise 3.6.1. The Cantor function f : C → [0,1] determined by

f

(
0.

3
d1d2 . . .

)
= 0.

2

d1

2
d2

2
. . . (3.7)



3.6 Cantor Set 65

is surjective, but not injective.

Exercise 3.6.2. The Cantor type function g : C → [0,1]2 = [0,1]× [0,1] determined
by

g

(
0.

3
d1d2 . . .

)
=

(
0.

2

d1

2
d3

2
. . . ,0.

2

d2

2
d4

2
. . .

)

is onto and not one-to-one.

Problems

Problems for Sect. 3.1

1. Any finite set has a maximum.

2. If A has a maximum, then sup(A) = max(A).

3. If r is irrational and A :=]−∞,r[, then sup(A) = r. In particular, sup(A) is not
rational.

4. Let A be a subset of R. Let U be a real numbers such that
Prove U = sup(A), if

a. A∩]U,∞[= /0 and
b. A∩]V,∞[�= /0, for any V <U.

5. Let A be a set of real numbers and let M be a real number. Suppose A∩ ]M,∞[ = /0
and

∀ε > 0,A∩ ]M− ε ,∞[ �= /0.

Prove M is the least upper bound of A.

6. Let A be a set and let g : A→ [0,∞[ be some function. Suppose there exists M≥ 0,
such that

∑
b∈B

g(b)≤M

for all finite subsets B of A. Show there is a real number L, such that

∀ε > 0,∃finite B⊆ A,∀finite C ⊆ A,B⊆C =⇒ 0≤ L−∑
c∈C

g(c)< ε .

This is usually abbreviated as ∑a∈A g(a) = L. [Hint: By assumption the set

S :=

{

∑
b∈B

g(b) | B a finite subset of A

}

has M as an upper bound. Let L be the supremum of S.]
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Problems for Sect. 3.2

1. Prove A :=]0,1[∩Q does not have the intermediate value property.

2. Let f : R→ R be increasing, i.e., x ≤ y =⇒ f (x)≤ f (y). Fix a real number y0.
Let

A := {x ∈ R | y0 ≤ f (x)} .
Suppose A is nonempty. Prove A is an interval. [Hint: f need not be onto.]

Problems for Sect. 3.3

1. Find two different sequences of closed intervals Ik as in (3.1) whose intersection
equals {1.240}.

2. Use the Nested Interval Theorem to prove: If 0 ≤ x and x ≤ 1/n for all n ∈ N,
then x = 0.

3. Consider the open intervals In :=
]
0, 1

n

[
. Since 1

n+1 < 1
n the intervals are nested:

In+1 ⊂ In. Find
⋂∞

n=1 In.

4. Consider the closed intervals In := [n,∞[ . Since n< n+1 the intervals are nested:
In+1 ⊂ In. Find

⋂∞
n=1 In.

5. Consider the open intervals In :=
]
− 1

n ,
1
n

[
. Since 1

n+1 <
1
n the intervals are nested:

In+1 ⊂ In. Find
⋂∞

n=1 In.

Problems for Sect. 3.4

1. Fill in the details of the induction in the proof of Theorem 3.4.1.

2. Give an example of a function f : [0,1]→ R that f is continuous on
[
0, 1

2

]
and

discontinuous on
]

1
2 ,1
]

or prove that such a function does not exist.

3. Give an example of a function f : [0,1]→ R such that f is continuous on
[
0, 1

2

[

and discontinuous on
[

1
2 ,1
]

or prove that such a function does not exist.

Problems for Sect. 3.5

The strategy of our proof that
√

2 is irrational is roughly: Let x be a real number and
m be an integer such that m< x<m+1. Suppose x is rational, use this and properties
of x, to find a real number A such that xkA ∈ N for all k ∈ N. Then ((x−m)n A) is a
null sequence in N, contradiction.
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1. Use the strategy above to show that 3
√

2 = 21/3 is irrational.

2. Why can the strategy above not be used to show that 5
3 is irrational? More pre-

cisely, why does there not exist an A such that
(

5
3

)k
A ∈ N for all k ∈ N.

3. Let n ∈ N. Show that any x > 0 has at most one nth root.

Problems for Sect. 3.6

Another way to construct the sets Ck is to use the functions, f0(x) := x
3 and

f2(x) := x
3 + 2

3 . Clearly, Ck+1 = f0 (Ck) ∪ f2 (Ck) . In terms of ternary numbers

fm

(
0.

3
d1d2 . . .

)
= 0.

3
md1d2 . . .. The iterated function system approach to the Cantor

set is based on the first problem below.

1. C = f0 (C)∪ f2 (C) .

2. If x = 0.
3
d1d2 . . . where d j ∈ {0,2} for all j. For each k, the point x is a left-hand

endpoint of one of the intervals in Ck iff d j = 0 for all j > k.

3. If x = 0.
3
d1d2 . . . where d j ∈ {0,2} for all j. For each k, the point x is a right-hand

endpoint of one of the intervals in Ck iff d j = 2 for all j > k.

4. Prove 1/4 ∈C. [Hint: 1/4 = 0.
3
02.]

5. Prove 1/4 is not an endpoint of an interval in Ck for any k ∈ N.

6. Prove 1/5 /∈C.

7. The Cantor function is continuous.

8. Prove that any point x0 in the Cantor set C is an accumulation point of C.

Solutions and Hints for the Exercises

Exercise 3.1.3. (i) States that u is an upper bound for A. (ii) States that any upper
bound for A is larger than u. Thus u is the smallest upper bound.

Exercise 3.1.6. Inductively, construct xn = d0.d1d2 · · ·dn such that −xn− 1/10n

is not an upper bound for A and −xn is an upper bound for A.

Exercise 3.2.2. If a =−∞, then A does not have a lower bound. In particular, t is
not a lower bound for A. Hence there is x ∈ A, such that x < t.
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Exercise 3.3.3. Recall
⋂∞

n=1[an,bn] = {x}, where x = sup{an | n ∈ N}. Since
x−δ < x, x−δ is not an upper bound for {an | n ∈N}. Hence, for some n0 we have
x−δ < an0 . Similarly, there is an m0 such that bm < x+δ . Setting N :=max{n0,m0}
completes the proof.

Exercise 3.3.5. The intervals [ak,bk] are nested and (bk−ak) is null. Hence there
is real number x, such that

⋂∞
k=1[ak,bk] = {x}. Similarly, there is a real number y,

such that
⋂∞

k=1[ck,dk] = {y}.
Exercise 3.5.3. Simplify the right-hand side.

Exercise 3.6.1. Any point y in [0,1] has a binary representation

y = 0.
2
d1d2 . . . .

If ek := 2dk, then x := 0.
3
e1e2 . . . is a point in C and f (x) = y. Thus f is onto.

That f is not one-to-one is a consequence of the nonuniqueness of the binary

representation of some numbers in [0,1]. For example, f

(
0.

3
02

)
and f

(
0.

3
20

)

both equal 0.
2
10.

Exercise 3.6.2. Similar to Exercise 3.6.1.



Chapter 4
Counting

This chapter contains a brief introduction to cardinality. The focus is on countable
sets. Of course, Cantor’s results that an interval is not countable and that the set of
irrational numbers is uncountable are also included. In fact, most of the results in
this chapter are due to Cantor.

4.1 Countable Sets

Any set that can be arranged in a list a1,a2,a3, . . . , possibly with repetitions, is
countable.

Example 4.1.1. {1,2,3} can be arranged as 1,2,3,1,2,3,1,2,3, . . . Hence, the finite
set, {1,2,3} is countable.

Similarly, any finite set is countable. An infinite set that is countable is countably
infinite. The basic countably infinite set is

N = {1,2,3, . . .}.

Lemma 4.1.2. The union of two countable sets is a countable set.

Proof. Suppose A and B are countable. If a1,a2, . . . is a listing of A and b1,b2, . . . is
a listing of B, then

a1,b1,a2,b2,a3,b3, · · ·
is the required list of the elements of the union A∪B. �

Repeating this argument shows that a finite union of countable sets is countable.

Example 4.1.3. The set of integers Z is countable, because we can list the integers
as

0,−1,1,−2,2, . . . .
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Alternatively, we can write Z as the union of

N0 = {0,1,2, . . .}

and
−N = {−1,−2, . . .}.

Lemma 4.1.4. If Ak is finite for all k in N, then
⋃∞

k=1 Ak is countable.

Proof. Writing the elements of A1 (in some order), then the elements of A2, and so
on gives the required list. �

This argument does not work, if at least one of the Ak’s is countable infinite. For
example, if A1 is infinite we will never get to list the elements of A2. However, it is
true that a countable union of countable sets is a countable set:

Theorem 4.1.5. If Ak is countable for all k ∈ N, then
⋃∞

k=1 Ak is countable.

Proof. Write Ak := {ak,1,ak,2,ak,3, . . .}. Let Bm := {ai, j | i+ j = m}. See Fig. 4.1.
Then Bm has m− 1 element, hence is finite. Consequently,

⋃∞
k=1 Ak =

⋃∞
m=2 Bm is

countable by the lemma. �

Fig. 4.1 Instead of counting along the rows we count along the diagonals. Using the notation from
the proof of Theorem 4.1.5 A1 is the top row, A2 is the second row, etc. and B2 is the diagonal with
one dot, B3 is the diagonal with two dots, and so on

Exercise 4.1.6. Use the theorem to prove that the set of rational numbers is count-
able.

Theorem 4.1.7 (Cantor). The interval [0,1] is not countable.
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Proof. [First proof that [0,1] is not countable.] Suppose [0,1] is countable. Let
{y1,y2, . . .}= [0,1]. Let x := 0.d1d2 · · · where

dn :=

{
8 if the nth digit of yn is ≤ 4

3 if the nth digit of yn is ≥ 5
.

For any n, x �= yn, because they have different nth digits. Consequently, x is not on
the list. �

The choice of 3 and 8 as the digits is mostly arbitrary. We just wanted to avoid
possible complications resulting from repeating 9’s. This proof is an example of the
Cantor Diagonal Argument.

Proof. [Second proof that [0,1] is not countable.] Suppose [0,1] is countable. Let
{y1,y2, . . .} = [0,1]. Let [a0,b0] := [0,1]. Inductively, for k ∈ N, let [ak,bk] be the
left or right third of [ak−1,bk−1] that does not contain yk. If neither the left nor the
right third of [ak−1,bk−1] contains yk we let [ak,bk] be the left third of [ak−1,bk−1].
By construction yk /∈ [ak,bk] for all k and the intervals [ak,bk] are nested. Since
bk−ak = 1/3k is null, it follows from the Nested Interval Theorem that

∞⋂

k=0

[ak,bk] = {x},

for some x ∈ [0,1].
It remains to check that x is not one of the y′ns. But for any n, x ∈ [an,bn] and

yn /∈ [an,bn]. Thus, x �= yn for all n. �
We used thirds instead of halves in the proof, because 1/2 is in the left and in the

right half of [0,1].

Exercise 4.1.8. The Cantor set C is not countable.

A set that is not countable is uncountable. A listing a1,a2,a3, . . . of a countable
set is an enumeration of that set. An enumeration of a countably infinite set can
be assumed not to include duplicates. Such an enumeration can be constructed by
starting at the beginning of the list and deleting duplicates as they are encountered
when we move through the list.

Exercise 4.1.9. A subset of a countable set is countable.

Exercise 4.1.10. If A is uncountable and B is any set, then A∪B is uncountable.

Exercise 4.1.11. R is uncountable.

Exercise 4.1.12. If A and B are countable, so is A×B := {(a,b) | a ∈ A,b ∈ B}.
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4.2 Uncountable Sets�

We saw above that a set A is countably infinite iff it can be written as an infinite list
a1,a2,a3, . . . without duplicates. That is, a set A is countably infinite iff there is a
bijection f : N→ A. Specifically, when A is listed without duplicates the bijection is
determined by f (n) := an. This idea can be used to compare the size of any two sets
A and B. We say A and B have the same number of elements if there is a bijection
f : A → B. Similarly, A has fewer elements than B if there is a one-to-one may
f : A → B and A has more elements than B if there is a one-to-one map g : B → A.
The following results say that this terminology makes sense.

Proposition 4.2.1. Let A and B be sets. There is a one-to-one map f : A→B iff there
is a surjective map g : B→ A.

Proof. If f : A→ B is 1−1. Fix a point a0 in A. Define

g(b) :=

{
a if b = f (a)

a0 if b /∈ f (A)
.

Then g : B→ A is surjective.
Conversely, suppose g : B→ A is surjective. For each a ∈ A, the set

g−1 ({a}) := {b ∈ B | g(b) = a}

is nonempty, since g maps B onto A. Let f (a) be one of the elements of g−1 ({a}) .
Then g( f (a)) = a, so f is an injection. In fact, if f (a1) = f (a2) , then a1 =
g( f (a1)) = g( f (a2)) = a2. �
Theorem 4.2.2 (Cantor–Bernstein–Schroeder Theorem). If A both has fewer and
more elements than B, then A and B have the same number of elements.

Proof. Let f : A→ B and g : B→ A be 1−1 functions. Let

A := {C ⊆ A | A\g(B)⊆C and g( f (C))⊆C}.

Note A ∈A . Let X be the intersection of all the sets in A . That is

X = ∩A =
⋂

C∈A

C.

Clearly A\g(B) is a subset of X and g( f (X)) ⊆ X , hence X ∈A . By construction
C ∈A =⇒ X ⊆C. We aim to show that

h(x) =

{
f (t) if t ∈ X

g−1(t) if t ∈ A\X
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is a bijection of A onto B. We need A \X ⊆ g(B) to make sense out of the second
part of the definition. Once we have that, we need to verify that the resulting map is
1−1 and onto.

Let Y = g( f (X))∪ (A \ g(B)), then Y ⊆ X ∪ (A \ g(B)) ⊆ X . Hence, g( f (Y )) ⊆
g( f (X))⊆ X , consequently, Y ∈A . So X ⊆Y and therefore X =Y. We have shown
that

X = g( f (X))∪ (A\g(B)) (4.1)

In particular, A\X ⊆ g(B).
If h is not 1−1 then for some s ∈ X and t ∈ A\X we have f (s) = g−1(t). That is

g( f (s)) = t, but then g( f (s)) ∈ X and t /∈ X gives a contradiction, hence h is 1−1.
To show that h is onto pick b ∈ B, either g(b) ∈ X or g(b) ∈ A\X . In the second

case b = h(g(b)) ∈ h(A). In the first case g(b) ∈ g( f (X)) by (4.1), so b ∈ f (X) ⊆
h(A). In both cases b ∈ h(A), thus h is onto. �

The theorem is named after Cantor of Cantor set fame, Felix Bernstein (February
24, 1878, Halle to December 3, 1956, Zurich) and Friedrich Wilhelm Karl Ernst
Schröder (25 November 1841 in Mannheim to 16 June 1902, Karlsruhe).

We discuss some examples suggesting that using bijections to decide if two sets
have the same size is not always appropriate. The map f (x) := 2x determines a
bijection of [0,1] onto [0,2]. So the two intervals have the same number of elements.
Of course they have different lengths.

Example 4.2.3. (a) Exercise 3.6.1 constructs a surjection C → [0,1] mapping the
Cantor set onto the interval [0,1], hence (by the proposition) there is an injective
map f1 : [0,1]→ C. Clearly f2(x) = x is an injective may C → [0,1], so by Can-
tor–Bernstein–Schroeder there is a bijection f : C → [0,1].

(b) Similar to part (a) it follows from Exercise 3.6.2 that there is a bijection
g : C → [0,1]2 between the Cantor set C and the square [0,1]2 = [0,1]× [0,1].

(c) Combining (a) and (b) we see that, h := g◦ f−1 : [0,1]→ [0,1]2 is a bijection
between the interval [0,1] and the square [0,1]2. Hence, both the interval [0,1] and
the square [0,1]2 both have the same number of elements as C.

To distinguish the size of the closed interval [0,1] from the size of the square
[0,1]2 we might consider area or some notion of dimension, e.g., “topological” di-
mension.

ZFC is an abbreviation of: Zermelo–Fraenkel set theory with the axiom of choice,
the standard set of axioms most mathematics is based on. ZFC is named after Ernst
Friedrich Ferdinand Zermelo (27 July 1871 Berlin to 21 May 1953 Freiburg im
Breisgauand) and Abraham Halevi (Adolf) Fraenkel (17 February 1891 Munich to
15 October 1965 Jerusalem). The C is for the axiom of choice.

The continuum hypothesis, due to Cantor, states that any set of real numbers is
either countable or bijective to [0,1]. Less formally, no subset of R is both more
infinite than N and less infinite than [0,1].

In 1939 Kurt Friedrich Gödel (28 April 1906 Brno to 14 January 1978 Prince-
ton) showed that the continuum hypothesis cannot be disproved based on ZFC. In
1963 Paul Joseph Cohen (2 April 1934 Long Branch to 23 March 2007 Stanford)



74 4 Counting

showed that the continuum hypothesis cannot be proved based on on ZFC. Thus the
continuum hypothesis is independent of “normal” mathematics in the sense that it
can neither be proven nor disproven.

We have seen that there are problems with only considering the size of infinite
sets using comparisons based on the existence of injective or bijective maps and
that in some cases it seems more sensible to consider length, area, or volume as a
measure of size. That difficulties must remain is shown by Stefan Banach (30 March
1892 Kraków to 31 August 1945 Lviv) and Alfred Tarski (14 January 1901 Warsaw
to 26 October 1983 Berkeley):

Example 4.2.4 (Banach-Tarski Paradox, 1924). In R3 the unit ball B := {x ∈ R3 |
|x| ≤ 1} can be partitioned into five disjoint sets E j, j = 1,2,3,4,5 in such a way
that D1 ∪D2 = B and B = D3 ∪D4 ∪D5 where each D j is obtained from the cor-
responding E j by a rigid motion. A rigid motion is a combination of rotations and
translations.

Proof. You must be joking. This is well beyond the scope of this course. �
Despite all these difficulties the influential mathematician David Hilbert (23 Jan-

uary 1862 Königsberg to 14 February 1943 Göttingen) stated: “No one will drive us
from the paradise which Cantor created for us” Hilbert (1926).

Problems

Problems for Sect. 4.1

1. Is the set of all enumerations of N countable?

2. The set of all subsets of N is not countable.

A real number a is algebraic if it solves p(x) = 0 for some polynomial with
integer coefficients. A real number that is not algebraic is transcendental.

3. The set of polynomials with integer coefficients is countable.

4. The set of algebraic numbers is countable.

5. The set of transcendental numbers is uncountable. In particular, some real num-
bers are transcendental.

6. Let R be the set of numbers of the form

0.a1b10a2b200a3b3000a4b4 . . . ,

where {ak,bk}= {0,1} for all k ∈ N.
(a) Show each number in R is irrational.
(b) Show the set R is uncountable.
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7. Let A be a set, for example, A could be an interval. Consider a function g : A→R.
Suppose there is a real number M, such that

−M ≤ ∑
b∈B

g(b)≤M

for all finite subsets B of A. Prove

{a ∈ A | g(a) �= 0}

is countable. [Hint: for each integer n ≥ 1, the set Gn :=
{

a ∈ A | g(a)> 1
n

}
is

finite, in fact has at most Mn elements.]

8. Let f : ]0,1[→ R be determined by f (x) := 1
n for 1

n+1 ≤ x < 1
n and all n ∈ N.

Show that the set of points where f is discontinuous is an infinite countable set.

Problems for Sect. 4.2

1. Find a bijection f : [0,1]→ [0,1[. [Hint: verify

f (x) :=

{
1/(n+1) when x = 1/n, for some n ∈ N

x when x �= 1/n, for all n ∈ N

works.]

2. Find a bijection g : [0,1[→]0,1[.

3. Find a bijection h :]0,1[→ R.

Combining the three problems we conclude the map h◦g◦ f is a bijection [0,1]→R.

Solutions and Hints for the Exercises

Exercise 4.1.6 Let Ak be the rational numbers with denominator k.

Exercise 4.1.8 Mimic the proof that the interval [0,1] is uncountable.

Exercise 4.1.9 Suppose A ⊆ B and B is countable. If A is finite we are done.
Suppose A is infinite. Enumerate the elements of B. Deleting the elements from the
list that are not in A gives an enumeration of the elements of A.

Exercise 4.1.10 If A∪B is countable, then A is countable by Exercise 4.1.9.

Exercise 4.1.11 Use Cantor’s Theorem and Exercise 4.1.10.

Exercise 4.1.12 Mimic the proof of Theorem 4.1.5



Chapter 5
Continuity

We discuss continuity and limit of monotone functions, the intermediate value the-
orem and show that a continuous image of a compact interval is a compact interval
and that a continuous function defined on a compact interval is uniformly continu-
ous. These results are all global in the sense that they depend on the function being
continuous on an interval; the pointwise (local) results about continuity are con-
tained in Chap. 2. The main tool used in the proofs is the Nested Interval Theorem.

5.1 Monotone Functions

Let I be some interval. A function f : I → R is increasing, if for all x,y in I,

x < y =⇒ f (x)≤ f (y).

We say f is strictly increasing, if

x < y =⇒ f (x)< f (y).

Similarly, f is decreasing if x < y implies f (x) ≥ f (y) and strictly decreasing if
x < y implies f (x)> f (y). A function is monotone if it is increasing or decreasing.
The same is the case for strictly monotone. Clearly, a function f is increasing iff− f
is decreasing, so any theorem about increasing functions has a companion theorem
for decreasing functions.

Exercise 5.1.1. If f : I → R is increasing, x,y ∈ I, and f (x)< f (y), then x < y.

Exercise 5.1.2. If f : I → R is increasing and a ∈ I, then f (a) is an upper bound for
{ f (x) | x < a} and limx↗a f (x) = sup{ f (x) | x < a}.
Similarly, if f is increasing, then f (a) is a lower bound for { f (x) | a < x} and
limx↘a f (x) = inf{ f (x) | a < x}. Consequently,

lim
x↗a

f (x)≤ f (a)≤ lim
x↘a

f (x).

© Springer International Publishing Switzerland 2015 77
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Hence, an increasing function is continuous at a iff

lim
x↗a

f (x) = lim
x↘a

f (x).

As mentioned above, a similar discussion applies to decreasing functions.
If f is a (not necessarily increasing) function, the one-sided limits at a exist, and

lim
x↗a

f (x) �= lim
x↘a

f (x),

then f has a jump discontinuity at a. Endpoints of an interval are special, because
at an endpoint there only in one one-sided limit. For example, if f : [a,b]→ R, the
one-sided limit at a exists and

f (a) �= lim
x↘a

f (x),

then f has a jump discontinuity at a. The previous discussion shows

Theorem 5.1.3. Let I be an interval and suppose f : I → R is monotone. Let a ∈ I.
Then f is discontinuous at a iff f has a jump discontinuity at a.

Corollary 5.1.4. A monotone function has a countable, perhaps empty, set of dis-
continuities.

Proof. Suppose f is increasing. Let A be the set of discontinuities. If a ∈ A, then
limx↗a f (x) < limx↘a f (x), since f is increasing and discontinuous at a. Consider
the open interval Ia :=

]
limx↗a f (x), limx↘a f (x)

[
. If a′ < a, then limx↘a′ f (x) ≤

f
(

a+a′
2

)
≤ limx↗a f (x), hence the intervals Ia′ and Ia are disjoint. By density of

the rationals, each Ia contains a rational number ra. If a �= a′, then ra �= ra′ , since
Ia∩ Ia′ is empty. Consequently, an enumeration of the rationals {ra | a ∈ A} gives an
enumeration of A. Thus A is countable. �
Example 5.1.5. Let ak, k = 1,2, . . . be an enumeration of the rationals in the open
interval ]0,1[ . Consider the function determined by f (0) = 0 and if 0 < x≤ 1 then

f (x) = ∑
k,ak<x

1
2k =

∞

∑
j=1

1

2k j
,

where k j = k j(x) is the subsequence of subscripts k for which ak < x. Then, f is
an increasing function mapping the closed interval [0,1] into itself and f is dis-
continuous at every rational and is the open interval with endpoints 0 and 1. Note,
f (1) = ∑∞

k=1
1
2k = 1.

Proof. If x < y, then f (y)− f (x) = ∑k,x≤ak<y
1
2k . Clearly, limx↗a j f (x) ≤ f (a j) =

∑k,ak<a j
1
2k and limx↘a j f (x) ≥ ∑k,ak≤a j

1
2k . Hence, limx↘a j f (x)− limx↗a j f (x) ≥

1
2 j . It is easy to show that this is an equality, but we do not need that. �
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The following result, characterizing continuity of a monotone function, is the
main result in this section.

Theorem 5.1.6 (Continuity Theorem for Monotone Functions). A monotone func-
tion defined on an interval is continuous iff its range is an interval.

Proof. Let I be an interval and let f : I → R be increasing.
⇐=: Suppose the range of f is an interval J. Let x0 ∈ I. Let ε > 0 be given.

Suppose x0 is not the left endpoint of I.
(a) If f (x0)− ε ∈ J, then there is an x1 ∈ I such that f (x1) = f (x0)− ε . f (x1)<

f (x0) implies x1 < x0. Hence, x1 < x < x0 implies f (x0)− ε ≤ f (x) ≤ f (x0). (b)
If f (x0)− ε /∈ J, then f (x0)− ε < f (x) ≤ f (x0) for all x ∈ I with x < x0. Fix any
x1 < x0 in I, then x1 < x < x0 implies f (x0)−ε < f (x)≤ f (x0). Hence, both in case
(a) and in (b) we have shown that limx↗x0 f (x) = f (x0).

Similarly, if x0 is not the right hand endpoint of I, then limx↘x0 f (x) = f (x0).
Consequently, f is continuous at x0.

=⇒: Suppose f is continuous. We will show that the range of f has the interme-
diate value property. Let x0,y0 ∈ I and let t ∈R such that f (x0)< t < f (y0). We must
show that t is in the range of f . Since f (x0)< f (y0) and f is increasing x0 < y0. Let

A := {a ∈ I | f (a)< t}
B := {b ∈ I | t ≤ f (b)}.

Clearly, x0 ∈ A, y0 ∈ B, A∩B = /0, and A∪B = I. Since f is increasing, y0 is an
upper bound for A. Hence, p := sup(A) is finite. Similarly, q := inf(B) is finite.

Exercise 5.1.7. A and B have the intermediate value property.

By the Interval Theorem A and B are intervals. Hence A is a subinterval of I and
p = sup(A), so A = I∩]−∞, p] or A = I∩]−∞, p[. Similarly, B = I ∩ [q,∞[ or
B = I∩]q,∞[. Since A∪ B = I, and I has the intermediate value property p = q.
By definition of A, limx↗p f (x)≤ t and by definition of B, limx↘p f (x)≥ t. So con-
tinuity of f at p, implies f (p) = t.

The case where f is decreasing is most simply dealt with by observing that g =
− f is increasing. �

The =⇒ part of the Continuity Theorem for Monotone Functions is a special
case of the Intermediate Value Theorem (Theorem 5.2.2).

By the Interval Theorem:

Corollary 5.1.8. A monotone function defined on an interval is continuous iff its
range has the intermediate value property.

If f is a strictly monotone function, then f is 1−1, hence f has an inverse function
f−1.

Exercise 5.1.9. The inverse of a strictly increasing function is strictly increasing.

Corollary 5.1.10. The inverse of a strictly monotone continuous function defined on
an interval is continuous.
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Proof. Let I be an interval and suppose f : I → R is a strictly increasing and contin-
uous. The range of f is an interval J. The inverse function f−1 is strictly increasing
and maps J onto the interval I. Hence, f−1 is continuous. �

The following exercise gives another proof of the existence of roots, Theorem
3.5.1.

Exercise 5.1.11. Let n ∈ N. f : [0,∞[→ R be determined by f (x) := xn. Prove

1. f is strictly increasing
2. The range of f is the interval [0,∞[
3. g(x) := x1/n is continuous: [0,∞[→ [0,∞[

5.2 The Intermediate Value Theorem

Solving equations of the form f (x) = 0 plays a large role in mathematics. For ex-
ample, the existence of the nth root of a > 0 is equivalent to the equation xn−a = 0
having a solution. The Intermediate Value Theorem leads to another proof of the ex-
istence of roots. In fact, the proof of the Intermediate Value Theorem is remarkably
similar to our proof, that roots exists, i.e., to the proof of Theorem 3.5.1.

The Intermediate Value Theorem is a slight extension of a theorem due to Bern-
hard Placidus Johann Nepomuk Bolzano (5 October 1781 Prague to 18 December
1848 Prague). Contrary to most mathematicians of his era, Bolzano believed intu-
itive ideas, for example time and motion, do not belong in mathematics. Conse-
quently, he was one of the first mathematician to insist on rigor in mathematics.
Bolzano’s notion of a limit was similar to the modern one. Since Bolzano’s work
predates Weierstrass’ by some 50 years, perhaps we should have credited our defi-
nition of limits to Bolzano.

Theorem 5.2.1 (Bolzano’s Intermediate Value Theorem). Let I be an interval
and let f : I → R be a continuous function. If there are points a and b in I, such that
f (a)< 0 and f (b)> 0, then there is a point c in the open interval with endpoints a
and b, such that f (c) = 0.

Proof. Suppose a < b. Let a0 := a and b0 := b. Then, f (a0) < 0 and f (b0) > 0.
Let c0 := (a0 + b0)/2 be the midpoint of [a0,b0]. If f (c0) = 0, we are done. If
f (c0)≤ 0, let a1 := c0 and b1 := b0. If f (c0)> 0, let a1 := a0 and b1 := c0. In either
case, f (a1) ≤ 0 and f (b1) > 0. Continuing in this manner, we get an and bn such
that, for all n, f (an)≤ 0, f (bn)> 0, and for all n, cn := (an +bn)/2, and an+1 = an

and bn = cn or an+1 = cn and bn+1 = bn. Hence, for some real number c

∞⋂

n=0

[an,bn] = {c}.

Since f (an) ≤ 0 for all n, f (c) = limn→∞ f (an) ≤ 0. Similarly, f (bn) > 0 for all n,
implies f (c) = limn→∞ f (bn)≥ 0. Consequently, f (c) = 0. �
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The proof gives a method for approximating the value of c. At any stage c is be-
tween an and bn. Hence, |c−cn| ≤ (b−a)/2n+1. See the remark following Theorem
3.5.1.

Theorem 5.2.2 (Intermediate Value Theorem). If a real valued function f is con-
tinuous on some interval I, then the image f (I) of that interval has the intermediate
value property.

Proof. Let a < b be in I. Let y0 be between f (a) and f (b). If f (a) < f (b) apply
Bolzano’s Intermediate Value Theorem to g(x) := f (x)− y0. If f (a) > f (b) apply
Bolzano’t Intermediate Value Theorem to g(x) := y0− f (x). �
Corollary 5.2.3. If a real valued function f is a continuous on some interval I, then
f (I) is an interval.

This gives another proof of one part of the Continuity Theorem for Monotone Func-
tions (Theorem 5.1.6).

Exercise 5.2.4. Let I be an interval and f : I → R be continuous. Supposing f is
1−1, prove f is strictly monotone on I.

5.3 Continuous Images of Compact Intervals

Suppose a < b are real numbers. Let I := [a,b] be the corresponding closed interval.
We will call intervals of this form as compact intervals. If f : [a,b]→ R is con-
tinuous, then it follows from the Intermediate Value Theorem that J := f (I) is an
interval. The endpoints of the interval f (I) are

inf( f (I)) = inf{ f (x) | x ∈ I} and

sup( f (I)) = sup{ f (x) | x ∈ I}.

In this section we will show that inf( f (I)) and sup( f (I)) are real numbers in the
range of f , consequently

f ([a,b]) = [inf( f ([a,b]) ,sup( f ([a,b]))] .

In particular, continuous functions map compact intervals onto compact intervals.
The proof is divided into two steps. The first step, The Global Boundedness The-
orem, shows that inf( f (I)) and sup( f (I)) are real numbers. The second step, The
Extreme Value Theorem, shows that inf( f (I)) and sup( f (I)) are contained in the
interval f (I).

The following examples illustrate some of the reasons we consider compact in-
tervals I.

Example 5.3.1. If f (x) := 1
x and I :=]0,1[, then f (I) =]1,∞[. While the endpoints

of I are real numbers, the right hand endpoint of f (I) is not a real number.
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Example 5.3.2. If f (x) := x2 and I :=]−2,1[, then f (I) = [0,4[. A continuous image
of a an open interval need not be an open interval.

Global Boundedness Theorem

A function f : D → C is bounded on E ⊆ D, if there is an M, such that | f (z)| ≤ M
for all z ∈ E. If f is real valued this means that −M ≤ f (z) ≤ M for all z ∈ E. The
Local Boundedness Theorem for limits states that if limx→a f (x) exists, then f is
bounded near a. Consequently, if f is continuous at a, then f is bounded near a.

Theorem 5.3.3 (Global Boundedness Theorem). Let I be compact interval. If f :
I → C is continuous on I, then f is bounded on I.

Proof. Suppose f is not bounded. Bisect I. If f is bounded in both halves of I, then
f is bounded on I. Hence, f is unbounded in at least one of the two halves of I.

Repeating this argument we get a sequence of nested intervals In+1 ⊂ In, such
that f is unbounded in each of the intervals In. By the Nested Interval Theorem, the
intersection

⋂
In of these intervals contains exactly one point, call this point x0.

We will show f is bounded on one of the intervals In obtained by bisection. Note
f is continuous at x0. By Local Boundedness, f is bounded on the open interval
]x0 − δ ,x0 + δ [, for some δ . For sufficiently large n, the interval In is a subset of
]x0 − δ ,x0 + δ [, this is Exercise 3.3.3. On these intervals f is both bounded (by
choice of δ ) and unbounded (by construction of In). This contradiction completes
the proof. �
Exercise 5.3.4. Let I and J be compact intervals. Suppose f : I× J → C is continu-
ous. Show f is bounded.

Extreme Value Theorem

If a function has a largest value, then that value is called the maximum of the func-
tion. Similarly, a smallest value, if it exists, is called a minimum. These notions are
important enough that we will also write them out using symbols. Let f : D→ R be
a function. If xmax ∈ D is a point such that

f (x)≤ f (xmax) for all x ∈ D,

then f (xmax) is a global maximum of f . Similarly, f (xmin) is a global minimum of
f , if

f (xmin)≤ f (x) for all x ∈ D.

Theorem 5.3.5 (Extreme Value Theorem). Let I be a compact interval. If f : I →
R is continuous on I, then there are xmin and xmax in I, such that
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f (xmin)≤ f (x)≤ f (xmax), for all x ∈ I.

Proof. Let M := sup( f (I)) . Since f is bounded, M is a real number. Bisect I. If the
supremum of f on both halves is < M, then the supremum of f over all of I is < M.
Hence, we can choose a half of I, such that the supremum of f over that half is M.

Repeating this argument we get a nested sequence of intervals In, such that the
supremum of f over each interval In is M. By the Nested Interval Theorem, the
intersection of these intervals contains exactly one real number. Call this number
x0.

We will show that f (x0) = M. That is xmax = x0. We know f (x) ≤ M, for all
x ∈ I. In particular, f (x0)≤M. Suppose f (x0)< M. Let ε := (M− f (x0))/2. Then
ε > 0 and f (x0)+ ε < M. Since, f is continuous at x0, there is a δ > 0, such that
|x− x0| < δ implies | f (x)− f (x0)| < ε . Hence, x ∈]x0− δ ,x0 + δ [ implies f (x) <
f (x0) + ε < M. (Compare the argument in this paragraph to the proof of Local
Positivity.)

Pick N, such that IN ⊂]x0−δ ,x0 +δ [. Then

M = sup{ f (x) | x ∈ IN}
≤ sup{ f (x) | x ∈]x0−δ ,x0 +δ [}
≤ f (x0)+ ε
< M.

This contradiction shows that f (x0) = M. The existence of xmin can be established
in a similar fashion, or by applying the existence of xmax to g =− f . �
Corollary 5.3.6. If f : [a,b]→ R is continuous and xmin and xmax are point in [a,b],
such that f (xmin)≤ f (x)≤ f (xmax) for all x ∈ [a,b], then

f ([a,b]) = [ f (xmin), f (xmax)].

Proof. By assumption f ([a,b]) ⊆ [ f (xmin), f (xmax)]. The reverse inclusion ⊇ is a
consequence of the Intermediate Value Theorem. �
Exercise 5.3.7. Let I and J be compact intervals. Suppose f : I× J → R is continu-
ous. Show there are (xmin,ymin) and (xmax,ymax) in I× J, such that

f (xmin,ymin)≤ f (x,y)≤ f (xmax,ymax), for all (x,y) ∈ I× J.

5.4 Uniform Continuity

A function f : D → C is uniformly continuous on D, if given any ε > 0, there is a
δ > 0, such that for all x,y in D, |x− y|< δ =⇒ | f (x)− f (y)|< ε . In symbols,

∀ε > 0,∃δ > 0.∀x,y ∈ D, |x− y|< δ =⇒ | f (x)− f (y)|< ε .
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Note δ = δ (ε) only depends on ε .
Comparing this to f being continuous on D :

∀x ∈ D,∀ε > 0,∃δ > 0,∀y ∈ D, |x− y|< δ =⇒ | f (x)− f (y)|< ε .

We see that here δ = δ (x,ε) can depend on both x and ε . So uniform continuity
means that the same δ works for all x, the choice of δ is uniform in x.

Remark 5.4.1. At this point uniform continuity is a concept without applications.
However, we will need uniform continuity to show that continuous functions are
integrable later.

Example 5.4.2. Let f (z) := z2. Then f is uniformly continuous on D := {z ∈ C |
|z|< 7}.

Proof. Let ε > 0 be given. For any w,z ∈ D,

| f (w)− f (z)|= |w2− z2|= |w+ z| |w− z|< 14|w− z|

hence |w− z|< ε/14 implies | f (w)− f (z)|< ε . Consequently, δ := ε/14. �
Example 5.4.3. f :]0,1[→R determined by f (x) := 1/x is not uniformly continuous.

Proof. Let ε := 1. Let δ > 0 be small, say < 1/2. For 0 < x < 1/2, let y := x+δ .
Note x and y both are in ]0,1[. We want to choose x, such that

f (x)− f (y) =
1
x
− 1

x+δ
≥ 1.

Now
1
x
− 1

x+δ
=

δ
x(x+δ )

.

Hence, we just need x such that δ ≥ x(x+δ ), that is, such that

0≥ x2 +δx−δ .

One way to do this is to solve the equality for x, using the quadratic formula or
equivalently, by factoring the quadratic. Another is trial and error. Guessing x= δ/2,
and using 0 < δ < 1 =⇒ δ 2 < δ , we get

x2 +δx−δ =
3
4
δ 2−δ <

3
4
δ −δ < 0.

�
Example 5.4.4. Let A be a subset of C. Let DA(x) := inf{|x− a| | a ∈ A} be the
distance from x ∈ C to A. Then DA is uniformly continuous on C.

Proof. By the triangle inequality

DA(x)≤ |x−a| ≤ |x− y|+ |y−b|+ |b−a|.
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for all a,b in A. Setting a = b on the right hand side, gives

DA(x)≤ |x− y|+ |y−b|

for all b ∈ A. Taking the infimum over b ∈ A gives

DA(y)≤ |x− y|+DA(y).

Hence DA(x)−DA(y)≤ |x− y|. Interchanging the roles of x and y leads to

|DA(x)−DA(y)| ≤ |x− y|.

Consequently, setting δ := ε verifies uniform continuity of DA. �
Lemma 5.4.5. Let f : [0,1]→ C be continuous. Suppose f is uniformly continu-
ous on I1 := [0,1/2], on I2 := [1/4,3/4], and on I3:=[1/2,1]. Then f is uniformly
continuous on [0,1].

Proof. Let ε > 0 be given. For each j = 1,2,3, pick a uniform continuity δ j > 0
corresponding to ε on I j. Let δ :=min{δ1,δ2,δ3,1/2}. Let x,y∈ [0,1] with |x−y|<
δ . |x− y| < δ ≤ 1/2 implies x,y ∈ I j for, at least, one of the three j’s. For that j,
|x− y|< δ ≤ δ j implies | f (x)− f (y)|< ε . �

The main result is this section is:

Theorem 5.4.6 (Uniform Continuity Theorem). Let f : [a,b]→ C be continuous
on [a,b], then f is uniformly continuous on [a,b].

Proof. Let f : [a,b]→ R be continuous on [a,b]. Suppose f is not uniformly contin-
uous on [a,b]. Let ε0 > 0 be such that there is no corresponding uniform continuity
δ on [a,b]. By the proof of Lemma 5.4.5, there is no uniform continuity δ corre-
sponding to ε0 on one, or more, of the three “halves” of [a,b]. Setting a1 := a and
b1 := b and repeating this argument, we get, for each n ∈ N, an and bn such that
[an+1,bn+1]⊂ [an,bn], bn+1−an+1 = (bn−an)/2, and there is no uniform continu-
ity δ corresponding to ε0 on [an,bn].

Since the the intervals [an,bn] are nested and bn−an = (b−a)/2n−1 is null, the
Nested Interval Theorem produces an x0 such that

∞⋂

n=1

[an,bn] = {x0}.

By assumption, f is continuous at x0. So since ε0/2 > 0, there is a δ0 > 0, such that

∀x ∈ [a,b], |x− x0|< δ0 =⇒ | f (x)− f (x0)|< ε0/2.

Let N be large enough that [aN ,bN ] ⊂]x0− δ0,x0 + δ0[. Then for all x,y ∈ [aN ,bN ],
|x− x0|< δ0 and |y− x0|< δ0, hence

| f (x)− f (y)| ≤ | f (x)− f (x0)|+ | f (x0)− f (y)|< ε0

2
+

ε0

2
= ε0.
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Therefore, x,y∈ [aN ,bN ] =⇒ | f (x)− f (y)|< ε0. Thus any δ > 0, for example δ :=
1, is a uniformly continuity δ corresponding to ε0 on [aN ,bN ]. But this contradicts
the construction of [an,bn].

Exercise 5.4.7. If f : [a,b]× [c,d] → C is continuous on [a,b]× [c,d], then f is
uniformly continuous on [a,b]× [c,d].

Problems

Problems for Sect. 5.1

1. Modify the definition of f in Problem 2 for Sect. 2.1 in such at way that the
modified f is strictly increasing, yet still has the same continuity/discontinuity
properties as the original f .

2. Let f : [−1/2,1/2]→ R be determined by f (x) = σ(x), where σ is the pseudo-
sine function. Show that f is strictly increasing and the range of f is [−1,1].
Consequently, there is a continuous g : [−1,1] → [−1/2,1/2] such that g◦
f (x) = x and f ◦ g(y) = y for x ∈ [−1/2,1/2]and y ∈ [−1,1]. Give a formula
for g.

3. Let f : [a,b]→ R satisfy x < y =⇒ f (x)≤ f (y). For each x ∈ [a,b[ let f (x+) :=
limt↘x f (t), for each x ∈ ]a,b] let f (x−) := limt↗x f (t), f (b+) := f (b) , and
f (a−) := f (a) . For each x in [a,b], let

J(x) := f (x+)− f (x−) .

Completing the following steps gives an alternative proof of the fact that a mono-
tone functions is discontinuous on a countable set.

a. Prove J(x)≥ 0 for all x ∈ [a,b] .
b. f is discontinuous at x iff J(x)> 0.
c. If a≤ x < y≤ b, then f (x+)≤ f (y−) .
d. For each x ∈ [a,b] , let Sx := {y ∈ R | f (x−)< y < f (x+)} . Thus, Sx is ei-

ther empty or an open interval. Show Sx is a subset of the closed interval
[ f (a) , f (b)] and that if x �= y, then Sx∩Sy = /0.

e. ∑x∈[a,b] J(x)≤ f (b)− f (a) .
f. The set {x ∈ [a,b] | J(x)> 0} is countable.

4. The Cantor function (defined in Exercise 3.6.1) is increasing and continuous.

The Devil’s Staircase is the continuous function g : [0,1]→ [0,1] which agrees
with the Cantor function on the Cantor set and is constant on the intervals that are
deleted in the construction of the Cantor set. Below are two constructions of the
Devil’s Staircase:
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Let f denote the Cantor function.

1. The function g : [0,1]→ [0,1] is determined by g(x) := f (x) when x∈C. If x /∈C,
then x /∈Ck for some k. Hence, x is in one of the deleted intervals, let y be the left
hand endpoint of that interval and set g(x) := f (y).

2. Alternatively, suppose x = 0.
3
d1d2 . . .. If all d j �= 1, let y := x. If some dk = 1, let

y = 0.
3
d1d2 . . .dn−12, where d j �= 1 for 1≤ j < n, and dn = 1. Then g(x) := f (y).

Problems for Sect. 5.2

1. Let f : [0,1]→ [0,1] be continuous. There is a c∈ [0,1], such that f (c) = c. [Hint:
Consider g(x) := x− f (x).] A point c such that f (c) = c is called a fixed point.

2. Let p(x) = xn + an−1xn−1 + · · ·+ a1x+ a0 where the ak’s are real and n ∈ N is
odd. Prove p(c) = 0 for some real number c.

3. Let a > 0 be a real number and let n ∈ N. Use Bolzano’s Intermediate Value
Theorem to show that a1/n exists.

4. If I and J are intervals and f : I× J → R is continuous, then the range of f is an
interval. [Hint: (a) One way to prove this is to imitate the proof above: Suppose
f (a,b) < 0 and f (c,d) > 0. Construct nested intervals [an,bn] and [cn,dn] such
that f (an,cn) ≤ 0 and f (bn,dn) > 0. Then show f (x0,y0) = 0 if

⋂∞
n=1[an,bn] =

{x0} and
⋂∞

n=1[cn,dn] = {y0}. (b) Another way it to use Bolzano’s Intermediate
Value Theorem: Suppose f (a,b) < 0 and f (c,d) > 0. Let φ : [0,1] → R2 be
determined by φ(t) :=(1−t)(a,b)+t(c,d). Apply Bolzano’s Intermediate Value
Theorem to g := f ◦φ .]

5. Prove that a rectangle is pathwise connected.

6. Prove that any pathwise connected subset of R is an interval.

7. Suppose D is pathwise connected and f : D→ R is continuous. Prove f (D) is an
interval.

8. Let f : [0,2]→ R be continuous. Suppose f (1) < f (0) < f (2) . Prove f is not
one-to-one.

Problems for Sect. 5.3

1. Let f : R→]0,∞[ be continuous. Suppose

lim
x→−∞

f (x) = 0 and lim
x→∞

f (x) = 0.
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a. Prove f does not have a minimum on R.
b. Prove f has a maximum on R.

2. Let p be a polynomial of even degree > 0. Show that p has a maximum or a
minimum, but not both.

3. If f : [a,b]→ C is continuous, then g(x) := | f (x)| has a maximum on I := [a,b].
4. Let I0 := [0,1] and 0 < c < 1. Suppose f : I0 → I0 is a function satisfying

| f (x)− f (y)| ≤ c |x− y| , for all x,y ∈ I0.

Inductively, let In+1 := f (In) for integers n≥ 0. Prove:

a. In+1 ⊆ In for all n≥ 0.

b. The length of In is ≤ cn.

c. By the Nested Interval Theorem
⋂∞

n=0 In contains exactly one point. If {x0}=⋂∞
n=0 In, then f (x0) = x0.

Comment on this problem: The existence of a fixed points f (x0) = x0 is a
simple consequence of the Intermediate Value Theorem, see the Problems for
Sect. 5.2. The point of this problem is: if y0 is any point in I0, and inductively
yn+1 := f (yn) , then |yn− x0| ≤ cn. In particular, the sequence (yn) converges
to the fixed point x0 and the rate of convergence is controlled by cn.

Problems for Sect. 5.4

1. Show f (x) :=
√

x is uniformly continuous on [0,1].

2. Show f (x) :=
√

x is uniformly continuous on [1,∞[ .

3. Let f be continuous on some interval I. Let a be a point in I and let I1 :=
I ∩ ]−∞,a] and I2 := [a,∞[ . Suppose f is uniformly continuous on the intervals
I1 and I2. Show f is uniformly continuous on I.

Combining the previous three problems it follows that x→√
x is uniformly con-

tinuous on [0,∞[ .

4. Show f (x) := x2 is not uniformly continuous on [1,∞[.

5. Let f : D → C. If Re f and Im f both are uniformly continuous on D, then f is
uniformly continuous on D.

A function f satisfies a Hölder condition of order α, if there are constants α > 0
and M > 0, such that

| f (x)− f (y)| ≤M|x− y|α for all x and y.

The function is said to be α−Hölder with constant M. We say f is Hölder, if f is
α-Hölder for some α > 0.
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6. If f is Hölder, then f is uniformly continuous.

7. If f :]a,b[→ R is uniformly continuous, then f is bounded.

8. If f :]a,b[→ R is uniformly continuous, then there is a continuous function g :
[a,b]→ R, such that f (x) = g(x) for all x ∈]a,b[.

9. Suppose f : R→C is continuous and f (x)= 0 for all |x|> 1. Show f is uniformly
continuous on R.

Solutions and Hints for the Exercises

Exercise 5.1.1. Contraposition on the definition of increasing. Since x= y implies
f (x) = f (y).

Exercise 5.1.2. Let L := sup{ f (x) | x < a}. Let ε > 0. Then L−ε is not an upper
bound for { f (x) | x< a}, hence there is a y< a such that L−ε < f (y). Let δ := a−y,
then δ > 0 and a−δ < x < a implies | f (x)−L|< ε .

Exercise 5.1.7. Suppose x < y < z and x,z are in A. We must show y is in A. Since
f is increasing and z is in A, we have f (y)≤ f (z)< t. Thus, y is in A. Similarly, B
has the intermediate value property.

Exercise 5.1.9. This is Exercise 5.1.1.

Exercise 5.1.11. (1) Exercise D.1.20. (2) Follows from xn → ∞ as x→ ∞ and the
Continuity Theorem for Monotone Functions. (3) Corollary 5.1.10.

Exercise 5.2.4. Since f is 1− 1, x �= y =⇒ f (x) �= f (y). Fix points a < b in I.
Suppose f (a)< f (b). Let x be in I. If x < a, then f (x)> f (a) and the Intermediate
Value Theorem leads to a contradiction that f is 1−1. Hence, x < a implies f (x)<
f (a) < f (b). Similarly a < x < b implies f (a) < f (x) < f (b) and b < x implies
f (a)< f (b)< f (x). Suppose y< z. (i) If y< z< a, setting x = z shows f (z)< f (a).
So replacing x < a < b by y < z < a shows f (y)< f (z)..(ii) If y < a < z, considering
x= y and x= z in the argument above shows f (y)< f (a)< f (z), hence f (y)< f (z).
The last case (iii) a < y < z is similar. Hence, if f (a) < f (b), then f is strictly
increasing. Similarly, if f (a)> f (b), then f is strictly decreasing.

Exercise 5.3.4. If f is not bounded on I× J divide the rectangle I× J into four
sub-rectangles, f must be unbounded on at least one of these sub-rectangles ...

Exercise 5.3.7. Divide the rectangle I×J into four sub-rectangles, the supremum
of f over at least one of these sub-rectangle must equal the supremum of f over
I× J ...

Exercise 5.4.7. Begin by extending Lemma 5.4.5 to rectangles. Then mimic the
proof of the Uniform Continuity Theorem.



Chapter 6
Derivatives and Their Applications

Local properties algebra derivatives and the relationship between the sign of the
derivative at a point and the function being monotone at a point. Global properties
of the derivative include Rolle’s Theorem, the Mean Value Theorem (MVT), and
Darboux’s Theorem. Applications include Taylor polynomials, l’Hopital’s rule, Li-
ouville’s theorem about transcendental numbers, and some aspects of convex func-
tion theory.

6.1 Definition

Let D be a subset of C. A function f : D → C is differentiable at a ∈ D, if a is an
accumulation point of D and there is a complex number f ′(a), such that

f (x)− f (a)
x−a

→ f ′(a) as x→ a.

The number f ′(a) is called the derivative of f at a. We can rewrite the definition of
derivative as: f is differentiable at a with derivative b, if given any ε > 0, there is a
δ > 0, such that

0 < |x−a|< δ =⇒
∣
∣
∣
∣

f (x)− f (a)
x−a

−b

∣
∣
∣
∣< ε .

When f is differentiable at a with derivative b we set f ′(a) := b. Anticipating the
application of limits to derivatives is one of the reasons we used 0 < |x−a|< δ and
not |x−a|< δ in the definition of limits.

The line y = f (a)+ f ′(a)(x−a) is called the tangent to the curve y = f (x) at the
point (a, f (a)) . See Fig. 6.1.

Example 6.1.1. Let f (x) :=
√

x and a > 0. Then f is differentiable at a and f ′(a) =
1

2
√

a .

© Springer International Publishing Switzerland 2015 91

S. Pedersen, From Calculus to Analysis, DOI 10.1007/978-3-319-13641-7_6



92 6 Derivatives and Their Applications

Fig. 6.1 The curve y = f (x), line segments connecting the point (a, f (a)) to the point (x, f (x)) for
several values of x, and the tangent line y = f (a)+ f ′(a)(x−a)

Proof. Essentially, this is a calculation verifying g(x) := f (x)− f (a)
x−a has a removable

discontinuity at a.

√
x−√a
x−a

=

√
x−√a
x−a

√
x+

√
a√

x+
√

a

=
x−a

(x−a)(
√

x+
√

a)

=
1√

x+
√

a

→ 1√
a+

√
a

as x→ a.

Hence, f ′(a) = 1/(2
√

a). �
We say that f is differentiable on D, if f ′(a) exists for all a ∈ D. In particular,

f (x) =
√

x is differentiable on ]0,∞[ and its derivative is f ′(x) = 1
2
√

x .

Example 6.1.2. Let f (x) := 1/x and let a be any complex number �= 0. Then f ′(a) =
−1/a2.

Proof. This is similar to the previous example. In fact,

1
x −

1
a

x−a
=

a−x
xa

x−a
=− 1

xa
→− 1

a2

as x→ a. �
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Using one-sided limits (Sect. 1.5) we can similarly define one-sided derivatives.
The right-hand derivative (the derivative from the right) f ′+(a) is

f (x)− f (a)
x−a

→ f ′+(a) as x↘ a.

Similarly, the left-hand derivative (the derivative from the left) f ′−(a) is

f (x)− f (a)
x−a

→ f ′−(a) as x↗ a.

Using a basic fact about one-sided limits: f ′(a) exists iff f ′−(a) and f ′+(a) both
exists and are equal.

Example 6.1.3. Let f (x) :=
√

x and a := 0. Then

√
x−

√
0

x−0
=

√
x

x

=
1√
x

→ ∞ as x↘ 0.

Hence, f ′+(0) does not exist.

Example 6.1.4. The pseudo-sine function σ from Example 1.3.10 is differentiable
at 0 with σ ′(0) = 4.

Proof. Clearly,
σ(x)−σ(0)

x−0
= 4(1− x) when 0 < x < 1.

and 4(1− x)→ 4 as x↘ 0. Hence σ ′+(0) = 4. Similarly,

σ(x)−σ(0)
x−0

= 4(1+ x)→ 4 as x↗ 0,

hence, σ ′−(0) = 4. Since, σ ′+(0) = 4 = σ ′−(0), we conclude σ is differentiable at
0 and σ ′(0) = 4. �

6.2 Local Properties

The following result shows that a differentiable function is continuous. We establish
this at a point. Hence, if f is differentiable at all points in some set D, then f is
continuous on D.

Theorem 6.2.1. If f is differentiable at a, then f is continuous at a.
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Proof. This is a consequence of the Product Rule for limits and continuity of g(x) :=
x.

f (x)− f (a) =
f (x)− f (a)

x−a
(x−a)→ f ′(a) ·0 = 0 as x→ a.

Hence, f (x)→ f (a) as x→ a. �
In the remaining part of this section we assume f be a real valued function de-

fined in some open interval containing a.
We say f is increasing at a point a, if there is a δ > 0, such that f (x) ≤ f (a),

when a−δ < x < a and f (a)≤ f (x), when a < x < x+δ . Strictly increasing at a is
defined in the same way using < in place of ≤ . Decreasing and strictly decreasing
at a point are defined in a similar manner. Example 6.2.5 contains a function that is
both increasing at 0 and not strictly increasing at 0.

The following are direct consequences of the limit definition of the derivative.
The results illustrate why points where the tangent line is a horizontal line are im-
portant, i.e., why the roots of f ′(x) = 0 are important.

Exercise 6.2.2. Suppose f ′(a) exists and f is increasing at a. Prove f ′(a)≥ 0.

Exercise 6.2.3. If f ′(a) exists and f ′(a)> 0, then f is strictly increasing at a.

f (a) is a local maximum of f , if there is a δ > 0, such that

a−δ < x < a+δ =⇒ f (x)≤ f (a).

A local minimum is defined similarly, replace ≤ by ≥ . f (a) is a local extremum, if
f (a) is a local maximum or a local minimum.

We say a is a critical point of f , if either f ′(a) = 0 or f is not differentiable at a.
The following exercise shows that the “candidates” for local extrema are the critical
points.

Exercise 6.2.4. If f (a) a local extremum and f ′(a) exists, then f ′(a) = 0.

We conclude this section with an example explaining why we distinguish between
increasing and strictly increasing at a point.

Example 6.2.5. Let σ be the pseudo-sine function. Let f (x) := x|σ(1/x)| if x �= 0
and f (0) := 0. Then f (x)≥ 0 when x > 0, f (x)≤ 0 when x ≤ 0, so f is increasing
at 0. Moreover, f (±1/n) = 0 for all n ∈ N. Hence, f is not strictly increasing at 0.
Consequently, f is increasing but not strictly increasing at 0.

6.3 Calculating with Derivatives

If f is differentiable at a, then f (x)− f (a)
x−a → f ′(a) as x → a, and if g is differentiable

at b, then g(y)−g(b)
y−b → g′(b) as y→ b. The calculations underlying the proofs in this

section are motivated by the desire to find expressions of the form f (x)− f (a)
x−a and
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g(y)−g(b)
y−b as appropriate. That is, we are looking for expression we know converge

and we hope to somehow deal with whatever turns up as a result.

Algebra

We establish the standard rules for working with derivatives.

Theorem 6.3.1 (Constant Rule). Suppose k ∈ C, a is an accumulation point of D,
and f : D→ C is differentiable at a, then k f is differentiable at a and

(k f )′(a) = k f ′(a).

Proof. By assumption ( f (x)− f (a))/(x−a)→ f ′(a) as x→ a, hence

(k f )(x)− (k f )(a)
x−a

= k
f (x)− f (a)

x−a
→ k f ′(a) as x→ a,

by the constant rule for limits. Thus, k f is differentiable at a and (k f )′(a) = k f ′(a).�
Theorem 6.3.2 (Sum Rule). Suppose a is an accumulation point of D and f ,g :
D→ C are differentiable at a, then f +g is differentiable at a and

( f +g)′(a) = f ′(a)+g′(a).

Proof. By assumption ( f (x)− f (a))/(x−a)→ f ′(a) and (g(x)−g′(a))/(x−a)→
g′(a) as x→ a. Hence,

( f +g)(x)− ( f +g)(a)
x−a

=
f (x)− f (a)

x−a
+

g(a)−g(a)
x−a

→ f ′(a)+g′(a) as x→ a,

by the sum rule for limits. Thus, f +g is differentiable at a and ( f +g)′(a) = f ′(a)+
g′(a). �

A transformation f → L( f ) where L( f ) is some other function depending on f ,
is called linear, if L(k f ) = kL( f ) and L( f +g) = L( f )+L(g) where k is a constant
and f and g are functions. Using this terminology, we can restate the Constant and
Sum Rules as: f → f ′ is linear.

The following result is sometimes called Leibniz’ Rule after Gottfried Wilhelm
Leibniz (1 July 1646, Leipzig to 14 November 1716, Hanover.)

Theorem 6.3.3 (Product Rule). If a is an accumulation point of D and f ,g : D→C
are differentiable at a, then f g is differentiable at a and

( f g)′(a) = f ′(a)g(a)+ f (a)g′(a).
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Proof. By assumption ( f (x)− f (a))/(x−a)→ f ′(a) and (g(x)−g′(a))/(x−a)→
g′(a) as x→ a. Hence,

( f g)(x)− ( f g)(a)
x−a

=
f (x)g(x)− f (a)g(a)

x−a

=
f (x)− f (a)

x−a
g(x)+ f (a)

g(x)−g(a)
x−a

→ f ′(a)g(a)+ f (a)g′(a).

Where we used that g is continuous at a and the Product and Sum Rules for Limits.
Thus, f g is differentiable at a and ( f g)′(a) = f ′(a)g(a)+ f (a)g′(a). �

Having dealt with addition and multiplication, essentially inherited from arith-
metic, we turn to an operation intrinsic to functions.

Theorem 6.3.4 (Chain Rule). Suppose g : A→B is differentiable at a and f : B→C
is differentiable at g(a), then f ◦g is differentiable at a and

( f ◦g)′(a) = f ′(g(a))g′(a).

Proof. Let h(y) :=( f (y)− f (g(a))/(y−g(a)) for y∈B. By our assumptions h(y)→
f ′(g(a)) as y→ g(a) and (g(x)−g(x))/(x−a)→ g′(a) as x→ a. Let

j(x) :=
f ◦g(x)− f ◦g(a)

x−a
=

f (g(x))− f (g(a))
x−a

on A\{a}.

We must show that j(x)→ f ′(g(a))g′(a) as x→ a.
We will use restrictions, see Sect. 1.4. Let

D1 := {x ∈ A | g(x) �= g(a)} and

D2 := {x ∈ A | g(x) = g(a)}.

Since a is an accumulation point of A, either a is an accumulation point of D1 or a
is an accumulation point of D2, or both.

Case 1: Suppose a is an accumulation point of D1. For x ∈ D1

j
∣
∣
D1
(x) = j(x) =

f (g(x))− f (g(a))
g(x)−g(a)

g(x)−g(a)
x−a

= h(g(x))
g(x)−g(a)

x−a
.

Since g is differentiable at a, g is continuous at a, equivalently g(x) → g(a) as
x→ a. Hence, by the Composition Rule for Limits h◦g

∣
∣
D1
(x)→ f ′(g(a)) as x→ a.

Consequently, the Product Rule for Limits tells us that

j
∣
∣
D1
(x)→ f ′(g(a))g′(a) as x→ a.
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Case 2: Suppose a is an accumulation point of D2. For x ∈ D2

g(x)−g(a)
x−a

=
g(a)−g(a)

x−a
= 0

hence g′(a) = 0. So, for x ∈ D2

j
∣
∣
D2
(x) = j(x) =

f (g(x))− f (g(a))
x−a

=
f (g(a))− f (g(a))

x−a
= 0

Since g′(a) = 0, we have

j
∣
∣
D2
(x)→ 0 = f ′(g(a))g′(a) as x→ a.

If a is not an accumulation point of D1 we can ignore Case 1, and if a is not an
accumulation of D2 we can ignore Case 2. If a is an accumulation point of D1 and
of D2, then Case 2 shows g′(a) = 0. Hence, both j

∣
∣
D1
(x)→ 0 and j

∣
∣
D2
(x)→ 0 as

x→ a. Consequently,
j(x)→ 0 = f ′(g(a))g′(a).

In all cases, the limit of j(x) as x→ a exists and equals f ′(g(a))g′(a). Hence j(x)→
f ′(g(a))g′(a) as x→ a. �

The following result can be proven in a manner similar to our proof of the Product
Rule. However, we will establish it as a consequence of the Product and Chain
Rules.

Theorem 6.3.5 (Quotient Rule). Suppose a is an accumulation point of D, f ,g :
D→ C are differentiable at a, and g(a) �= 0, then f/g is differentiable at a and

(
f
g

)′
(a) =

f ′(a)g(a)− f (a)g′(a)
g(a)2 .

Proof. The Quotient Rule is a consequence of the Product Rule, the Chain Rule, and
Example 6.1.2. Suppose g is differentiable at a and that g(a) �= 0. Let h(x) := 1/x,
then h is differentiable at g(a) and h′(g(a)) =−1/g(a)2. Hence, by the Chain Rule,
1/g(x) = h◦g(x) is differentiable at a and

(
1
g

)′
(a) = h′(g(a))g′(a) =

−1
g(a)2 g′(a).

Using f is differentiable at a and
(

f
g

)
(x) =

(
f

1
g

)
(x)
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the Product Rule tells us f/g is differentiable at a and

(
f
g

)′
(a) =

(
f

1
g

)
(x)

= f ′(a)

(
1
g

)
(a)+ f (a)

(
1
g

)′
(a)

=
f ′(a)
g(a)

− f (a)
g′(a)
g(a)2

=
f ′(a)g(a)− f (a)g′(a)

g(a)2 .

This calculation completes the proof. �

Inverse Function Rule

Suppose f has an inverse function f−1. If f is differentiable at a and f−1 is differ-
entiable at b = f (a), then the Chain Rule implies that f−1 ◦ f is differentiable at a,
and (

f−1 ◦ f
)′
(a) =

(
f−1)′ ( f (a)) · f ′(a).

But f−1 ◦ f (x) = x for all x, so
(

f−1 ◦ f
)′
(a) = 1. Hence,

(
f−1)′ ( f (a)) =

1
f ′(a)

provided f ′(a) �= 0. We will show that this formula works without assuming f−1 is
differentiable.

Theorem 6.3.6 (Inverse Function Rule). Let I be an interval. Suppose f : I → R is
continuous and one-to-one. If f is differentiable at a and f ′(a) �= 0, then the inverse
function f−1 is differentiable at b := f (a), and

(
f−1)′ (b) =

1
f ′ ( f−1 (b))

=
1

f ′ (a)
.

Proof. The discussion prior to the statement of the theorem suggests we want to use
the Composition Rule for Limits.

Let

h(y) :=
f−1(y)− f−1(b)

y−b
for y �= b

we need to show that h(y) converges as y → b, the limit then equals
(

f−1
)′
(b).

Anticipating the formula for
(

f−1
)′
(b), let
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g(x) :=
1

f (x)− f( f−1(b))
x− f−1(b)

=
x− f−1(b)

f (x)−b
for x �= f−1(b). (6.1)

Note x �= f−1(b) implies f (x) �= f
(

f−1(b)
)
= b. Since f is differentiable at a =

f−1(b),
f (x)− f

(
f−1(b)

)

x− f−1(b)
→ f ′

(
f−1(b)

)
�= 0 as x→ f−1(b).

Using the Quotient Rule for Limits we conclude g(x) → 1/ f ′
(

f−1(b)
)

as x →
f−1(b).

The second expression for g(x) in (6.1) shows that h(y) = g
(

f−1(y)
)
. Since

f−1(y) �= f−1(b) for all y �= b, the Composition Rule for Limits yields

h(y) = g
(

f−1(y)
)
→ 1/ f ′

(
f−1(b)

)
as x→ f−1(b),

provided f−1(y)→ f−1(b) as y→ b. Hence we need to show that f−1 is continuous
at b.

But we know that a 1− 1 continuous function on an interval must be strictly
monotone (Exercise 5.2.4), and that the inverse of a continuous strictly monotone
function defined on an interval must be continuous (Corollary 5.1.10). �

Examples of Differentiable Functions

Example 6.3.7. f (x) := 1 is differentiable at every point a and f ′(a) = 0.

Proof.
f (x)− f (a)

x−a
=

1−1
x−a

= 0→ 0

as x→ a. �
Example 6.3.8. f (x) := x is differentiable at every point x and f ′(x) = 1.

Proof.
f (x)− f (a)

x−a
=

x−a
x−a

= 1→ 1

as x→ a. �
Exercise 6.3.9. If n ∈ N, then xn is differentiable at every x and (xn)′ = nxn−1.

Exercise 6.3.10. Any polynomial is differentiable at every point.

Exercise 6.3.11. Any rational function is differentiable at every point where it is
defined.

Exercise 6.3.12. If n ∈ N, then x1/n is differentiable at every x > 0 and (x1/n)′ =
1
n x

1
n−1.
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6.4 Global Properties of Derivatives

We will now change our viewpoint slightly. Instead of considering the derivative at a
single point a, we will consider f ′ as a function. f ′ : {all a where f ′(a) exists}→C,
or → R as appropriate. We can then ask questions about this function.

Let f : [a,b]→ R be continuous. By the Extreme Value Theorem, there are xmax

and xmin in [a,b] such that

f (xmin)≤ f (x)≤ f (xmax) for all x ∈ [a,b].

If xmin is in ]a,b[, then f (xmin) is a local minimum, hence f (xmin) is a critical point.
So, if f is differentiable at xmin, then f ′(xmin) = 0 (by Exercise 6.2.4). Consequently,
if f is differentiable on ]a,b[, then either f ′(xmin) = 0 or xmin is an endpoint of [a,b].
A similar discussion applies to xmax.

Exercise 6.4.1. If f (x) := x3−6x2 +7 on [−2,2], find xmin and xmax.

The Intermediate Value Theorem for Derivatives

Derivatives defined on intervals have the intermediate value property, this result is
named after Jean-Gaston Darboux (14 August 1842, Nîmes to 23 February 1917,
Paris).

Theorem 6.4.2 (Darboux’s Intermediate Value Theorem). Let f be a real valued
function. Suppose f is differentiable on some interval I, then f ′(I) has the interme-
diate value property.

Proof. Let a < b be in I and let k be between f ′(a) and f ′(b). If f ′(a)< k < f ′(b),
let g(x) := f (x)−kx. (If f ′(b)< k < f ′(a), let g(x) := kx− f (x).) Then g is continu-
ous on [a,b] and differentiable on [a,b]. Let xmin ∈ [a,b] be such that g(xmin)≤ g(x)
for all x ∈ [a,b]. Since g′(a) = f ′(a)− k < 0, g is strictly decreasing at a. In partic-
ular, a �= xmin. Similarly, g is increasing at b, hence b �= xmin. So a < xmin < b and
consequently, g′(xmin) = 0. �
Remark 6.4.3. Because of the Intermediate Value Theorem for f ′, it is natural to ask
“If f ′ exists on some interval, must f ′ be continuous on that interval?” The answer
is no. The most natural way to see this is to use the integral, discussed in Chap. 7,
and set

f (x) :=
ˆ x

0
σ(1/t)dt

where σ is the pseudo-sine function, or accepting a more involved calculation, the
usual sine function (Sect. 11.2).

The following exercise uses a “clever guess” to get a simple example of a function
with a discontinuous derivative.
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Exercise 6.4.4. Let

f (x) :=

{
xσ(1/x) when x �= 0

0 when x = 0
,

where σ is the pseudo-sine function. Then f is not differentiable at 0, because
limx→0 f (x)/x does not exist. Prove that g(x) := x f (x) is differentiable on R and
g′ is not continuous at 0.

The Mean Value Theorem

The essence of this important result is named after Michel Rolle (21 April 1652
Ambert to 8 November 1719 Paris) who gave the first formal proof. The geometric
content of the result is that, if f (a) = f (b), then some tangent to the curve y = f (x),
a < x < b is horizontal, see Fig. 6.2.

Theorem 6.4.5 (Rolle’s Theorem). Suppose g : [a,b]→ R is differentiable on the
open interval ]a,b[ and continuous on the closed interval [a,b]. If g(a) = g(b), then
g′(c) = 0 for some c ∈]a,b[.

Proof. Let f (x) := g(x)− g(a). Then f (a) = f (b) = 0. If f (x) �= 0 for some x ∈
[a,b], then f (xmin) �= 0 or f (xmax) �= 0. So at least one of xmin and xmax is in the
open interval ]a,b[. Consequently, f ′(xmax) = 0 or f ′(xmin) = 0. Hence, c is xmin or
xmax.

If f (x) = 0 for all x, then c := (a+b)/2. Of course any other value c in the open
interval ]a,b[ would also work. �

Fig. 6.2 A curve y = f (x) with f (a) = f (b) = 0, the x−axis, and three line segments indicating the
points c in Rolle’s Theorem where f ′(x) = 0, i.e., the points where the tangent line is horizontal
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The full version of the MVT is obtained from Rolle’s Theorem by a simple re-
duction. The reduction is illustrated in Fig. 6.3. Geometrically, the MVT states that
some tangent to the curve y = f (x), a < x < b is parallel to the line though the points
(a, f (a)) and (b, f (b)) .

Fig. 6.3 The graphic on the left shows the curve y = f (x) and the line y = L(x) connecting the
endpoints (a, f (a)) and (b, f (b)) of the curve. The graphic on the right shows g(x) = f (x)−L(x)
and the x−axis. In this illustration a = 1, b = 4, and f (x) = x

(
2x3−15x2 +33x−16

)
/2. Hence,

L(x) = 2x and g(x) = x
(
2x3−15x2 +33x−20

)
/2

Theorem 6.4.6 (The Mean Value Theorem). Suppose f : [a,b]→ R is differen-
tiable on the open interval ]a,b[ and continuous on the closed interval [a,b], then

f ′(c) =
f (b)− f (a)

b−a
for some c ∈]a,b[.

Proof. Let

L(x) :=
f (b)− f (a)

b−a
(x−a)+ f (a)

then L(a) = f (a) and L(b) = f (b). So we can apply Rolle’s Theorem to g(x) :=
f (x)−L(x), to get a c in ]a,b[ such that g′(c) = 0 for some c ∈]a,b[. For that c

f ′(c) = L′(c) =
f (b)− f (a)

b−a
.

This completes the proof. �
The MVT has many application in analysis. The rest of this chapter is devoted to

exploring some of the consequences of this important theorem.
We showed earlier that the derivative of a constant function f (x) := k is f ′(x)= 0.

Conversely, the only solutions to the differential equation f ′(x) = 0 on an interval
are the constant functions.

Theorem 6.4.7. If f is differentiable on some interval I and f ′(x) = 0 for all x in I,
then there is a constant k, such that f (x) = k for all x in I.

Proof. Let a be in I. If x is in I and x �= a, then the Meal Value Theorem gives us a
c between a and x such that

f (x)− f (a)
x−a

= f ′(c) = 0.
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Consequently, f (x) = f (a), so k := f (a). �
Exercise 6.4.8. Let f and g be differentiable on some interval I. If f ′ = g′ on I, then
there is a constant k, such that f (x) = g(x)+ k for all x in I.

Exercise 6.4.9. Let I be an interval, suppose f and g are differentiable on I. If
f ′(x)≤ g′(x) on ]a,b[ and c is in I, then

f (x)− f (c)≤ g(x)−g(c) for all x in I with c < x

and
f (x)− f (c)≥ g(x)−g(c) for all x in I with c > x.

Exercise 6.4.10. Let I be an interval and suppose f : I → R is differentiable. Prove
f is increasing on I iff f ′(x)≥ 0 on I.

6.5 Transcendental Numbers�

In this section we use the MVT to solve a seemingly unrelated problem, more pre-
cisely we establish the existence of transcendental numbers.

A real number a is algebraic, if there is a polynomial p(x) = ∑n
k=0 akxk with

integer coefficients ak, such that p(a) = 0. A real number a is algebraic of order n,
if the smallest degree of such a polynomial is n. A real number that is not algebraic
is transcendental.

In 1844, Joseph Liouville [24 March 1809, Saint-Omer to 8 September 1882,
Paris] constructed a family of transcendental numbers. Prior to this construction,
people suspected that numbers like e and π were transcendental, but the existence
of even one transcendental was in doubt. Of course, later Cantor showed that most
real numbers are transcendental by a nonconstructive argument. See the problems
for Sect. 4.1 for an outline of Cantor’s argument.

Example 6.5.1. 2
3 is algebraic of order 1. To see this, let p(x) := 3x− 2, clearly

p(2/3) = 0.

Similarly, any rational, other than 0, is algebraic of order 1. Clearly, 0 is algebraic
of order 0.

Example 6.5.2.
√

3 is algebraic of order 2. Since,
√

3 is not rational it is not alge-
braic of order 1. Considering p(x) = x2−3, shows that

√
3 is algebraic of order 2.

Similarly, 21/3 is algebraic of order 3. Let p(x) := x3−2.

The n = 1 case of the following theorem is Theorem 1.8.5.

Theorem 6.5.3 (Liouville). Let α be a real number. If

anαn +an−1αn−1 +a1α+a0 = 0,
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for some natural number n and some integers ak with an �= 0, then there exists K > 0
such that for all p,q ∈ Z with q > 0 either α = p/q, or

∣
∣
∣
∣α−

p
q

∣
∣
∣
∣≥

K
qn .

More poetically, an algebraic number is poorly approximated by rational numbers.
This is closely related to what is called the “irrationality measure” of a real number.

Proof. We reproduce Liouville’s proof. Let f (t) :=∑n
k=0 aktk where the ak are inte-

gers. Then f (α) = 0. If f has a root other than α, let

δ := min{|α− x| | x �= α, f (x) = 0} .

The minimum exists and is > 0, since the set of roots is nonempty by assumption
and finite by Theorem 1.4.11. If f does not have any root other than α , set δ := 1.
In either case, δ > 0 and f (t) �= 0 for all t satisfying 0 < |α− t|< δ .

The derivative f ′(t) is a polynomial and therefore a continuous function. By the
Global Boundedness Theorem for continuous functions, there is an M > 0 such that
| f ′(t)| ≤ M for all t ∈ [α−δ ,α+δ ] . It remains to show that K := min{δ ,1/M}
works.

Let p ∈ Z and q ∈ N be such that α �= p/q. If |α− p/q| ≥ δ , then |α− p/q| ≥
δ ≥ δ/qn ≥ K/qn. Hence, we are done.

So, suppose |α − p/q| < δ . By construction of δ , we have f (p/q) �= 0. The
product qn f (p/q) is a nonzero integer, in fact,

qn f (p/q) = qn
n

∑
k=0

an(p/q)k =
n

∑
k=0

ak pkqn−k

is a sum of integers. Hence, qn| f (p/q)| ≥ 1. That is

1
qn ≤ | f (p/q)|. (6.2)

By the MVT, there is a c between α and p/q such that

f (p/q) = f (p/q)− f (α) = f ′(c)

(
p
q
−α

)
. (6.3)

Since |α− p/q|< δ and c is between α and p/q, we conclude c ∈ [α−δ ,α+δ ] .
Consequently, | f ′ (c)| ≤ M, by our construction of M. Combining (6.2) and (6.3)
yields

1
qn ≤ | f (p/q)|=

∣
∣
∣
∣ f
′(c)

(
p
q
−α

)∣∣
∣
∣≤M

∣
∣
∣
∣

p
q
−α

∣
∣
∣
∣

as needed. �
Example 6.5.4 (Liouville 1851). Liouville’s constant α is the infinite decimal 0.d1d2 · · ·
whose digits all are zeros, except the k!th digits are ones. Hence,

α =
∞

∑
k=1

1
10k! .
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Liouville’s constant is transcendental.

Proof. Suppose Liouville’s constant α is algebraic. Let f (t) :=∑n
k=0 aktk be a poly-

nomial with integer coefficients ak such that an �= 0 and f (α) = 0. By Liouville’s
Theorem, there is a constant K > 0, such that

∣
∣
∣
∣α−

p
q

∣
∣
∣
∣≥

K
qn (6.4)

for all integers p,q ≥ 1 with α �= p/q. Pick m > n such that 10 · 10−m! < K. Let
p := ∑m

k=1 10m!−k! and q := 10m!, then p and q are integers and p
q = ∑m

j=1 10−k!.
Hence,

∣
∣
∣
∣α−

p
q

∣
∣
∣
∣=

∞

∑
k=m+1

10−k! ≤
∞

∑
k=(m+1)!

10−k

=
10−(m+1)!

1−10−1 = 10 ·
(
10−m!)m+1

= 10 ·10−m! ·
(
10−m!)m

= 10 ·10−m! ·q−m < K ·q−n.

This contradicts (6.4). Consequently, α is transcendental. �

6.6 Taylor Polynomials

Taylor’s formula is named after Brook Taylor (18 August 1685, Edmonton to 29
December 1731, London). Taylor is by far not the first to have used Taylor series,
for example, Mādhava of Sañgamāgrama (c. 1350 to c. 1425) made use of Taylor
series.

The remainder formula below is due to Joseph-Louis Lagrange (25 January 1736,
Turin to 10 April 1813, Paris). Another formula for the remainder is in the problems
for Sect. 7.5.

The nth derivative, f (n), of f is f differentiated n times. Inductively, f (0) := f

and for n∈N0, f (n+1) :=
(

f (n)
)′
. In particular, f ′ = f (1), f ′′ = f (2), and f ′′′ = f (3).

We say f is C n on D, in symbols: f ∈ C n(D), if f (n) exists at each point in D and
f (n) is continuous on D.

Theorem 6.6.1 (Taylor’s Formula with Lagrange Remainder). Suppose f is real
valued and C n+1 on the closed interval with endpoints x and x0. Let

Tn f (x) = (Tn f )(x) :=
n

∑
k=0

f (k)(x0)

k!
(x− x0)

k. (6.5)
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Then f (x) = Tn f (x)+Rn f (x), where

Rn f (x) = (Rn f )(x) =
f (n+1)(c)
(n+1)!

(x− x0)
n+1 (6.6)

for some c between x0 and x.

Tn f is the nth Taylor polynomial for f at x0 and Rn f := f −Tn f is the remainder.
The formula (6.6) for the remainder is due to Lagrange. Note, the Lagrange form of
Rn f is not a polynomial in x of degree n+1, because c depends on x.

Taylor’s Formula shows that

f (x)≈ Tn f (x) with error |Rn f (x)| .

A different formula for the remainder Rn f (x) can be found in the Problems for
Sect. 7.5.

In most applications of Taylor’s Formula we do not know the value of c. How-
ever, this does not matter, if we can show that |Rn f (c)| is small by finding an esti-

mate for
∣
∣
∣ f (n+1)(c)

∣
∣
∣ .

Corollary 6.6.2. If f is real valued and C n+1 on the closed interval I with end
points x and x0, then

|Rn f (x)| ≤ Mn+1

(n+1)!
|x− x0|n+1 .

where Mn+1 is a constant satisfying
∣
∣
∣ f (n+1)(t)

∣
∣
∣≤Mn+1 for all t in the closed interval

with endpoints x and x0.

Remark 6.6.3. A polynomial of degree n equals its Taylor polynomials of degree
m≥ n. In fact, if f is a polynomial of degree n and m≥ n, then f (m+1) = 0. Hence,
Rm f = 0 and consequently Tn f = f .

Below are two proofs of Taylor’s Formula. One proof is based on Exercise 6.4.9 and
the other is based on Cauchy’s MVT.

Proof of Taylor’s Formula using Exercise 6.4.9

We give the proof for n = 2. Let I be the closed interval with endpoints x and x0.
Since f (3) is continuous there is are constants m and M such that

m≤ f ′′′(t)≤M (6.7)

for all t ∈ I and such that f ′′′ (tmin) = m and f ′′′ (tmax) = M for some tmin, tmax ∈ I.
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Suppose x0 < x. By Exercise 6.4.9 and (6.7)

m(t− x0)≤ f ′′ (t)− f ′′ (x0) (6.8)

for all t ∈ I, since (m(t− x0))
′ = m ≤ f ′′′(t) = ( f ′′ (t)− f ′′ (x0))

′ . Similarly, by
Exercise 6.4.9 and (6.8)

1
2 m(t− x0)

2 ≤ f ′ (t)− f ′ (x0)− f ′′ (x0)(t− x0) (6.9)

for all t ∈ I. Repeating the argument one more time gives

1
6 m(t− x0)

3 ≤ f (t)− f (x0)− f ′ (x0)(t− x0)− 1
2 f ′′ (x0)(t− x0)

2 (6.10)

for all t ∈ I. Similarly, using the other half of (6.7), we get

f (t)− f (x0)− f ′ (x0)(t− x0)− 1
2 f ′′ (x0)(t− x0)

2 ≤ 1
6 M (t− x0)

3 (6.11)

for all t ∈ I. Setting t = x in (6.10) and (6.11) we conclude

6
(

f (x)− f (x0)− f ′ (x0)(x− x0)− 1
2 f ′′ (x0)(x− x0)

2
)
/(x− x0)

3 (6.12)

is a number between m = f ′′′(tmin) and M = f ′′′(tmax). By the Intermediate Value
Theorem there is a c = c(t) between tmin and tmax, hence between x and x0, such
that (6.12) equals f ′′′(c). This completes the proof when x0 < x. The case x < x0 is
similar.

Proof of Taylor’s Formula using Cauchy’s Mean Value Theorem

The following slight generalization of the MVT is named after Augustin-Louis
Cauchy (21 August 1789, Paris to 23 May 1857, Sceaux). The usual MVT is ob-
tained by setting g(x) = x. The proof of the usual MVT above has a simple geomet-
ric interpretation. While the proof of Cauchy’s MVT is a clever trick, the result has
a simple geometric interpretation.

Theorem 6.6.4 (Cauchy’s Mean Value Theorem). Suppose real valued functions
f and g are differentiable on the open interval ]a,b[ and continuous on the closed
interval [a,b], then there is a point c in ]a,b[ such that

f ′(c)(g(b)−g(a)) = ( f (b)− f (a))g′(c). (6.13)

Proof. Let

φ(x) := ( f (b)− f (a))(g(x)−g(a))− (g(b)−g(a))( f (x)− f (a)).

Then φ is continuous on [a,b], differentiable on ]a,b[, and φ(a) = φ(b) = 0. So by
Rolle’s Theorem φ ′(c) = 0 for some c in ]a,b[. �
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If at least one of f ′(c) and g′(c) is nonzero, then (6.13) means that the tangent
to the curve ϕ(t) := ( f (t),g(t)) , a < t < b at the point ϕ(c) is parallel to the line
though the points ϕ(a) = ( f (a),g(a)) and ϕ(b) = ( f (b),g(b)) .

Remark 6.6.5. The formula in the Cauchy’s MVT remains true, if we interchange a
and b.

Proof. [Proof of Taylor’s Formula with Lagrange Remainder] We will give the proof
for n = 3. Let

F(t) :=
n

∑
k=0

f (k)(t)
k!

(x− t)k

= f (t)+ f ′(t)(x− t)+ 1
2 f ′′(t)(x− t)2 + 1

6 f (3)(t)(x− t)3.

When t = x, only the k = 0 term survives in the sum, hence F(x) = f (x). Clearly
F(x0) = Tn f (x). Hence F(x)−F(x0) = f (x)−Tn f (x) = Rn f (x). It remains to verify
(6.6).

By the product rule for derivatives (we set n = 3 to simplify this calculation)

F ′(t) = f ′(t)+
(

f ′′(t)(x− t)− f ′(t)
)
+
(

1
2 f (3)(t)(x− t)2− f ′′(t)(x− t)

)

+
(

1
6 f (4)(t)(x− t)3− 1

2 f (3)(t)(x− t)2
)

= 1
6 f (4)(t)(x− t)3 = 1

n! f (n+1)(t)(x− t)n.

Let G(t) := (x− t)n+1. Then G(x) = 0, G(x0) = (x− x0)
n+1, and G′(t) =−(n+

1)(x− t)n. By Cauchy’s MVT there is a c between x and x0 such that

F ′(c)(G(x)−G(x0)) = (F(x)−F(x0))G′(c).

Consequently,

1
n! f (n+1)(c)(x− c)n (0− (x− x0)

n+1)= Rn f (x)(−(n+1)(x− c)n) .

Rearranging the last equation gives the desired expression for Rn f (x). �
Remark 6.6.6. Other choices of G leads to different formulas for the remainder. All
that is required of G is that it satisfies the assumptions in the Cauchy MVT and that
we do not divide by 0. Hence, any G that is continuous on the closed interval with
endpoints x and x0, is differentiable on the open interval with endpoints x and x0,
and whose derivative is nonzero on that interval gives a formula for the remainder.

Applications of Taylor’s Formula

Example 6.6.7. If f (x) := 1/
√

1+ x, then

f (n)(x) = (−1)n 1 ·3 ·5 · · · · · (2n−1)

2n
√

1+ x
2n+1 ,
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for n≥ 1. Setting x0 = 0 and n = 3 we get, for 0 < x that

1√
1+ x

= 1− x
2
+

3x2

8
− 5x3

16
+R(x)

where

|R(x)| ≤ M4

4!
x4 =

35
128

x4.

Since
∣
∣
∣ f (4)(x)

∣
∣
∣ ≤

∣
∣
∣ f (4) (0)

∣
∣
∣ , for all 0 ≤ x, we can use M4 :=

∣
∣
∣ f (4) (0)

∣
∣
∣ = 105

16 in

Corollary 6.6.2.

As a direct consequence of Taylor’s Formula we get a version of l’Hôpital’s Rule.

Corollary 6.6.8 (l’Hôpital’s Rule). If f ,g are C n+1, f ( j)(x0) = g( j)(x0) = 0 for
0≤ j < n and g(n)(x0) �= 0, then

f (x)
g(x)

→ f (n)(x0)

g(n)(x0)

as x→ x0.

Proof. For simplicity of notation, suppose n = 1. Since f (x0) = g(x0) = 0, Taylor’s
Formula applied to f and g gives

f (x) = f ′(x0)+
1
2 f ′′(cx)(x− x0)

2

g(x) = g′(x0)+
1
2 g′′(dx)(x− x0)

2

for some cx and dx between x and x0.
Since cx and dx are between x and x0, we see that cx → x0 and dx → x0 as x→ x0.

Hence continuity of f ′′ and g′′ at x0 guarantees f ′′(cx) → f ′′(x0) and g′′(dx) →
g′′(x0) as x→ x0. Consequently,

f (x)
g(x)

=
f ′(x0)+

1
2 f ′′(cx)(x− x0)

2

g′(x0)+
1
2 g′′(dx)(x− x0)2

→
f ′(x0)+

1
2 f ′′(x0)(x0− x0)

2

g′(x0)+
1
2 g′′(x0)(x0− x0)2

=
f ′(x0)

g′(x0)

as x→ x0. �
A version of l’Hôpital’s Rule that works under fewer assumptions on f and g

can be found in Sect. 6.7. The version above is sufficient for most applications of
l’Hôpital’s Rule.

6.7 l’Hôpital’s Rule�

The rule is named after Guillaume François Antoine, Marquis de l’Hôpital (Paris
1661, Paris to 2 February 1704, Paris). Johann Bernoulli (27 July 1667 Basel to
1 January 1748 Basel) was hired by l’Hôpital to teach him mathematics. One part
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of the arrangement allowed l’Hôpital to use Bernoulli’s discoveries as he pleased.
l’Hôpital published a calculus book largely based on Bernoulli’s work, including
what is commonly known as l’Hôpital’s Rule.

Theorem 6.7.1 (l’Hôpital’s Rule). Suppose f and g are differentiable on ]a,b[,
f (x)→ 0 and g(x)→ 0 as x↘ a, then

f ′(x)
g′(x)

→ L as x↘ a implies
f (x)
g(x)

→ L as x↘ a.

We assume g(x) �= 0 and g′(x) �= 0 for x ∈]a,b[. L could be a real number or one of
±∞.
Proof. Since f (x)→ 0 and g(x)→ 0 as x↘ a we know that f and g have removable
discontinuities at a. Removing the discontinuities f and g are continuous on [a,b[
and f (a) = g(a) = 0.

Using the Cauchy’s MVT there is a c = c(x) between a and x such that

f (x)− f (a)
g(x)−g(a)

=
f ′(c)
g′(c)

Since c(x) is between a and x, c(x)→ a as x↘ a. Hence, f (c)/g(c)→ L as x↘ a, by
the Composition Theorem for Limits. Since f (a) = g(a) = 0, the previous equation
can be rewritten as

f (x)
g(x)

=
f ′(c)
g′(c)

letting x↘ a yields the desired result. �
If we replace the assumptions f (x)→ 0 and g(x)→ 0 as x ↘ a, by f (x)→ 0

and g(x)→ 0 as x ↗ b, then a very similar argument shows that f ′(x)
g′(x) → L as x ↗

b implies f (x)
g(x) → L as x↗ b.

A function f is C 1 on a set D, in symbols f ∈ C 1(D), if f is differentiable on D
and f ′ is continuous on D. This notation was also used Sect. 6.6. Section 6.6 also
contains a version of l’Hôpital’s Rule.

Exercise 6.7.2. If f ,g ∈ C 1(]a,∞[), f (x)→ 0 and g(x)→ 0 as x→ ∞, then

f ′(x)
g′(x)

→ L as x→ ∞ implies
f (x)
g(x)

→ L as x→ ∞.

We assume g(x) �= 0 and g′(x) �= 0 for x ∈]a,∞[.

6.8 Convexity�

Many important inequalities in analysis can be proved using convexity. These in-
equalities are often consequences of Jensen’s inequality, below we use Jensen’s
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inequality to establish the Arithmetic–Geometric Mean inequality. The problems
contain additional examples of inequalities that can be established using convexity.

This section has several subsections: Cords, Regularity, Calculus, and Applica-
tions. The Regularity subsection is not used in any of the other subsections.

Let I be an interval. A function f : I → R is convex if it lies below its cords. See
Fig. 6.4. That is, if for any a < b in I, the cord

Fig. 6.4 A convex curve y = f (x) and one a it’s cords

L(x) = La,b(x) := f (a)+
f (b)− f (a)

b−a
(x−a),

satisfies
f (x)≤ L(x) for all a < x < b.

A function f is concave, if − f is convex, that is if f lies above its cords. Looking at
the graphs of f (x) := x2 and of g(x) := |x| suggests that these functions are convex
on R.

Slopes of Cords

Let sa(x) be the slope of the cord La,x connecting (a, f (a)) to (x, f (x)) , i.e.,

sa(x) :=
f (x)− f (a)

x−a
.

The following result shows that f is convex iff x → sa(x) is an increasing function
on a < x for all a. See the left half of Fig. 6.5.

Lemma 6.8.1. f is convex on I iff

f (y)− f (x)
y− x

≤ f (z)− f (x)
z− x

for any x < y < z in I.
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Proof. By definition f is convex iff

f (y)≤ f (x)+
f (z)− f (x)

z− x
(y− x) for all x < y < z in I.

Subtracting f (x) and dividing by y− x gives the desired conclusion. �
Exercise 6.8.2. (i) Prove L(x) = M(x), where

M(x) := f (b)− f (b)− f (a)
b−a

(b− x).

(ii) Prove f is convex iff

f (z)− f (x)
z− x

≤ f (z)− f (y)
z− y

for all x < y < z in I.

The second part of this exercise says that f is convex iff the slope sb(x) of the cord
connecting (x, f (x)) and (b, f (b)) is an increasing function of x, x < b, for all b. See
the right half of Fig. 6.5.

Fig. 6.5 A convex curve y = f (x) and some of it’s cords. a The figure on the left illustrates Lemma
6.8.1. In the notation of Lemma 6.8.1 (x, f (x)) is the point where the cords intersect. b The figure
on the right illustrates Exercise 6.8.2. In the notation of Exercise 6.8.2 (z, f (z)) is the point where
the cords intersect

Combining the two parts of Fig. 6.5 so all the cords have a point in common (see
the left half of Fig. 6.6 for a the version that has one cord to the left of the common
point and one cord to the right of the common point) leads to:

Corollary 6.8.3. If f is convex on an interval I, then the difference quotient

sy(x) :=
f (x)− f (y)

x− y

is increasing as a function of x on the set I \ {y} . Since sx(y) = sy(x) it is also
increasing as a function of y on the set I \{x} .

Proof. If a < b < c are in I, then
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sa(b)≤ sa(c) (6.14)

sc(a)≤ sc(b) (6.15)

by Lemma 6.8.1 and Exercise 6.8.2. Fix y in I. For x < z with x �= y and z �= y we
must show sy(x) ≤ sy(z). If y < x < z this is (6.14) with a = y, b = x, and c = z. If
y < x < z it is (6.15) with a = x, b = z, and c = y. Finally, if x < y < z, then

sy(x) = sx(y)≤ sx(z) = sz(x)≤ sz(y) = sy(z),

by (6.14) and (6.15). �
If f is convex on an interval I, then sy(x)≤ sy(z), for all x < y < z in I by Corol-

lary 6.8.3. Hence,

f (y)− f (x)
y− x

≤ f (z)− f (y)
z− y

for all x < y < z in I. (6.16)

See the left half of Fig. 6.6.

Exercise 6.8.4. Conversely, show that Eq. (6.16) implies f (x)≤ La,b(x) for all a <
x < b in I.

We have proven:

Theorem 6.8.5. f is convex on an interval I iff (6.16) holds for all a < x < b in I.

Fig. 6.6 A convex curve y = f (x) and some of it’s cords. The figure on the left illustrates (6.16).
The figure on the right illustrates adding a third cord

Adding a third cord gives an inequality we can use to compare the slopes of
cords that do not share an endpoint. See the right half of Fig. 6.6. Of course, this is
corresponds to two applications of Corollary 6.8.3.

Regularity

In this subsection we show that geometric information: f lies below its cords, im-
plies smoothness of f : f has one–sided derivatives.
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A Hölder condition of order one, is also called a Lipschitz condition. Hence, f
satisfies a Lipschitz condition on I, if there is a constant M, such that

| f (x)− f (y)| ≤M |x− y|

for all x and y in I. Clearly, any function satisfying a Lipschitz condition on an
interval must he continuous on that interval. The Lipschitz condition is named after
Rudolf Otto Sigismund Lipschitz (14 May 1832, Königsberg to 7 October 1903,
Bonn), it is a strong form of uniform continuity.

Theorem 6.8.6. Suppose I is an open interval and f is convex on I, then f is con-
tinuous on I. In fact, f satisfies a Lipschitz condition on any compact subinterval of
I.

Proof. Let a < b be in I. Since I is open there is a δ > 0 such that a−δ and b+δ
are in I. Fix x < y in [a,b]. Applying Corollary 6.8.3 to

a−δ < a≤ x < y≤ b < b+δ

gives
sa (a−δ )≤ sa(x)≤ sy(x)≤ sb(x)≤ sb (b+δ ) .

Taking the first, middle and last terms gives

sa (a−δ )≤ f (y)− f (x)
y− x

≤ sb (b+δ ) .

Consequently, f satisfies the Lipschitz condition

| f (x)− f (y)| ≤max{|sa (a−δ )| , |sb (b+δ )|} |x− y|

for all x,y ∈ [a,b]. In particular, f is continuous on [a,b]. Since
⋃
[a,b] = I, where

the union is over all a < b in I, f is continuous on I. �
Example 6.8.7. A convex function need not be continuous at an endpoint, for exam-

ple, f : [0,1]→ R determined by f (x) :=

{
0 when x < 1

2 when x = 1
is convex on [0,1] and

not continuous at 1.

Example 6.8.8. The function f (x) := −
√

1− x2 is convex and continuous on the
closed interval [−1,1]. However, it does not satisfy a Lipschitz condition on any
subinterval containing at least one of the endpoints −1 or 1 of the interval [−1,1].

We show that a convex function on an open interval has one-sided derivatives at
every point in the interval and has a derivative at almost all points in the interval.

Theorem 6.8.9. Let I be an open interval and f a convex function on I. The one
sided derivatives f ′+ and f ′− exist at every point in I. Furthermore, if y < x are in
I, then
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f ′−(y)≤ f ′+(y)≤ f ′−(x)≤ f ′+(x). (6.17)

In particular f ′− and f ′+ are increasing functions on I.

Proof. Let I be an open interval and fix x∈ I. By Corollary 6.8.3 sx(y) is an increas-
ing function of y. Hence, sx(y) decreases as y decreases. Since I is open, there are
a,b in I such that a < x < b. For x < y < b we have sx(a) ≤ sx(y). It follows from
Exercise 5.1.2 that

lim
y↘x

sx(y) = inf{sx(y) | x < y} ≥ sx(a).

Since f ′+(x) = limy↘x sx(y), we have established the existence of the right hand
derivative. Similarly, f ′−(x) = limy↗x sx(y) is a real number ≤ sx(b).

Fix y < x in I. For u,v,w,z in I satisfying

u < y < z < w < x < v

Corollary 6.8.3 implies

sy(u)≤ sy(z)≤ sx(w)≤ sx(v).

Letting u↗ y, we get

f ′−(y)≤ sy(z)≤ sx(w)≤ sx(v).

Letting z↘ y, then w↗ x, and finally v↘ x we arrive at (6.17). �
Remark 6.8.10. Since f ′+ exists at every point in the open interval, it follows that f
is continuous on I. Hence, we have a second proof that a convex function defined
on an open interval is continuous on that interval.

Corollary 6.8.11. Let f be a convex function defined on an open interval I. There is
a countable subset A of I, such that f is differentiable on I \A.

Proof. Since f ′+ is increasing, it follows from Corollary 5.1.4 that there is a count-
able set A such that f ′+ is continuous on I \A. Fix x ∈ I \A. For y < x we have

f ′+(y)≤ f ′−(x)≤ f ′+(x).

Using f ′+ is continuous at x, it follows that

f ′+(x) = lim
y↗x

f ′+(y)≤ f ′−(x)≤ f ′+(x).

Hence f ′−(x) = f ′+(x). Consequently, f is differentiable at x. �
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Calculus

In this subsection we characterize convexity of differentiable functions in terms of
properties of the first and second derivatives.

Theorem 6.8.12. Let I be an open interval and let f : I → R be differentiable. Then
f ′ is increasing iff f is convex.

Proof. Suppose f ′ is increasing. Let x < y < z in I. By the MVT there are c ∈]x,y[
and d ∈]y,z[ such that

f ′(c) =
f (y)− f (x)

y− x
and f ′(d) =

f (z)− f (y)
z− y

.

Since c < y < d and f ′ is increasing we have f ′(c)≤ f ′(d), thus (6.16) holds, so f
is convex.

Conversely, suppose f is convex. Let x0 < y0 in I. For any a,b in I with a < x0 <
b < y0 we have

f (x0)− f (a)
x0−a

≤ f (y0)− f (b)
y0−b

,

by Corollary 6.8.3. Letting a↗ x0 shows

f ′(x0)≤
f (y0)− f (b)

y0−b
for any x0 < b < y0 in I.

Letting b↗ y0, then yields f ′(x0)≤ f ′(y0). �
The following is a simple criterion for convexity.

Corollary 6.8.13. Let I be an open interval and let f : I → R. Suppose f ′′ exists on
I. Then f is convex on I iff f ′′(x)≥ 0 for all x ∈ I.

Proof. Let g := f ′. Using g is increasing iff g′ ≥ 0, completes the proof �
The following exercise provides another geometrical interpretation of convexity.

Exercise 6.8.14. Let I be an open interval and f : I →R be differentiable on I. Prove
f is convex iff

f (x)≥ f (a)+ f ′(a)(x−a) for all a,x in I. (6.18)

Thus, f is convex iff f lies above its tangents.

Suppose f has two derivatives. Recall, f is convex iff f ′′(c) ≥ 0 for all c in I. The
Taylor expansion

f (x) = f (x0)+ f ′(x0)(x− x0)+R1 f (x)

suggests this result, since R1 f (x) = f ′′(c)
2 (x−x0)

2 and we need R1 f (x)≥ 0 for f lie
above its tangent at x0.
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Applications

The inequality f (x)≤ L(x) for a≤ x≤ b, can be written as

f (αa+(1−α)b)≤ α f (a)+(1−α) f (b) (6.19)

for 0≤ α ≤ 1.

Exercise 6.8.15. Verify this.

We establish the sum version of Jensen’s Inequality. This inequality is due to Jo-
han Ludwig William Valdemar Jensen (May 8, 1859, Nakskov to March 5, 1925,
Copenhagen). Jensen worked for a telephone company as an engineer.

Theorem 6.8.16 (Jensen’s Inequality). Let I be an interval. If f : I → R is convex,
xk ∈ I, αk ≥ 0, and ∑n

k=1αk = 1, then ∑n
k=1αkxk is in I and

f

(
n

∑
k=1

αkxk

)

≤
n

∑
k=1

αk f (xk) .

Proof. If xmin :=min{xk | k = 1,2, . . . ,n} and xmax :=max{xk | k = 1,2, . . . ,n}, then

xmin =
n

∑
k=1

αkxmin ≤
n

∑
k=1

αkxk

≤
n

∑
k=1

αkxmax = xmax

so ∑n
k=1αkxk is a point in I.

The proof of the inequality is by induction. If n = 1, the inequality is obvious.
Suppose n ≥ 2 and the inequality holds for n− 1. If αn = 1 the inequality reduces
to the n = 1 case. If αn �= 1, then

n

∑
k=1

αkxk = (1−αn)

(
n−1

∑
k=1

αk

1−αn
xk

)

+αnxn.

Hence, by convexity of f we have

f

(
n

∑
k=1

αkxk

)

= f

(

(1−αn)

(
n−1

∑
k=1

αk

1−αn
xk

)

+αnxn

)

≤ (1−αn) f

(
n−1

∑
k=1

αk

1−αn
xk

)

+αn f (xn)

≤ (1−αn)
n−1

∑
k=1

αk

1−αn
f (xk)+αn f (xn)
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=
n

∑
k=1

αk f (xk) .

Where the first inequality follows from convexity of f (in the form (6.19)) and the
second from the inductive hypothesis. �
Example 6.8.17. The triangle inequality is a special case of Jensen’s inequality. Let
f (x) := |x|. Clearly f is convex on R. Applying Jensen’s inequality with αk := 1/n
yields ∣

∣
∣
∣
∣

n

∑
k=1

1
n

xk

∣
∣
∣
∣
∣
≤

n

∑
k=1

1
n
|xk|

for xk ∈ R. Multiplying by n, reduces this to the triangle inequality: |∑xk| ≤ ∑ |xk| .

The Arithmetic Mean of x1,x2, . . . ,xn is 1
n ∑

n
k=1 xk and the Geometric Mean of

x1,x2, . . . ,xn is (x1x2 · · ·xn)
1/n. A special case of the following result shows that

the arithmetic mean is larger than the geometric mean when xk ≥ 0 for all k.

Theorem 6.8.18 (Arithmetic-Geometric Mean Inequality). If xk ≥ 0, αk ≥ 0, and
∑n

k=1αk = 1, then
n

∑
k=1

αkxk ≥ xα1
1 xα2

2 · · ·xαn
n .

Proof. For the purpose of this proof we assume familiarity with the exponential
function exp(x) = ex, and its inverse the logarithmic function log(x) = ln(x). We
study these functions in Chap. 8.

Since exp′′(x) = exp(x)≥ 0 for all x ∈ R, exp is convex on R. Consequently,

n

∑
k=1

αkxk =
n

∑
k=1

αk exp(log(xk))

≥ exp

(
n

∑
k=1

αk log(xk)

)

= exp
(
log
(
xα1

1 xα2
2 · · ·xαn

n

))

= xα1
1 xα2

2 · · ·xαn
n .

The inequality is Jensen’s. �
Corollary 6.8.19. If xk ≥ 0 and n ∈ N, then

1
n

n

∑
k=1

xk ≥ (x1x2 · · ·xn)
1/n.

Proof. Set αk := 1/n for all k in the Arithmetic-Geometric Inequality. �
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Problems

Problems for Sect. 6.1

1. Let f (x) = x2 and let a be any real number. Show f ′(a) = 2a.

2. Let f (x) := |x|. Show f is not differentiable at 0 and f is differentiable at any
a �= 0.

3. Suppose f : R→ R is even, i.e., f (−x) = f (x) for all x. Assuming f is differ-
entiable at 0, find f ′(0).

4. Show that the pseudo-sine function σ is differentiable at 1.

The next two problems are concerned with the linearization of f near a. Sup-
pose f is defined on some open interval containing a. If f is differentiable at a,
then the line

L(x) := f (a)+ f ′(a)(x−a)

is called the tangent to f at a, and also the linearization of f at a.

5. Suppose f ′(a) exists. Let L(x) := f (a)+ f ′(a)(x−a) and E(x) := f (x)−L(x).
Then

f (x) = L(x)+E(x).

Prove
E(x)
x−a

→ 0 as x→ a.

This if often written as E(x) = o(x− a) as x → a. Where g(x) = o(φ(x)) as
x→ a, means that g(x)/φ(x)→ 0 as x→ a. This is known as “little oh” notation.

6. Let k ∈ R. Let L(x) := f (a)+ k(x−a) and let E(x) := f (x)−L(x). If

E(x)
x−a

→ 0 as x→ a.

Prove f is differentiable at a and f ′(a) = k.

7. Let R+ :=]0,∞[. Suppose f : R+ → R is differentiable at x = 1 and

f (xy) = f (x)+ f (y) for all x,y ∈ R+.

a. Prove f (1) = 0.
b. Prove f (1/x) =− f (x).
c. Prove f is differentiable on R+ and f ′(x) = f ′(1)/x for all x > 0.

8. Suppose f : ]−1,1[→R is differentiable at 0, f (x)< 0 when x< 0, and f (x)> 0
when x > 0. Show g(x) := | f (x)| is differentiable at 0 iff f ′(0) = 0.
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9. Suppose f ′(3) = 2 and f (3) = 4. Prove there is a δ > 0, such that

0 < x−3 < δ =⇒ x+1≤ f (x).

10. We assume the familiar properties of sin(x). For example, (a) sin is differen-
tiable and sin′ is continuous on R, (b) −1 ≤ sin(x) ≤ 1 and −1 ≤ sin′(x) ≤ 1
for all x. Let

f (x) :=

{
x2 sin

(
1
x

)
when x �= 0

0 when x = 0
.

Then f ′(x) = 2x sin
(

1
x

)
− cos

(
1
x

)
when x �= 0. You need not verify this.

a. Show f is differentiable at 0 and f ′(0) = 0.
b. f ′(x) is not continuous at x = 0.

Problems for Sect. 6.2

1. Let f (x) := x2 on R. Find f ′(x). Find the critical points. For each critical point
decide if it is a local maximum, a local minimum, or neither.

2. Repeat the previous problem for f (x) := x3.

3. If f ′+(a) exists, then f is continuous from the right at a.

4. If f ′(a)≥ 0 must f be increasing at a? [This is a proposed converse of Exercise
6.2.2.]

5. If f is strictly increasing at a and f ′(a) exists must f ′(a)> 0? [This is a proposed
converse of Exercise 6.2.3.]

6. If f ′(a) = 0 must f (a) be local extremum? [This is a proposed converse of Ex-
ercise 6.2.4.]

7. If f (a) is a local extremum must f ′(a) exist?

8. How must the definition of increasing at a, strictly increasing at a, local maxi-
mum, etc. (in particular Exercises 6.2.2–6.2.4) be changed if we only assume a
is an accumulation point of the domain D of f . (Instead of assuming f is defined
near a.)

Problems for Sect. 6.3.

1. Calculate the derivate of √
3x+ x2

(1+ x2)
√

x3 +7
.
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At each step in the calculation: Use at most one rule and state the name of that
rule. You may use that constant functions have derivative equal to 0 and that
(xn)′ = nxn−1.

2. Let f be the restriction of the pseudo-sine function to the interval [−1/2,1/2].
Prove f−1 is differentiable on the interval ]−1,1[, but not at the endpoints of this
interval.

Problems for Sect. 6.4.

1. Let f (x) := 1
3 x3, a := 0 and b := 2. Then f ′(x) = x2. For 0 < k < 4, show xmin

in the proof of Darboux’s Intermediate Value Theorem is xmin =
√

k.
2. The First Derivative Test. Let f be continuous near c. Suppose f is differen-

tiable on ]c− γ ,c[ and on ]c,c+ γ [ for some γ > 0. If f ′(x)> 0 on ]c− γ ,c[ and
f ′(x)< 0 on ]c,c+γ [, prove f (c) is a local maximum. [Hint: Let c−γ < x < c.
Applying the MVT to f on the interval [x,c], yields f (x)− f (c)< 0.]

3. The Second Derivative Test. Suppose f is differentiable on ]c− γ ,c+ γ [ for
some γ > 0, f ′(c) = 0, that f ′ is differentiable at c, and f ′′(c)> 0. ( f ′′ denotes
the derivative of f ′.) Show that f (c) is a local minimum, by completing the
following steps:

(i) Since, f ′(x)− f ′(c)
x−c → f ′′(c), there is a δ > 0, such that f ′(x)− f ′(c)

x−c > 0 when
0 < |x− c|< δ .
(ii) f ′(x)> 0 for x in ]c−δ ,c[.
(iii) f ′(x)< 0 for x in ]c,c+δ [.
(iv) Use the First Derivative Test to show f (c) is a local minimum of f .

4. Let

φ(x) :=

{
x3/2σ(1/x) when 0 < x

0 when x≤ 0
.

Where σ is the pseudo-sine function. Prove φ is differentiable on R and
limsupx↘0 |φ ′(x)|= ∞.
A function f satisfies a global Lipschitz condition on D, if there is a constant
M, such that

| f (x)− f (y)| ≤M|x− y| for all x,y ∈ D.

5. If f is differentiable on ]a,b[ and | f ′(x)| ≤M for all x in ]a,b[, then f satisfies a
global Lipschitz condition on ]a,b[. (In particular, if M = 0, then f is constant.)

6. If f :]a,b[→ R is α−Hölder with α > 1, then f is constant.
7. Let f be differentiable on ]0,1[ and continuous on [0,1]. Suppose f (0) = 0 and

f ′ is increasing on ]0,1[. Let g(x) := f (x)/x. Prove g is increasing on ]0,1[.
8. Let f be differentiable on [a,b]. Suppose f ′(x) ≥ 0 for all x in [a,b] and f ′ is

not identically 0 on any subinterval of [a,b]. Prove f is strictly increasing on
[a,b].
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9. Suppose f : [0,1]→ [0,1] is continuous on [0,1] and differentiable on ]0,1[.
If f ′(x) �= 1 for all x ∈]0,1[, prove there is at most one c ∈ [0,1], such that
f (c) = c.
[If follows from the Intermediate Value Theorem that there is at least one such
c, see the Problems for Sect. 5.2.]

10. Prove Bernoulli’s inequality: 1+αx ≤ (1+ x)α , for x ≥ −1, when α > 1 is
rational.
Your argument will probably work for irrational α also, but we have not yet
shown that f (t) := tα exists for t ≥ 0, much less that is has the expected prop-
erties, e.g., that f ′(t) = αtα−1.

11. Let f : R→ R be differentiable. Suppose

f (x+ y) = f (x)+ f (y)+2xy for all x,y ∈ R.

(i) Prove f ′(x) = f ′(0)+2x, for all x ∈ R.
(ii) Prove f (x) = x2 + f ′(0)x+ f (0), for all x ∈ R.
In particular, f is a polynomial of degree two.

12. (a) Let f : R → R be such that f ′′′ exists. Suppose f (a) = f ′(a) = f (b) =
f ′(b) = 0 for some a < b. Show f ′′′(c) = 0 for some c in ]a,b[ .
(b) Part (a) applies to f (x) := (x−a)2 (x−b)2 . In this case find an expression
for c in terms of a and b.

13. Let I be an interval and suppose f : I → R is differentiable. Let

D :=
{

f ′(x) | x ∈ I
}

and

C :=

{
f (b)− f (a)

b−a
| a,b ∈ I,a < b

}
.

(a) Prove C ⊆ D.
(b) Let k be a point in D. Show either k is in C or k is an accumulation point of
C.

14. Let f be differentiable function defined on the open interval ]0,1[ .
(a) Supposing f ′ is bounded on ]0,1[ , show f is bounded on ]0,1[ .
(b) Give an example of a bounded and differentiable function f on ]0,1[ , such
that f ′ is not bounded on ]0,1[ .

Problems for Sect. 6.5

1. Show that ∑∞
n=1

1
2n! is transcendental.

2. For which a ∈ R is ∑∞
n=1

1
an! transcendental? [The series is only convergent for

a > 1. See Chap. 10.]
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3. Show 21/3 is not algebraic of order 2.
4. Let R be the set of numbers of the form

∞

∑
k=1

ck

10k!+1

where ck ∈ {1,10} for all k ∈ N.
(a) Show each number in R is transcendental.
(b) Show the set R is uncountable.

Problems for Sect. 6.6

1. Let f (x) := x−1/3.

a. (i) Verify f (n)(x) = (−1)n 1 ·4 ·7 · · ·(3n−2) ·3−n · x−(3n+1)/3 for n≥ 1.

b. (ii) Show
∣
∣
∣ f (n)(8)

n!

∣
∣
∣≤ 1

23n+1 , when n≥ 1.

c. (iii) Let x0 := 8 and x := 9, how large must n be for |Rn f (9)| ≤ 1/60000?
d. (iv) For this n, evaluate Tn f (9).

You have now found 9−1/3 with error < 1/60000. Multiplying by 3 gives 31/3

with an error < 1/20000 = 0.00005.

2. Let f (x) := 1
1−x and x0 = 0.

a. (i) Obtain an expression for R1 f .
b. (ii) Find the value of c when x = 3

4 .

3. Let f (x) = 3
√

1+3x.

a. Find the second Taylor polynomial T2 f (x) for f at x0 = 0.
b. Use T2 f (x) to approximate 3

√
1.006.

c. Use the formula for the Lagrange formula for the remainder R2 f (x) to esti-
mate the error in the approximation in part (b).

Problems for Sect. 6.7

1. If, in the proof of l’Hopital’s Rule we use the MVT in the numerator and denom-
inator separately we get
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f (x)− f (a)
g(x)−g(a)

=
f ′(c(x))
g′(d(x))

,

where c(x) and d(x) are between a and x. Does this imply f (x)/g(x)→ L? More
precisely, if φ(x)/ψ(x)→ L as x → a, and α(x)→ a, β (x)→ a as x → a, must
φ(α(x))/ψ(β (x))→ L as x→ a?

2. Formulate and prove l’Hopital’s Rule for the case where f (x)→∞ and g(x)→
∞ as x→ a. [Hint: A proof can be based on the formula

f (x)− f (b)
g(x)−g(b)

=
f (x)
g(x)

1− f (b)
f (x)

1− g(b)
g(x)

by making a suitable choice for b.]

Problems for Sect. 6.8

1. Prove Theorem 6.8.6 when I is unbounded. Note, I may be unbounded in one or
both directions.

2. Let I :=]0,1[. Give an example of a function f : I → R, such that f is convex on
I and f not uniformly continuous on I.

3. Verify the claims in Example 6.8.8.
4. Construct a convex and continuous f : [0,1]→ R such that f is not differentiable

at any point in
{

1
n | n ∈ N

}
.

Suppose f is convex on an open interval I and y is a point in I. A real number m
is called a sub-derivative of f at y, if

f (x)≥ f (y)+m(x− y)

for all x ∈ I., i.e., if f lies below the line Lm,y(x) := f (y)+m(x−y). Compare to
Exercise 6.8.14.

5. If f is convex on an open interval I, y is a point in I, and m is a real number. Then
m is a sub-derivative of f at y iff f ′−(y)≤ m≤ f ′+(y).

6. Young’s inequality [William Henry Young, London, 20 October 1863 to Lau-
sanne, 7 July 1942)] Let x,y≥ 0. Suppose p,q > 1 satisfies 1

p +
1
q = 1. Then

xy≤ xp

p
+

yq

q
.

[Hint: Set n = 2, α1 = 1/p, and α2 := 1/q in the algebraic-geometric mean in-
equality.]
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7. Hölder’s inequality [Otto Ludwig Hölder, Stuttgart, December 22, 1859 to Leipzig,
August 29, 1937] Let xk,yk ∈ C. Suppose p,q > 1 satisfies 1

p +
1
q = 1. Then

∣
∣
∣
∣
∣

n

∑
k=1

xkyk

∣
∣
∣
∣
∣
≤
(

n

∑
k=1

|xk|p
)1/p( n

∑
k=1

|yk|q
)1/q

.

[Hint: It is sufficient to consider xk,yk ≥ 0. Apply Young’s inequality to

x =
xk

(∑n
k=1 |xk|p)1/p

and y =
yk

(∑n
k=1 |yk|q)1/q

,

then sum over k = 1,2, . . . ,n and simplify.]
When p = q = 2 Hölder’s inequality is usually called the Cauchy–Schwarz in-
equality. It is usually named after Augustin-Louis Cauchy and Karl Hermann
Amandus Schwarz (25 January 1843, Hermsdorf to 30 November 1921, Berlin).
Cauchy gave the first proof for sums, Viktor Yakovych Bunyakovsky (December
16 1804, Bar, to December 12 1889, St. Petersburg) first proved it for integrals,
and Schwarz later gave a simpler proof for integrals.
For p ≥ 1 and x = (x1,x2, . . . ,xn), xk ∈ C, the p−norm of x is ‖(xk)‖p :=

(∑n
k=1 |xk|p)1/p . The next problem establishes the triangle inequality for the

p−norm.
8. Minkowski’s inequality [Hermann Minkowski, Aleksotas, June 22, 1864 to Göt-

tingen, January 12, 1909] Let xk,yk ∈ C. Suppose p,q > 1 satisfies 1
p +

1
q = 1.

Then

‖x+ y‖p ≤ ‖x‖p +‖y‖p.

Where x = (x1, . . . ,xn) and y = (y1, . . . ,yn).
[Hint: It is sufficient to consider xk,yk ≥ 0. If p = 1 there is nothing to prove.

Assume p > 1 and let q > 1 be such that 1
p +

1
q = 1. Since (p−1)q = p

n

∑
k=1

(xk + yk)
p =

n

∑
k=1

xk(xk + yk)
p−1 +

n

∑
k=1

yk(xk + yk)
p−1

≤
(

n

∑
k=1

(xk)
p

)1/p( n

∑
k=1

(xk + yk)
p

)1/q

+

(
n

∑
k=1

(yk)
p

)1/p( n

∑
k=1

(xk + yk)
p

)1/q

by Hölder’s inequality. Simplifying gives us Minkowski’s inequality.]
There are versions of Jensen’s, Hölder’s, and Minkowski’s inequalities for inte-

grals.
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Solutions and Hints for the Exercises

Exercise 6.2.2 If f is increasing at a, then ( f (x)− f (a))/(x−a)≥ 0 near a.

Exercise 6.2.3 If limx→a( f (x)− f (a))/(x−a)> 0, then ( f (x)− f (a))/(x−a)>
0 near a.

Exercise 6.2.4 If f ′(a)> 0, Exercise 6.2.3 leads to a contradiction.

Exercise 6.3.9. Use the examples, the product rule and induction.

Exercise 6.3.10. One way is to use the constant, sum and product rules as well as
Exercise 6.3.9

Exercise 6.3.11. By Exercise 6.3.10 and the quotient rule.

Exercise 6.3.12. Let f (x) := xn and use the inverse function rule.

Exercise 6.4.1. Look at the discussion prior to this exercise.

Exercise 6.4.4. If x �= 0, then g(x) = x2σ(1/x). So, g′(x) = 2xσ(1/x)−σ ′(1/x)
when x �= 0. Also g(x)/x = xσ(1/x)→ 0 as x→ 0, hence, g′(0) = 0.

Exercise 6.4.8. If h := f −g, then h′ = 0 on I.

Exercise 6.4.9. Apply the MVT to h = f −g on the interval with endpoints x and
c.

Exercise 6.4.10. If f is increasing then the definition of f ′ shows that f ′(x)≥ 0.
On the other hand suppose f ′ ≥ 0 on I. Let x < y be points in I. Apply MVT on the
interval [x,y].

Exercise 6.7.2. Let t := 1/x, then x→ ∞ iff t ↘ 0.

Exercise 6.8.2. (i) Rearrange the expression for L(x). (ii) Rearrange f (x)≤M(x).

Exercise 6.8.4. Solve (6.16) for f (x).

Exercise 6.8.14. If f is convex the inequality in (6.18) follows from Lemma 6.8.1
by taking an appropriate limit.

If (6.18) holds for all a,x in I. Let y < z be points in I. Applying (6.18) with x = z
and a = y gives, f (z) ≥ f (y)+ f ′(y)(z− y). Similarly, applying (6.18) with x = y
and a = z gives, f (y)≥ f (z)+ f ′(z)(y− z). Consequently,

f ′(y)≤ f (z)− f (y)
z− y

≤ f ′(z).

Exercise 6.8.15. Verify x : [0,1]→ [a,b] determined by x(α) := αa+(1−α)b is
a bijection. Then replace x in f (x)≤ L(x) by αa+(1−α)b and rearrange.



Chapter 7
The Riemann Integral

The Riemann integral is defined in terms of lower and upper step functions. The ma-
jor theorems are concerned with characterizations of integrability, the integrability
of monotone and continuous functions, the algebra of integrable functions, and the
two versions of the fundamental theorem of calculus.

We will mostly be concerned with integrals of functions f : [a,b]→ R. However,
the reader can without difficulty extend the integral to functions f : [a,b]× [c,d]→
R, and is asked to do so in some of the exercises. It is essential that we have an
order on the values of f – not that we have an order on the domain of f . While most
of the discussing is for integrals of real valued functions, the last section considers
integrals of complex valued functions. Arc length is discussed in Sect. 11.3 it could
be covered at any time after Sect. 7.3.

7.1 Definition of the Integral

The idea of our approach to the integral of a function f : [a,b]→R is to approximate
the graph from below by the areas of a finite number of rectangles (see Fig. 7.1), then
take the best such approximation, that is the supremum of the lower approximations.
We also approximate from above by a finite number of rectangles (see Fig. 7.2), then
take the best such approximation, the infimum of the upper approximations. When
the two best approximations agree we say f is integrable. To have rectangles of
finite height we need f to be bounded. To have a finite number of rectangles of finite
width we need the interval [a,b] to be bounded.

Step Functions

A finite collection of points a = x0 < x1 < · · · < xn = b is called a partition of the
closed and bounded interval [a,b]. Given a partition a = x0 < x1 < · · · < xn = b
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a function s : [a,b]→ R that is constant on the open intervals ]xk−1,xk[ is a step
function. So, a step function is determined by a partition and real numbers Ak by
setting

s(x) :=
n

∑
k=1

Ak1]xk−1,xk[(x)

for x in [a,b]. Recall,

1U (x) =

{
1 if x ∈U

0 if x /∈U.

The values of a step function at the partition points x0,x1, . . . ,xn are not important
in what follows. For a step function s := ∑n

k=1 Ak1]xk−1,xk[
we write

∑s =∑
P

s =
n

∑
i=1

Ai(xi− xi−1),

where P = {x0,x1, . . . ,xn} is the set of partition points.
If f : [a,b]→ R be a bounded function, then m = m( f ) is some lower bound for

f and M = M( f ) is some upper bound for f . That is m≤ f (x)≤M for all x.
If s : [a,b]→ R is a step function such that s(x) ≤ f (x) for all x ∈ [a,b], except

possibly at the partition points, then s is a lower step function for f and ∑s is a
lower sum for f . The shaded areas in Fig. 7.1 illustrates lower sums.

Fig. 7.1 Lower step functions—in one case the function is positive. The two parts of this figure
are essentially identical except for a vertical shift

Lemma 7.1.1. Let f : [a,b]→ R be a bounded function. The set of lower sums for f
is nonempty and bounded above.

Proof. The set of lower sums is nonempty, because any bounded function has at
least one lower step function. For example, s(x) = m for x ∈ [a,b] is a lower step
function for f . If s = ∑n

k=1 ak1]xk−1,xk[
is any lower step function for f , then ai ≤

f (x)≤M for any xi−1 < x < xi, so

∑s =
n

∑
i=1

ai(xi− xi−1)≤
n

∑
i=1

M(xi− xi−1) = M(b−a).
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Hence, M(b−a) is an upper bound for the set of lower sums. �
The lower integral

´ b
a f of f is the supremum of the set of lower sums for f . That

is ˆ b

a
f := sup

{
∑s | s is a lower step function for f

}
.

Similarly, if S : [a,b]→ R is a step function such that f (x) ≤ S(x) for all x ∈ [a,b],
except possibly for the partition points, then S is an upper step function for f and
∑S is an upper sum for f . The shaded areas in Fig. 7.2 illustrates upper sums.

Fig. 7.2 Upper step functions—in one case the function is positive. The two parts of this figure are
essentially identical except for a vertical shift

Lemma 7.1.2. The set of upper sums is nonempty and bounded below.

Exercise 7.1.3. Prove this Lemma.

The upper integral
´ b

a f of f is the infimum of the set of upper sums for f . That is

ˆ b

a
f := inf

{
∑S | S is an upper step function for f

}
.

Definition 7.1.4. A bounded function f : [a,b] → R is (Riemann) integrable if
´ b

a f =
´ b

a f . We write
´ b

a f for this common value and call this number the inte-
gral of f .

Remark 7.1.5. Consider a positive function f (x)≥ 0 for x ∈ [a,b] . Consider the re-
gion R below the graph of f and above the x-axis. A lower sum for f is a lower
bound for the area of R, see Fig. 7.1. Similarly, an upper sum for f gives an upper
bound for the area of R, see Fig. 7.2. Hence, it is natural to say that R has an area
when f is integrable and that this area equals

´ b
a f . Calculating areas by approxi-

mating both from the outside and from the inside was also done by Archimedes (c.
287 BC Syracuse–c. 212 BC Syracuse).

In the next section, we will obtain a useful characterization of (Riemann) integra-
bility. In particular, we will show that a step function s is integrable and

´ b
a s = ∑s.
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Example 7.1.6. The function f : [0,1]→ R, determined by f (x) = 1 if x ∈ Q and
f (x) = 0 otherwise is not integrable.

Proof. By density of the rationals any upper sum is ≥ 1. Similarly, it follows from
density of the irrationals that any lower sum is ≤ 0. Consequently,

´ 1
0 f ≤ 0 < 1 ≤

´ 1
0 f . �

The integral is monotone in the sense:

Exercise 7.1.7. If f ,g : [a,b]→ R are integrable and f ≤ g, then
´ b

a f ≤
´ b

a g.

More on Step Functions

We establish some technical results related to step functions. The main result shows
that if we have a step function s and construct a new step function s′ by inserting
additional partition points, then the two step functions s and s′ have the same sum.
Hence, when considering two step function s and S we can assume they have the
same partition points.

Fig. 7.3 Inserting one additional partition point. The figure on the right has one additional partition
point. Clearly, the two step functions have the same sum

Let P : a= x0 < x1 < · · ·< xm = b and Q : a= y0 < y1 < · · ·< yn = b be partitions
of [a,b] . If

{
x j | j = 1,2, . . . ,m

}
is a subset of {yk | k = 0,1, . . . ,n} , then Q is a

refinement of P. If g is a step function with respect to some partition P and that Q is
a refinement of P, then we can also view g as a step function with respect to Q, the
next lemma shows that ∑p g = ∑Q g. See Fig. 7.3.

Lemma 7.1.8. Let g be a step function. If g′ is obtained from g by inserting a finite
number of additional partition points, then ∑g′ = ∑g.

Proof. Consider a step function g = ∑n
k=1 Ak1]xk−1xk[. Let t a point in [a,b] which

is not one of the xi’s. Suppose x j−1 < t < x j. Let yk := xk and Bk := Ak, when
k < j; y j := t, B j := A j; and yk := xk−1 and Bk := Ak−1, when k > j. Let g1 :=
∑n+1

k=1 Bk1]yk−1,yk[. Then g1(x) = Ai if xi−1 < x < xi and i �= j, and g(x) = A j if x j−1 <



7.1 Definition of the Integral 131

x < t and if t < x < x j. So g1 has the same values as g, but there is one more division
point. Hence,

∑
P1

g1 =∑
i�= j

Ai(xi− xi−1)+A j(t− x j−1)+A j(x j− t)

=
n

∑
i=1

Ai(xi− xi−1) =∑
P

g,

because (t− x j−1)+(x j− t) = x j− x j−1. Suppose g2 is similarly obtained from g1

by inserting an additional division point, then we get ∑g2 =∑g1. But g2 is obtained
from g by inserting two additional division points and ∑g2 = ∑g. By induction we
can insert any finite number of additional partition points. �

The following consequence of this lemma is very useful.

Corollary 7.1.9. If s, t are step functions with respect to the partitions P,Q of [a,b] ,
then we can view s, t as step functions with respect to the common partition R =
P∪Q and ∑R s = ∑P s and ∑R t = ∑Q t.

If s = ∑n
k=1 Ak1]xk−1xk[

, then as = ∑n
k=1 aAk1]xk−1xk[

, hence a multiple of a step func-
tion is a step function.

Exercise 7.1.10. The sum of two step functions is a step function.

If s is a lower step function for f and S is an upper step function for f then s ≤ S.
But, since s and S may correspond to different subdivisions of [a,b] it is not easy to
compare their sums ∑s and ∑S. The next lemma shows that, in fact, the upper sum
is larger than the lower sum.

Lemma 7.1.11. Let f be a bounded function. If s is a lower step function for f and
S is an upper step function for f , then ∑s≤ ∑S.

Proof. Suppose s corresponds to the partition P : y0 < · · · < yl and S corresponds
to the partition Q : z0 < · · · < zm. Let {x0, . . . ,xn} be the union of {y0, . . . ,yl} and
{z0, . . . ,zm} . So R : x0 < · · · < xn is a refinement of P and of Q. By Lemma 7.1.8
∑P s = ∑R s. Similarly, for ∑Q S = ∑R S. With respect to the partition x0 < · · · < xn

we have s(x)= ai and S(x)=Ai for xi−1 < x< xi. Also, ai = s(x)≤ f (x)≤ S(x)=Ai,
when xi−1 < x < xi, hence ai ≤ Ai. It follows that

∑
R

s =
n

∑
i=1

ai(xi− xi−1)≤
n

∑
i=1

Ai(xi− xi−1) =∑
R

S

as we needed to establish. �
This result seems obvious, if we think of the upper and lower sums in terms of

areas. See Figs. 7.1 and 7.2.

Exercise 7.1.12. Write down a definition of step functions and of the integral for
functions defined on a rectangle.
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7.2 Characterizations of Riemann Integrability

In this section, we establish techniques that simplify verifying that a given function
is integrable and in the affirmative case simplifies calculating its integral.

Preliminary Versions

We begin by observing that Lemma 7.1.11 implies that the lower integral is always
smaller than the upper integral.

Lemma 7.2.1. If f : [a,b]→ R is a bounded function, then
´ b

a f ≤
´ b

a f .

Proof. If s is any lower step function and S is any upper step function, then ∑s≤∑S
by Lemma 7.1.11. Thinking of S as fixed, we see that ∑S is an upper bound for the
set of all lower sums, and therefore

ˆ b

a
f = sup

{
∑s | s

}
≤∑S. (7.1)

But, since S is an arbitrary upper step function, then
´ b

a f is a lower bound for the
set of upper sums. So we get

ˆ b

a
f ≤ inf

{
∑S | S

}
=

ˆ b

a
f . (7.2)

As we needed to show. �
We could have referred to Proposition 3.3.1, instead we repeated the proof.
For any bounded function f any lower step function s and any upper step function

S we have

∑s≤
ˆ b

a
f ≤
ˆ b

a
f ≤∑S (7.3)

by Lemma 7.2.1. In particular, we have an analogue of the Nested Interval Theorem.

Corollary 7.2.2. Suppose f is integrable. If I is a real number such that

∑s≤ I ≤∑S

for all lower step functions s for f and all upper step functions S for f , then
´ b

a f = I.

Our next aim it to make these observations easier to use by showing it is not neces-
sary to consider all step functions.
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Improved Versions

The results in the previous subsection require us to consider all lower sums and all
upper sums. The results in this subsection allow us to use conveniently chosen lower
and upper sums (Fig. 7.4).

Fig. 7.4 The shaded area illustrates ∑S−∑s. Compare to Figs. 7.1 and 7.2

Theorem 7.2.3 (Existence Theorem for Integrals). Let f : [a,b]→R be a bounded
function. Then f is integrable if and only if given any ε > 0 there exists a lower step
function sε for f and an upper step function Sε for f such that ∑Sε −∑sε < ε .

Proof. Suppose f is integrable. Let ε > 0 be given. Let s be a lower step function

such that
´ b

a f <∑s+ ε
2 and let S be an upper step function such that ∑S− ε

2 <
´ b

a f .

Since
´ b

a f =
´ b

a f we get ∑S− ε
2 < ∑s+ ε

2 . Rearranging, leads to ∑S−∑s < ε .

Conversely, suppose f is not integrable. Let ε :=
´ b

a f −
´ b

a f , then ε > 0. If s is
any lower step function and S is any upper step function, then

∑s≤
ˆ b

a
f =
ˆ b

a
f − ε ≤∑S− ε .

Hence, ∑S−∑s≥ ε as we needed to show. �
The condition that given any ε > 0 we can find a lower step function s for f and

an upper step function S for f such that ∑S−∑s < ε , is satisfied if we can find a
sequence (sn) of lower step functions for f and a sequence (Sn) upper step functions
for f such that the sequence (∑Sn−∑sn) is null, hence:

Corollary 7.2.4. Let f : [a,b]→ R be bounded. If there are lower step functions sn

and upper step functions Sn for f , such that the sequence (∑Sn−∑sn) is null, then
f is integrable.

The next result allows us to evaluate
´ b

a f at the same time as we show that f is
integrable.



134 7 The Riemann Integral

Theorem 7.2.5 (Evaluation Theorem for Integrals). Let f : [a,b] → R be a
bounded function and let I be a real number. Suppose for any ε > 0 we can find
a lower step function sε for f and an upper step function Sε for f , such that

∑Sε −∑sε < ε and ∑sε ≤ I ≤ ∑Sε , then f is integrable and
´ b

a f = I.

Proof. It follows from the Existence Theorem (Theorem 7.2.3) that f is integrable.

Suppose
´ b

a f �= I. Let ε :=
∣
∣
∣I−
´ b

a f
∣
∣
∣/2. Then I and

´ b
a f both are in the interval

[sε ,Sε ]. Since this interval has length ε ,
∣
∣
∣I−
´ b

a f
∣
∣
∣≤ ε . That is

∣
∣
∣
∣
∣
I−
ˆ b

a
f

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
I−
ˆ b

a
f

∣
∣
∣
∣
∣
/2.

This contradiction completes the proof. �
As above, we can formulate this in terms of sequences:

Corollary 7.2.6. Let f : [a,b]→ R be bounded. If there are lower step functions sn

and upper step functions Sn for f , such that the sequence (∑Sn−∑sn) is null and I

is a real number such that sn ≤ I ≤ Sn for all n, then f is integrable and
´ b

a f = I.

Example 7.2.7. Let f (x) = 2x. Then f is integrable on [0,3] and
´ 3

0 f = 9.

Proof. Consider the partition xk := 3k
n , k = 0,1, . . . ,n of the interval [0,3]. Since f

is increasing

sn :=
n

∑
k=1

f (xk−1)1]xk−1,xk[
=

n

∑
k=1

6
n
· (k−1) ·1] 3k−3

n , 3k
n [

is a lower step function for f and

Sn :=
n

∑
k=1

f (xk)1]xk−1,xk[
=

n

∑
k=1

6
n
· k ·1] 3k−3

n , 3k
n [

is an upper step function for f . Using ∑m
k=1 k = m(m+1)

2 it follows that

∑sn =
6
n

(
n−1

∑
k=1

k

)
3
n
=

6
n
· (n−1)n

2
· 3

n
= 9

(
1− 1

n

)
.

Similarly,

∑Sn = 9

(
1+

1
n

)
.

Hence, the sequence ∑Sn−∑sn =
18
n is null and

∑sn ≤ 9≤∑Sn

for all n. �
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7.3 Examples of Integrable Functions

In this section, we show that step functions, monotone functions, and continuous
functions defined on compact intervals are integrable.

Proposition 7.3.1. If f : [a,b]→R is a step function, then f is integrable and
´ b

a f =
∑ f .

Proof. Let s = f and S = f then s is a lower step function for f and S is an upper
step function for f . Clearly, ∑S−∑s = 0 and ∑s ≤ ∑ f ≤ ∑S. Hence, the result
follows from Theorem 7.2.5. �

Fig. 7.5 Illustrating ∑S−∑s = ( f (b)− f (a)) b−a
n in the proof of Theorem 7.3.2. The rectangle

on the left has height f (b)− f (a) and width b−a
n

Theorem 7.3.2. Monotone functions are integrable.

Proof. Let f : [a,b]→ R be increasing. f is bounded since f (a)≤ f (x)≤ f (b). Let
ε > 0 be given. Let n be an integer such that

( f (b)− f (a))
b−a

n
< ε .

Let xi = a+ b−a
n i for i = 0, . . . ,n; and let s(x) = f (xi−1) for xi−1 < x < xi. Since f is

increasing s is a lower step function for f . Similarly, S(x) = f (xi) for xi−1 < x < xi

determines an upper step function for f .

∑S−∑s =∑ f (xi)(xi− xi−1)−∑ f (xi−1)(xi− xi−1)

since xi− xi−1 =
b−a

n we get

∑S−∑s =∑( f (xi)− f (xi−1))
b−a

n
= ( f (b)− f (a))

b−a
n

< ε .

See Fig. 7.5. So f is integrable by Theorem 7.2.3. �
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Recall, a monotone function can be discontinuous at an infinite number of points,
in fact, it can be discontinuous at a dense set of points, see Example 5.1.5.

Fig. 7.6 Illustrating ∑S−∑s< ε in the proof of Theorem 7.3.3. Since Mi−mi <
ε

b−a , the rectangle
at the bottom has height < ε

b−a . Clearly, it has width b−a

Theorem 7.3.3. Continuous functions are integrable.

Proof. Let f : [a,b] → R be continuous. Then f is bounded, since a continuous
function on a compact intervals has a largest and a smallest value. Let ε > 0 be
given. Since f is defined on a compact interval f is uniformly continuous. Hence,
there exists a δ > 0, such that |x− y| < δ implies | f (x)− f (y)|< ε

b−a . Let n be an

integer such that b−a
n < δ . Let xi = a+ b−a

n i for i = 0, . . . ,n. Let mi = f (x∗i ) be the
smallest value of f on the interval [xi−1,xi]. Let Mi = f (y∗i ) be the largest value of
f on the interval [xi−1,xi]. Since x∗i and y∗i are in [xi−1,xi] we have

|x∗i − y∗i | ≤ |xi− xi−1|=
b−a

n
< δ ,

hence Mi−mi = f (y∗i )− f (x∗i ) <
ε

b−a . Let s(x) = mi on xi−1 < x < xi. Then s is a
lower step function for f by the construction of mi. Similarly, S(x) = Mi on xi−1 <
x < xi is an upper step function for f . By construction of s and S we have (Fig. 7.6)

∑S−∑s =∑(Mi−mi)(xi− xi−1)

<
ε

b−a∑(xi− xi−1)

= ε .

Hence, f is integrable by Theorem 7.2.3. �
Below is an outline that shows how the preceding two proofs are similar.

Proof. [Unified proof of the two previous theorems] Let f : [a,b]→ R be a bounded
function. Let ε > 0 be given. Let s and S be a lower and an upper step function for
f . By Corollary 7.1.9 we may assume that s and S corresponds to the same partition.
If
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∑s =∑mi(xi− xi−1)

∑S =∑Mi(xi− xi−1)

then

∑S−∑s =∑(Mi−mi)(xi− xi−1).

If f is continuous, then f is uniformly continuously, hence we can choose the parti-
tion such that

Mi−mi < ε̃ :=
ε

b−a
.

Consequently,

∑S−∑s≤ ε̃ ∑(xi− xi−1) = ε̃(b−a) = ε .

If f is increasing, then Mi = f (xi) and mi = f (xi−1). So, we choose the partition
such that

xi− xi−1 ≤ δ :=
ε

f (b)− f (a)
.

Consequently,

∑S−∑s≤∑( f (xi)− f (xi−1))δ = ( f (b)− f (a))δ = ε .

In either case, f is integrable by Theorem 7.2.3. �
Exercise 7.3.4. If f : [a,b]→ R is continuous, f ≥ 0, and

´ b
a f = 0, then f = 0.

Exercise 7.3.5. If f : [a,b] :→ R is continuous, f ≥ 0, and f (c) > 0 for some c ∈
[a,b], then

´ b
a f > 0.

7.4 Algebra of Integrable Functions

In order not to have to refer to the lower/upper step functions every time we con-
sider an integral we need to develop some properties of the integral. Doing so is the
purpose of this section and of Sect. 7.5.

The transformation f →
´ b

a f is linear:

Proposition 7.4.1. Let f and g be integrable functions on [a,b] and let c and d be

constants, then c f +dg is integrable and
´ b

a (c f +dg) = c
´ b

a f +d
´ b

a g.

Proof. Suppose k > 0. Let ε > 0 be given. Suppose s (resp. S) is a lower (resp.
upper) step function for f such that ∑S−∑s < ε

k . Since k > 0, ks (resp. kS) is a
lower (resp. upper) step function for k f such that ∑kS−∑ks = k (∑S−∑s) < ε .
Furthermore,

∑ks = k∑s≤ k
ˆ b

a
f ≤ k∑S =∑kS.

Hence, it follows from Theorem 7.2.5 that k f is integrable and
´ b

a k f = k
´ b

a f .
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It remains to show that f +g is integrable and that
´ b

a ( f +g) =
´ b

a f +
´ b

a g. Let
ε > 0 be given. Let s f ,sg,S f ,Sg be step functions such that s f (x) ≤ f (x) ≤ S f (x),
sg(x)≤ g(x)≤ Sg(x) for all x in [a,b], (except possibly at partition points, as usual,)
and such that ∑S f −∑s f <

ε
2 and ∑Sg−∑sg <

ε
2 . Then

s f (x)+ sg(x)≤ ( f +g)(x)≤ S f (x)+Sg(x),

so s f + sg is a lower step function for f +g and S f +Sg is an upper step function for
f +g. Clearly,

∑(S f +Sg)−∑(s f + sg) =∑S f −∑s f +∑Sg−∑sg

<
ε
2
+

ε
2
= ε

and

∑(s f + sg) =∑s f +∑sg ≤
ˆ b

a
f +
ˆ b

a
g

≤∑S f +∑Sg =∑(S f +Sg).

So f +g is integrable and
´ b

a ( f +g) =
´ b

a f +
´ b

a g. �
Exercise 7.4.2. Complete the proof when k ≤ 0.

Remark 7.4.3. Many proof using step functions follow the pattern used in the proof
of linearity: Assume f and g are integrable and you want to show that some “trans-
form” of f and/or g is integrable. Pick lower/upper step functions s f /S f and sg/Sg

for f and g, such that ∑S f −∑s f and ∑Sg−∑sg are “small.” Apply the transform
to the step functions. Check that the transformed step functions give lower/upper
step functions for the transformed functions and that the difference of the sums of
the transformed step functions is small.

Given a function f the function f+(x) := max{ f (x),0} is the positive part of f and
f−(x) :=max{− f (x),0} is the negative part of f . Note f = f+− f− and f+ f−= 0.
(Fig. 7.7)

Before dismissing the following theorem as trivial the reader may want to re-
call that, if σ is the pseudosine function, then xσ(1/x) is continuous on [0,1] and
changes sign infinitely many times on the interval [0,1].

Proposition 7.4.4. If f is integrable, then so are the positive and negative parts f±

of f .

Proof. Let ε > 0 be given. Let s = ∑n
k=1 ak1]xk−1,xk[

be a lower step function for f
and let S =∑n

k=1 Ak1]xk−1,xk[ be an upper step function for f , such that ∑S−∑s < ε .
Let

a+k :=

{
ak if ak ≥ 0

0 if ak < 0
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Fig. 7.7 Illustrating the positive and negative parts f± of a function f . In this example, f = σ is
the pseudosine function. In both graphs f is the thin curve. In the graph on the left f+ is the thicker
dashed curve and in the graph on the right f− is the thicker dashes curve

Fig. 7.8 The figure on the left shows f , s, and S. The figure on right shows f+, s+, and S+.
Illustrating s+ is a lower step function for f+, S+ is an upper step function for f+, and A+

k −a+k ≤
Ak−ak

and similarly for A+
k . Then s+ = ∑n

k=1 a+k 1]xk−1,xk[ and S+ = ∑n
k=1 A+

k 1]xk−1,xk[. It
follows, see Fig. 7.8, that s+ is a lower step function for f , S+ is an upper step
function for f , and A+

k −a+k ≤ Ak−ak. The inequality yields

∑S+−∑s+ =
n

∑
k=1

(
A+

k −a+k
)
(xk− xk−1)

≤
n

∑
k=1

(Ak−ak)(xk− xk−1)

=∑S−∑s < ε .

Thus f+ is integrable. The claim for f− can be established in a similar fashion or
by showing that f− = (− f )+ and then using the result for f+. �
Exercise 7.4.5. Complete the proof by showing that f− is integrable.

The next two results show that, if f is integrable so is the absolute value | f |(x) :=
| f (x)| and establishes a triangle inequality for integrals.

Exercise 7.4.6. If f is integrable, then so is | f |.

Exercise 7.4.7. If f is integrable, then
∣
∣
∣
´ b

a f
∣
∣
∣≤
´ b

a | f | .
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The next result shows that the restriction of an integrable function on [a,b] to some
subinterval [c,d] ⊂ [a,b] is integrable on [c,d]. The result will be useful when we
discuss the Fundamental Theorem of Calculus.

Theorem 7.4.8. If f in integrable on [a,b] and [c,d]⊆ [a,b], then f is integrable on
[c,d].

Proof. Let g be the restriction of f to [c,d]. We must show that g is integrable on
[c,d].

Let ε > 0 be given. Let s,S be upper and lower step functions for f , such that
∑S−∑s < ε . We may assume that s and S have the same partition points x0 <
x1 < · · · < xn, and that c,d are among these partition points. Suppose c = xm and
d = xm+k. If t is the restriction of s to [c,d] and T is the restriction of S to [c,d], then

∑T −∑ t =
m+k

∑
i=m+1

(Mi−mi)(xi− xi−1)

≤
n

∑
i=1

(Mi−mi)(xi− xi−1)

=∑S−∑s≤ ε .

The inequality uses all the terms in both sums are positive and that all the terms in
the first sum are also terms in the second sum. See Fig. 7.9. �

Fig. 7.9 Illustrating the proof of Theorem 7.4.8. In particular, the inequality ∑T −∑ t ≤ ∑S−∑s

The next two related results (Exercises 7.4.9 and 7.4.10) can be established using
similar arguments.

Exercise 7.4.9. If a < c < b, then
´ b

a f =
´ c

a f +
´ b

c f .

We define
´ a

a f := 0 and if a < b we define
´ a

b f := −
´ b

a f . With this notation Ex-

ercise 7.4.9 implies
´ b

a f =
´ c

a f +
´ b

c f for all a,b,c provided the three integrals
exists.

The previous two results involved splitting up the interval, the next exercise puts
two intervals together.
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Exercise 7.4.10. Suppose a < b < c. Let g : [a,b]→ R and h : [b,c]→ R be inte-
grable. Show that

f (x) :=

{
g(x) when a≤ x≤ b

h(x) when b < x≤ c

determines an integrable function f , and

ˆ c

a
f =
ˆ b

a
g+
ˆ c

b
h.

Clearly, this can be extended to a finite number of terms by induction. Our next goal
is to show that the product of two integrable functions is an integrable function.

Exercise 7.4.11. If f is integrable on [a,b] and f ≥ 0, then f 2 is integrable on [a,b].

Exercise 7.4.12. If f is integrable on [a,b], then f 2 is integrable on [a,b].

Theorem 7.4.13. If f and g are integrable on [a,b], then the product f g is integrable
on [a,b].

Proof. f + g and f − g are integrable, since sums and constant multiples of in-
tegrable functions are integrable. So ( f + g)2 and ( f − g)2 are integrable by the
previous exercise. Since

f g = 1
4

(
( f +g)2− ( f −g)2)

we conclude f g is integrable. �
The composition of two integrable functions need not be integrable, see the prob-

lems for an example illustrating this.

7.5 The Fundamental Theorem of Calculus

In this section, we relate the integral to the derivative, that is, we prove the two
versions of the Fundamental Theorem of Calculus. Isaac Newton (4 January 1643
Woolsthorpe-by-Colsterworth to 31 March 1727 Kensington) established the Fun-
damental Theorem as we know it. We also derive some consequences of the Funda-
mental Theorem.

Theorem 7.5.1. [The Fundamental Theorem of Calculus, Part I, FTC-Derivative]
Suppose f : [a,b]→ R is integrable on [a,b] and continuous at x0. Let g(x) :=

´ x
a f .

Then g is differentiable at x0 and g′ (x0) = f (x0) .

Proof. Fix x0 ∈ [a,b]. Let ε > 0 be given. Since f is continuous at x0 there is a δ > 0
such that |t− x0|< δ implies | f (t)− f (x0)|< ε . Clearly,

g(x)−g(x0)

x− x0
=

1
x− x0

(ˆ x

a
f −
ˆ x0

a

)
=

1
x− x0

ˆ x

x0

f .
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Hence, when x0 < x < x0 +δ
∣
∣
∣
∣
g(x)−g(x0)

x− x0
− f (x0)

∣
∣
∣
∣=
∣
∣
∣
∣

(
1

x− x0

ˆ x

x0

f

)
− f (x0)

∣
∣
∣
∣

=

∣
∣
∣
∣

1
x− x0

ˆ x

x0

( f − f (x0))

∣
∣
∣
∣

≤ 1
x− x0

ˆ x

x0

| f − f (x0)|

≤ 1
x− x0

ˆ x

x0

ε = ε .

Thus, g′ (x0) exists and g′ (x0) = f (x0) . �
Exercise 7.5.2. Complete the proof by considering x0−δ < x < x0.

Theorem 7.5.3. [The Fundamental Theorem of Calculus, Part II, FTC-Evaluation]
If f : [a,b]→ R is integrable and F : [a,b]→ R is continuous on [a,b], differentiable
on ]a,b[, and F ′ = f on ]a,b[, then

ˆ b

a
f = F(b)−F(a).

Proof. Let S = ∑Ai1]xi−1,xi[ be an upper step function for f . By the Mean Value
Theorem there are xi−1 < ci < xi such that

F(b)−F(a) =
n

∑
i=1

(F (xi)−F (xi−1))

=
n

∑
i=1

f (ci)(xi− xi−1)

≤
n

∑
i=1

Ai (xi− xi−1)

=∑S.

The inequality used that f (x)≤Ai for all xi−1 < ci < xi. Similarly, ∑s≤F(b)−F(a)
for any lower step function for f . An application of the Evaluation Theorem for
Integrals completes the proof. �
Exercise 7.5.4. Verify, the claim, that ∑s≤ F(b)−F(a) for any lower step function
for f .

Example 7.5.5. If F is not differentiable at all points in the interval, then the con-
clusion of part II of the fundamental theorem may fail. To see this let F(x) :={

0 when −1≤ x < 0

1 when 0 < x≤ 1
, then f (x) := F ′(x) = 0, x �= 0, determines an integrable



7.5 The Fundamental Theorem of Calculus 143

function, but
´ 1
−1 f = 0 �= 1 = F(1)−F(−1). Hence, F must be differentiable at all

points in the interval.

The reader might have noticed that the F is the previous problem is not even con-
tinuous, much less differentiable.

Remark 7.5.6. (For those familiar with the Devil’s Staircase.) Let F be the Devil’s
Staircase. Then F ′ = 0 on the complement [0,1] \C of the Cantor set C. Hence,
´ 1

0 f = 0 �= 1 = F(1)−F(0), where f is any bounded function that equals F ′ on the
complement of the Cantor set.

Remark 7.5.7. A weaker version of the second part of the fundamental theorem can
be derived from the first part. To apply the first part of the fundamental theorem we
must assume f is continuous not just integrable. This proof of the weaker version of
part II of the fundamental theorem is outlined below.

Proof. Suppose f is continuous. Let G(x) =
´ x

a f . By part I of the Fundamental
Theorem of Calculus, G′ = f = F ′. So (F−G)′ = 0 and therefore F−G is constant.
In particular,

F(b)−G(b) = F(a)−G(a).

Consequently,

F(b)−F(a) = G(b) =
ˆ b

a
f

since G(a) = 0. �
The basic computational rules: Integration by Parts and the Change of Variables
Formula are consequences of FTC-Evaluation.

Theorem 7.5.8 (Integration by Parts). Suppose f and g are differentiable and that
the derivatives f ′ and g′ are integrable on [a,b], then

ˆ b

a
f g′ = f (b)g(b)− f (a)g(a)−

ˆ b

a
f ′g.

Proof. It follows from the product rule that

( f g)′ = f ′g+ f g′ hence f g′ = ( f g)′ − f ′g.

All the terms in the last equality are integrable. For example, f is differentiable,
hence continuous and therefore integrable and g′ is integrable by assumption. Since
the product of two integrable functions is an integrable function we conclude the
product f g′ is integrable. Similarly f ′g is integrable. Finally, ( f g)′ is integrable,
since it equals the sum of the integrable functions f ′g and f g′. So by linearity of
the integral ˆ b

a
f g′ =

ˆ b

a
( f g)′ −

ˆ b

a
f ′g.

Since ( f g)′ is integrable we can apply FTC-Evaluation to conclude
´ b

a ( f g)′ =
( f g)(b)− ( f g)(a). �



144 7 The Riemann Integral

Example 7.5.9. If f has a continuous second derivative f ′′, that is f ∈ C 2, then

f (b) = f (a)+(b−a) f ′(a)+
ˆ b

a
(b− x) f ′′(x)dx.

Proof. Using integration by parts and FTC-Evaluation we get

ˆ b

a
(b− x) f ′′(x)dx = (b−b) f ′(b)− (b−a) f ′(a)−

ˆ b

a
(0−1) f ′(x)dx

=−(b−a) f ′(a)+ f (b)− f (a).

Rearranging leads to the desired formula. �
By induction this argument leads to Taylor’s Formula, with the remainder in

integral form. See the problems.
The following is sometimes called Integration by Substitution.

Theorem 7.5.10 (Change of Variables). Suppose F and g are differentiable. As-
sume f := F ′ is integrable on the closed interval with endpoints g(a) and g(b) and
that f ◦g and g′ are integrable on [a,b], then

ˆ b

a
( f ◦g)g′ =

ˆ g(b)

g(a)
f . (7.4)

Proof. The functions f ,F satisfies the assumptions of FTC-Evaluation on the inter-

val with endpoints g(a) and g(b), hence
´ g(b)

g(a) f = F(g(b))−F(g(a)).

The product ( f ◦g)g′ is integrable, since f ◦g and g′ are integrable and the prod-
uct of integrable functions is integrable. Using

(F(g(x)))′ = f (g(x))g′(x)

and FTC-Evaluation we conclude
´ b

a ( f ◦g)g′ = F(g(b))−F(g(a)).
Since both integrals equals F(g(b))−F(g(a)), they are equal. Consequently, we

have established (7.4). �
Sometimes it is convenient to write

ˆ b

a
f (x)dx :=

ˆ b

a
f .

With this notation (7.4) is sometimes written as

ˆ b

a
f (g(x))g′(x)dx =

ˆ g(b)

g(a)
f (u)du

where the change of variables is u = g(x).
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Example 7.5.11. Consider the integral

I =
ˆ 1

0
x
√

1+ x2 dx.

If f (u) :=
√

u and g(x) := 1+x2, then f ◦g(x) = f (g(x)) =
√

1+ x2 and g′(x) = 2x.
Hence,

I =
1
2

ˆ 1

0
f (g(x))g′(x)dx.

Now g(0) = 1 and g(1) = 2, so by (7.4) and FTC-Evaluation

I =
1
2

ˆ 2

1
f (u)du =

1
2

ˆ 2

1

√
udu =

1
3

(
23/2−13/2

)
.

Linear Change of Variables

In the change of variables theorem we assumed that f ◦g is integrable. The reason
for this is that there are integrable functions f and g such that f ◦g makes sense, yet
f ◦g is not integrable. In some cases f ◦g is integrable, for example, if f and g both
are continuous, then f ◦ g is continuous and therefore integrable. We will have use
for the case where f is integrable and g is linear.

Theorem 7.5.12. If f : [a,b]→ R is integrable, α �= 0 and β are real numbers, and

g(x) := αx+β , then f ◦g is integrable on the interval with endpoints g−1(a) = a−β
α

and g−1(b) = b−β
α and

α
ˆ g−1(b)

g−1(a)
f (αx+β )dx =

ˆ b

a
f (u)du.

Proof. Suppose α > 0. Let ε > 0 be given. Pick a lower step function s=∑mk1]xk−1,xk[

for f and an upper step function S = ∑Mk1]xk−1,xk[
for f such that ∑S−∑s <

αε . Then t := ∑mk1]g−1(xk−1),g−1(xk)[
is a lower step function for f ◦ g and T :=

∑Mk1]g−1(xk−1),g−1(xk)[
is an upper step function for f ◦g. Since, g−1(x) = x−β

α , we
see that

∑ t =∑mk
(
g−1(xk)−g−1(xk−1)

)
=

1
α ∑mk (xk− xk−1) =

1
α ∑s

and similarly ∑T = 1
α ∑S. Consequently, ∑T −∑ t = 1

α (∑S−∑s)< ε , so f ◦g is
integrable, by the Existence Theorem for Integrals. Also,

∑s = α∑ t ≤ α
ˆ g−1(b)

g−1(a)
f ◦g≤ α∑T =∑S

hence
´ b

a f = α
´ g−1(b)

g−1(a)
f ◦g, by the Evaluation Theorem for Integrals.

The case where α < 0 is similar. �
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7.6 Improper Integrals

Unbounded Intervals

We defined the integral on closed and bounded intervals. We extend this to un-
bounded intervals in the following way.

We say the integral
´ ∞

a f exists, if f is integrable on [a,b] for all b > a and the
limit ˆ ∞

a
f := lim

b→∞

ˆ b

a
f

exists. Similarly, we can consider
´ b
−∞ f . We let

ˆ ∞

−∞
f :=
ˆ 0

−∞
f +
ˆ ∞

0
f

provided both limits exists.

Exercise 7.6.1. Let f (x) := 1/xp for some p > 1. Show
´ ∞

1 f exists.

Unbounded Functions

We will write ˆ b

a
f := lim

c↗b

ˆ c

a
f

if f is integrable on [a,c] for all c ∈]a,b[ and the limit exists. Similarly,

ˆ b

a
f := lim

c↘a

ˆ b

c
f ,

if f is integrable on [c,b] for all c ∈]a,b[ and the limit exists. This sometimes allows
us to consider the integral in cases, where f may not be bounded on the interval of
interest.

Exercise 7.6.2. Let f (x) := 1/xp for some 0 < p < 1. Show
´ 1

0 f exists.

7.7 Complex Valued Functions

Complex values functions are integrated by integrating their real and imaginary
parts. Let f : [a,b] → C. We say f is integrable on [a,b], if the real and imagi-
nary parts, Re f and Im f , of f both are integrable on [a,b]. If f is integrable on
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[a,b] we set

ˆ b

a
f =
ˆ b

a
(Re f + i Im f ) :=

ˆ b

a
Re f + i

ˆ b

a
Im f .

Since the integral of a complex valued function is determined by its real and
imaginary parts, we get many properties of the integral of complex valued functions
by considering the real and imaginary parts of such functions. For example,

Exercise 7.7.1. If f ,g : [a,b]→ C are integrable, then

1. f +g is integrable and
´ b

a ( f +g) =
´ b

a f +
´ b

a g.
2. f g is integrable.

The main result in this section is:

Theorem 7.7.2. If f : [a,b]→ C is integrable, then | f | is integrable on [a,b].

Proof. Since products and sums of real valued integrable functions are integrable

and | f | =
√
(Re f )2 +(Im f )2, it is sufficient to show, if f ≥ 0 is integrable, then√

f is integrable. This is established in Proposition 7.7.4. �
Exercise 7.7.3. Show

∣
∣√x−√y

∣
∣ ≤

√
|x− y| for all x,y ≥ 0. [That is x → √

x is
α−Hölder on [0,∞[ with α = 1/2.]

Proposition 7.7.4. If f ≥ 0 is integrable on [a,b], then
√

f is integrable on [a,b].

Proof. Suppose f ≥ 0 is integrable on [a,b]. Let ε > 0 be given. Let

δ := min

{

ε ,
(

ε
2(b−a)

)2
}

.

In particular, 0 < δ ≤ ε .
Since f is integrable, f is bounded. Let M be an upper bound for f . Since f is

integrable, there is a lower step function s̃ = ∑n
i=1 ãi1]xi−1,xi[ for f and an upper step

function S̃ = ∑n
i=1 Ãi1]xi−1,xi[ for f such that ∑ S̃−∑ s̃ < δ 2

2
√

M
. Let ai := max{0, ãi}

and Ai := min
{

M, Ãi

}
, then 0 ≤ ai ≤ Ai ≤ M, s = ∑n

i=1 ai1]xi−1,xi[ is a lower step

function for f and S = ∑n
i=1 Ai1]xi−1,xi[ in an upper step function for f . Since 0 ≤

Ai−ai ≤ Ãi− ãi we have

∑S−∑s =
n

∑
i=1

(Ai−ai)(xi− xi−1)

≤
n

∑
i=1

(
Ãi− ãi

)
(xi− xi−1) (7.5)

=∑ S̃−∑ s̃ <
δ 2

2
√

M
.

Since
√

s = ∑n
i=1
√

ai1]xi−1,xi[ is a lower step function for
√

f and
√

S = ∑n
i=1

√
Ai1]

xi−1,xi[ is an upper step function for
√

f , it remains to check that ∑
√

S−∑
√

s < ε .
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Clearly,

∑
√

S−∑
√

s =
n

∑
i=1

(√
Ai−

√
ai

)
(xi− xi−1) .

We split the set {1,2, . . . ,n} into two disjoint subsets and estimate the sum over each
of those subsets and show that each of those sums is < ε/2. Let

I1 := {i | Ai−ai < δ} and

I2 := {i | Ai−ai ≥ δ} .

We complete the proof by showing that

∑
i∈Ik

(√
Ai−

√
ai

)
(xi− xi−1)<

ε
2

for k = 1,2.
k = 1 : Let i ∈ I1. Then Ai−ai < δ , hence Exercise 7.7.3 implies

∣
∣
∣
√

Ai−
√

ai

∣
∣
∣<

√
δ ≤ ε

2(b−a)
. (7.6)

Using (7.6) we get

∑
i∈I1

(√
Ai−

√
ai

)
(xi− xi−1)< ∑

i∈I1

ε
2(b−a)

(xi− xi−1)≤
ε
2
.

k = 2 : For i ∈ I2 we have

δ ∑
i∈I2

(xi− xi−1)≤ ∑
i∈I2

(Ai−ai)(xi− xi−1)

≤∑
all i

(Ai−ai)(xi− xi−1)

=∑S−∑s

<
δ 2

2
√

M
.

The first inequality is the definition of I2, the last inequality is (7.5). Dividing by δ
leads to

∑
i∈I2

(xi− xi−1)<
δ

2
√

M
.

Consequently, 0≤
√

Ai−
√

ai ≤
√

Ai ≤
√

M implies

∑
i∈I2

(√
Ai−

√
ai

)
(xi− xi−1)≤ ∑

i∈I2

√
M(xi− xi−1)

<
√

M
δ

2
√

M
=

δ
2
≤ ε

2
.

The last inequality is δ ≤ ε . �
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We can now establish a triangle inequality for the integral of complex valued
functions.

Theorem 7.7.5. If h : [a,b]→ C is integrable, then
∣
∣
∣
´ b

a h
∣
∣
∣≤
´ b

a |h| .

Proof. Let f := Reh and g := Imh, then f and g are real valued integrable functions
and we can write the desired conclusion as

√√
√
√
(ˆ b

a
f

)2

+

(ˆ b

a
g

)2

≤
ˆ b

a

√
f 2 +g2. (7.7)

Since,
∣
∣
∣
´ b

a f
∣
∣
∣ ≤
´ b

a | f | and
∣
∣
∣
´ b

a g
∣
∣
∣ ≤
´ b

a |g| (by Exercise 7.4.7) and f 2 + g2 = | f |2 +
|g|2 , the inequality (7.7) follows from

√√
√
√
(ˆ b

a
| f |
)2

+

(ˆ b

a
|g|
)2

≤
ˆ b

a

√
| f |2 + |g|2.

But, this is just (7.7) for | f | and |g| . Thus, we will establish (7.7) for f ≥ 0 and
g≥ 0.

Suppose f ≥ 0 and g ≥ 0 are integrable. Let 0 ≤ sn = ∑n
i=1 ai1]xi−1,xi[ be a se-

quence of lower step functions for f such that ∑sn →
´ b

a f , and similarly, let
0 ≤ tn = ∑n

i=1 bi1]xi−1,xi[ be a sequence of lower step functions for g such that

∑ tn →
´ b

a g. In particular,

√(
∑sn

)2
+
(
∑ tn

)2 →

√√
√
√
(ˆ b

a
f

)2

+

(ˆ b

a
g

)2

. (7.8)

Using
(
1]xi−1,xi[

)2
= 1]xi−1,xi[, we see that for xk−1 < x < xk we have

un(x) :=
√
(sn)

2 +(tn)
2(x) =

√√
√
√
(

n

∑
i=1

ai1]xi−1,xi[(x)

)2

+

(
n

∑
i=1

bi1]xi−1,xi[(x)

)2

=

√
(ak)

2 +(bk)
2 =

n

∑
i=1

√(
a2

i

)
+(bi)

21]xi−1,xi[(x).

In particular, un is a lower step function for
√
| f |2 + |g|2. Consequently,

n

∑
i=1

√(
a2

i

)
+(bi)

2 (xi− xi−1)∑un ≤
ˆ b

a

√
f 2 +g2. (7.9)
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If √(
∑sn

)2
+
(
∑ tn

)2 ≤∑un, (7.10)

then (7.8) and (7.9) gives (7.7) and the proof is complete. Write (7.10) as
√√
√
√
(

n

∑
i=1

ai (xi− xi−1)

)2

+

(
n

∑
i=1

bi (xi− xi−1)

)2

=

√(
∑sn

)2
+
(
∑ tn

)2

≤∑un =
n

∑
i=1

√
(ai)

2 +(bi)
2 (xi− xi−1)

=
n

∑
i=1

√
(ai (xi− xi−1))

2 +(bi (xi− xi−1))
2.

Setting αi := ai (xi− xi−1) and βi := bi (xi− xi−1) , reduces the previous inequality
to √√

√
√
(

n

∑
i=1

αi

)2

+

(
n

∑
i=1

βi

)2

≤
n

∑
i=1

√
(αi)

2 +(βi)
2 (7.11)

for αi ≥ 0 and βi ≥ 0. �
Exercise 7.7.6. Verify (7.11) for all real αi and βi.

Problems

Problems for Sect. 7.1

1. If

f (x) =

{
1 if x > 0

−1 if x < 0
,

then f is integrable on [−1,1] and
´ 1
−1 f = 0. [Hint: Any lower sum is ≤ 0 and

some lower sum is = 0. Hence,
´ 1
−1 f = 0.]

2. Let C be the Cantor set and let f : [0,1]→ R be determined by

f (x) :=

{
1 when x ∈C

0 when x /∈C
.

Find an upper step function S for f such that ∑S < 1
2 .
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Problems for Sect. 7.2

1. Let f (x) = 2x. Use Corollary 7.2.6 to show f is integrable on [0,2] and
´ 2

0 f = 4.
2. Let

f (x) =

{
0 if x /∈ {1/n | n ∈ N}
1 if x ∈ {1/n | n ∈ N}.

Prove that f is integrable on [0,1] and
´ 1

0 f = 0.

3. Prove a characterization of integrability in the spirit of this section for functions
defined on a rectangle.

The following method for evaluating the integral of xk is due to Pierre de Fermat
(17 August 1601 Beaumont-de-Lomagne to 12 January 1665 Castres).

4. Fix k ∈N. Let f (x) := xk and a > 1. Let r := a1/n. Consider the partition 1 < r <
r2 < · · ·< rn−1 < a of [1,a].

a. Write the corresponding upper and lower sums for
´ a

1 f .
b. Find the limit of these sums as n→ ∞.
c. Evaluate

´ a
1 f .

5. In this problem, we assume familiarity with trigonometric functions. Evaluate
´ π/2

0 sin . You may want to prove

n−1

∑
k=0

sin(a+ kb) =
sin(a+(n−1)b/2)sin)nb/2)

sin(b/2)

and use partitions determined by xi − xi−1 = π
2n . [Hint: One way to prove the

summation formula is to use eit = cos(t)+ isin(t).]

Problems for Sect. 7.3

1. Suppose a≤ xn ≤ b and (xn− c) is null, for some c ∈ [a,b]. Show the character-
istic function 1A of A := {xn | n ∈ N} is integrable on [a,b] and and

´ b
a 1A = 0.

2. Give an example of a sequence xn such that 0 ≤ xn ≤ 1 and the characteristic
function 1A of A := {xn | n ∈ N} is not integrable on [0,1].

3. Let C be the Cantor set. Show the characteristic function 1C of the Cantor set is
integrable on [0,1] and

´ 1
0 1C = 0. [That is, the “length” of the Cantor set is 0.]
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4. Let f : [0,1]→ R be determined by

f (x) :=

{
(−1)p

q when x = p/q

0 when x �∈ Q
.

Show that f is Riemann integrable on [0,1] and
´ 1

0 f = 0.

5. Show that a continuous function defined on a rectangle is integrable on that rect-
angle.

6. Consider the points a1 = 1
2 , a2 = 1

4 , a3 = 3
4 , a4 = 1

8 , a5 = 3
8 , . . . . Let f (x) =

∑k,ak<x
1
2k as in Example 5.1.5. Calculate

´ 1
0 f .

7. Let f and g be continuous real valued functions defined on the compact interval
[a,b] . Suppose g≥ 0, show there is a point c in [a,b] such that

ˆ b

a
f g = f (c)

ˆ b

a
g.

Problems for Sect. 7.4

The purpose of the first three problems below is to show that f ,g integrable � g◦ f
integrable.

1. Let f : [0,1]→ R be determined by

f (x) :=

{
1
q when x = p/q

0 when x �∈ Q
.

Show that f is Riemann integrable on [0,1] and
´ 1

0 f = 0.

2. Let g : [0,1]→ R be determined by

g(x) :=

{
1 when x > 0

0 when x = 0
.

Show that g is Riemann integrable on [0,1] and
´ 1

0 g = 0.

3. Let f and g be as in the preceding two exercises. Note both f and g are functions
[0,1]→ [0,1]. Let h := g◦ f , show that h is not integrable on [0,1].

4. If f is continuous on [c,d], g is integrable on [a,b], and g([a,b]) ⊆ [c,d], then
f ◦g is integrable on [a,b]. [Hint: f is uniformly continuous.]

It can be show that if f is integrable and g is continuous, then f ◦g need not be
integrable. However,
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5. If f is integrable, g is C 1 and g′(x) �= 0 for all x, then f ◦g is integrable. [Hint: g
is monotone.]

Problems for Sect. 7.5

The converse of FTC-Derivative is false, in the sense that differentiability of g(x) =´ x
a f does not imply continuity of f .

1. Give an example of an integrable function f and a point x0 such that g(x) =
´ x

a f
is differentiable at x0 and f is not continuous at x0.

What can we say about g if f is only integrable? One answer is:

2. Suppose f is integrable, prove that g(x) =
´ x

a f is continuous.

3. [Taylor’s formula with integral remainder] If f is C n+1, then

f (b) =
n

∑
j=0

f ( j)(a)
j!

(b−a) j +
1
n!

ˆ b

a
(b− x)n f (n+1)(x)dx.

Problems for Sect. 7.6

1. Suppose 0 ≤ g(x) ≤ f (x) for all x and the improper integral
´ ∞

a f exists. Prove
the improper integral

´ ∞
a g exists.

2. Suppose 0 < a < 1.

a. Show that

0≤
ˆ a

0

dx√
1− x2

≤
ˆ a

0

dx√
1− x

≤ 2.

b. Show that I(a) :=
´ a

0
dx√
1−x2

is increasing and bounded by 2.

c. Deduce that
´ 1

0
dx√
1−x2

exists as an improper integral.

3. If f is integrable on [a,b], then

ˆ b

a
f = lim

c↗b

ˆ c

a
f .

The point of the last problem is that limit used to define the improper integral
agrees with the usual integral, when f is integrable.
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Solutions and Hints for the Exercises

Exercise 7.1.3. Similar to the proof of Lemma 7.1.1.

Exercise 7.1.7. Any lower step function for f is a lower step function for g,
consequently

´ b
a f ≤

´ b
a g.

Exercise 7.1.10. If it is not clear how to proceed: examine the proof of Lemma
7.1.11.

Exercise 7.1.12. If [a,b]× [c,d] is a rectangle, a = x0 < · · ·< xm = b is a partition
of [a,b], c < y0 · · · < yn = d is a partition of [c,d], and A j,k are real numbers, then
f (x,y) := ∑m

j=1∑
n
k=1 A j,k1]x j−1x j [×]yk−1yk[

(x,y) is a step function.

Exercise 7.3.4. If f �= 0, then f (c)> 0 for some c. By Local Positivity for Limits
f is ≥ f (c)/2 on some open interval I containing c. Let L be the length of I. Then
any upper sum for f is ≥ L f (c)/2. Hence, the upper integral of f is ≥ L f (c)/2.
Thus,

´ b
a f ≥ L f (c)/2.

Exercise 7.3.5. Equivalent to the Exercise 7.3.4.

Exercise 7.4.2. If k = 0, k f is the zero function which has integral zero. The case
where k < 0 is similar to the 0 < k case, the only changes are kS is a lower step
function and ks is an upper step function for k f .

Exercise 7.4.5. One way is to mimic the proof that f+ is integrable. Another is
to use that f− = f+− f .

Exercise 7.4.6. Prove and use | f |= f++ f−.

Exercise 7.4.7. Integrate the inequalities −| f | ≤ f ≤ | f |.

Exercise 7.4.9. By the theorem both
´ c

a f and
´ b

c f exists. Let ε > 0 be given.
Since f is integrable on [a,c] there is a lower step function s1 for f on [a,c] and an
upper step function S1 for f on [a,c], such that ∑S1−∑s1 < ε/2. Similarly, there
is a lower step function s2 for f on [c,b] and an upper step function S2 for f on
[c,b], such that ∑S2−∑s2 < ε/2. If s1 = ∑m

k=1 mk1]xk−1,xk[
, S1 = ∑m

k=1 Mk1]xk−1,xk[
,

s2 = ∑n
k=m+1 mk1]xk−1,xk[

, and S2 = ∑n
k=m+1 Mk1]xk−1,xk[

, then s := ∑n
k=1 mk1]xk−1,xk[

is a lower step function for f on [a,b] and S := ∑n
k=1 Mk1]xk−1,xk[ is an upper step

function for f on [a,b].
The rest is similar to the last part of the proof that the sum of two integrable

functions is integrable. We include some of the details. ∑S−∑s = (∑S1 +∑S2)−
(∑s1 +∑s2) = (∑S1−∑s1) + (∑S2−∑s2) < ε . It follows that

´ b
a f and

´ c
a f +

´ b
c f both are in the interval [∑s,∑S] . Since this interval has length < ε we have∣
∣
∣
´ b

a f −
(́

c
a f +

´ b
c f
)∣∣
∣< ε . But ε > 0 is arbitrary, consequently

´ b
a f −

(́
c

a f +
´ b

c f
)
.

Exercise 7.4.10. Similar to Exercise 7.4.9.

Exercise 7.4.11. Let M be an upper bound for f . Let s a lower step function for
f with sum ∑s = ∑mi(xi − xi−1) and S be an upper step function for f with sum
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∑S =∑Mi(xi−xi−1), such that ∑S−∑s< ε
2M . We may assume 0≤mi and Mi ≤M

for all i. Then s2 is a lower step function for f 2, S2 is an upper step function for f 2,
and ∑S2−∑s2 < ε .

Exercise 7.4.12. For some K, f +K ≥ 0 and f 2 = ( f +K)2−2K f −K2.

Exercise 7.5.2. Similar to the proof in the text, except we need to pay attention
to signs.

Exercise 7.5.4. Similar to the proof in the text.

Exercise 7.6.1. Use FTC-Evaluation to calculate
´ b

1 f , then take the limit as b→
∞.

Exercise 7.6.2. Similar to Exercise 7.6.1.

Exercise 7.7.1. Consider the real and imaginary parts.

Exercise 7.7.3. We may assume y < x. Then squaring
√

x−√y ≤ √
x− y and

simplifying leads to
√

y<
√

x. Rewriting this as y< x implies
√

y<
√

x, etc., ending
with

√
x−√y≤√x− y proves the inequality.

Exercise 7.7.6. This is a simple proof by induction. When n = 1, (7.11) is an
equality. Suppose

√
(x1 + x2)

2 +
(
y1 + y2

2

)
≤
√

(x1)
2 +(y1)

2 +

√
(x2)

2 +(y2)
2,

that is (7.11) holds with n = 2. Then
√√
√
√
((

n

∑
i=1

αi

)

+αn+1

)2

+

((
n

∑
i=1

βi

)

+βn+1

)2

=

√
(x1 + x2)

2 +
(
y1 + y2

2

)

≤
√
(x1)

2 +(y1)
2 +

√
(x2)

2 +(y2)
2

=

√√
√
√
(

n

∑
i=1

αi

)2

+

(
n

∑
i=1

βi

)2

+

√
(αn+1)

2 +(βn+1)
2.

Hence, (7.11) follows by induction, if it holds for n = 2.



Chapter 8
The Logarithm and the Exponential Function

The natural logarithmic and exponential functions are constructed in this chapter.
In addition to establishing the standard properties of these functions we show the
number e is transcendental, construct a smooth compactly supported function (a
“bump” function), and define the Euler constant γ .

8.1 Logarithms

For a real number x > 0, let

log(x) :=
ˆ x

1

1
t

dt.

Note log(1) = 0, log(x)< 0 when 0 < x < 1, and log(x)> 0 when 1 < x.
The FTC-Derivative shows that log is differentiable and

log′(x) =
1
x
.

Since we can differentiate 1/x as many times as we please log ∈ C n(]0,∞[) for any
n. Consequently, log∈C ∞(]0,∞[). The basic computational property of a logarithm
is:

Theorem 8.1.1. For all x,y > 0 we have

log(xy) = log+ log(y) .

Proof. This is a simple calculation. If x,y > 0, then

log(xy) =
ˆ xy

1

1
t

dt
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=

ˆ x

1

1
t

dt +
ˆ xy

x

1
t

dt

=

ˆ x

1

1
t

dt +
ˆ y

1

1
t

dt

= log(x)+ log(y)

establishing the claim. �
Exercise 8.1.2. Explain the steps in the calculation above.

Exercise 8.1.3. log(xn) = n log(x) for n ∈ N and x > 0.

Lemma 8.1.4. For all x > 0 and all n ∈ Z we have log(xn) = n log(x). Recall the
convention x0 = 1.

Proof. Using the previous exercise: log(x−n)+ log(xn) = log(x−nxn) = log(1) = 0.
Hence, log(x−n) =−n log(x). �
Theorem 8.1.5. The function log :]0,∞[→ R is strictly increasing and onto.

Proof. If x < y, then
´ y

x
1
t dt > 0, because t → 1/t is continuous (Exercise 7.3.5).

Consequently, log(y) =
´ y

1
1
t dt =

´ x
1

1
t dt +

´ y
x

1
t dt > log(x). So log is strictly in-

creasing. (This also follows from log′(x) = 1
x > 0.)

Since

1
t
≥ g(t) :=

⎧
⎪⎨

⎪⎩

1/2 when 1≤ t < 2

1/3 when 2≤ t < 3

1/4 when 3≤ t ≤ 4

,

it follows from monotonicity of the integral (i.e. f ≥ g =⇒
´ b

a f ≥
´ b

a g) that

log(4) =
ˆ 4

1

1
t

dt ≥
ˆ 4

1
g =

1
2
+

1
3
+

1
4
=

13
12

> 1.

Let y be a real number, then −n < y < n for some positive integer n, hence

log
(
4−n)=−n log(4)<−n < y.

Similarly, y < log(4n) . Consequently, log(4−n)< y < log(4n) . By the Intermediate
Value Theorem y = log(x) for some x between 4−n and 4n. �
Remark 8.1.6. It follows from the proof that log(x)→ ∞ as x → ∞. For example,
x > 4n implies log(x)> n. Similarly, log(x)→−∞ as x↘ 0.

The Euler constant is the number

γ := lim
n→∞

(
n

∑
k=1

1
k
− log(n+1)

)

= lim
n→∞

ˆ n+1

1

(
1
�x� −

1
x

)
dx.
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It is not known if γ is rational or irrational. Godfrey Harold Hardy (7 February 1877,
Cranleigh to 1 December 1947, Cambridge) offered to give up his Savilian Chair at
Oxford to anyone who proved γ to be irrational. Hilbert mentioned the irrationality
of gamma as an unsolved problem.

8.2 Exponentials

Since log :]0,∞[→ R is strictly increasing and surjective it has a strictly increasing
inverse function exp mapping R onto the interval ]0,∞[. In symbols:

exp(x) := log−1(x).

In particular, exp(log(x)) = x for all x > 0 and log(exp(y)) = y for all y in R.

Remark 8.2.1. Using that exp is strictly increasing we see that exp(x)→∞ as x→∞.
In fact, x > log(N) implies exp(x) > exp(log(N)) = N. Similarly, exp(x)→ 0 as
x→−∞.
Since log is differentiable, we infer from the Inverse Function Rule for Derivatives
that exp is differentiable and

exp′(x) =
1

log′(exp(x))
=

1
1/exp(x)

= exp(x).

Since exp′ = exp, the right hand side is differentiable, so we can differentiate exp as
many times as we please: exp ∈ C ∞(R).

The basic computational property of an exponential function is:

Exercise 8.2.2. exp(x+ y) = exp(x)exp(y) for all x,y ∈ R.

The exponential function as the solution to a differential equation:

Theorem 8.2.3. Let f : R→ C be differentiable. Fix a,b ∈ C. If f ′ = b f and f (0) =
a, then f (x) = aexp(bx) for all x ∈ R.

Proof. Let g(x) = f (x)/exp(bx). By the quotient rule for derivatives

g′(x) =
b f ′(x)exp(x)− f (x)bexp′(bx)

exp2(bx)
= 0

for all x. Consequently, g is a constant function. In particular, g(x) = g(0) = a for
all x. �

The exponential function as a limit:

Theorem 8.2.4. For any real number x,

exp(x) = lim
n→∞

(
1+

x
n

)n
.
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Part of the claim is that the limit exists.

Proof. As n→ ∞ we have x/n→ 0, hence, since log is differentiable at 1 :

n log
(

1+
x
n

)
= x

log(1+ x/n)− log(1)
x/n

−→
n→∞

x log′(1) = x.

Hence, since exp is continuous
(

1+
x
n

)n
= exp

(
log
((

1+
x
n

)n))

= exp
(

n log
(

1+
x
n

))

−→
n→∞

exp(x)

by the previous calculation. �
Let

e := exp(1) = lim
n→∞

(
1+

1
n

)n

.

Then log(1) = 0, log(e) = log(exp(1)) = 1, and 1 < log(4), so log(1) < log(e) <
log(4), and therefore 1 < e < 4, since log is an increasing function.

Exercise 8.2.5. Prove exp(p/q) = ep/q for any rational number p/q.

Exercise 8.2.5 shows that exp(r) = er when r is rational. Since exp is continuous
and Q is dense in R, it is natural to define

ex := exp(x) for all x in R.

More generally, for a > 0 define

ax := ex log(a) = exp(x log(a)).

Prior to this definition we could only consider xr for rational r. The usual computa-
tional properties hold:

ax+y = exp((x+ y) log(a))

= exp(x log(a)+ y log(a))

= exp(x log(a)) exp(y log(a))

= axay

for all a > 0 and all x,y ∈ R and

(xy)a = exp(a log(xy))

= exp(a(log(x)+ log(y)))
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= exp(a log(x)+a log(y))

= exp(a log(x)) exp(a log(y))

= xa ya

for all x,y> 0 and all a∈R. We leave the statement and verification of other familiar
properties of the functions x→ ax and of x→ xa to the interested reader.

Example 8.2.6. We will show that

ex =
∞

∑
k=0

xk

k!
, for all x ∈ R.

In particular, setting x = 1 gives

e =
∞

∑
k=0

1
k!
.

Proof. Fix x. Since exp′ = exp it follows that exp(k) = exp for all k ∈ N0. In partic-
ular, exp(k)(0) = 1 for all k. Hence, the nth Taylor polynomial for exp at 0 is

Tn(x) :=
n

∑
k=0

xk

k!

and the corresponding Lagrange Remainder is

Rn(x) := ec xn+1

(n+1)!

for some c = c(n,x) between 0 and x. Since exp(x)−Tn(x) = Rn(x) we must show
Rn(x)→ 0 as n→ ∞. Note,

ec = ec(n,x) ≤max
{

e0,ex}

for all n. Hence, we must show xn+1

(n+1)! → 0, as n→ ∞.
Let M be an integer such that |x| ≤M. Then for M ≤ n

∣
∣
∣
∣

xn+1

(n+1)!

∣
∣
∣
∣≤

M
1
· M

2
· · · M

M
· M

M+1
· · · M

n
· M

n+1

≤ M
1
· M

2
· · · M

M
· 1 · · · 1 · M

n+1

=
MM+1

M!
· 1

n+1

Hence,
∣
∣
∣ xn+1

(n+1)!

∣
∣
∣→ 0 as n→ ∞. �
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8.3 The Napier Constant e�

Irrationality of e was first proven by Leonhard Euler (15 April 1707 Basel to
18 September 1783 St. Petersburg). Charles Hermite (24 December 1822 Dieuze,
Moselle to 14 January 1901 Paris), was the first to prove that e is transcendental.

Euler named the Napier constant (John Napier 1550 Merchiston Tower to 4 April
1617 Edinburgh) after himself, calling it e. The first reference to the constant was
published in 1618 in work on logarithms by Napier in the form of a table of log-
arithms based on e. The discovery of the constant e := exp(1) itself is credited to
Jacob Bernoulli, who attempted to find the value of limn→∞

(
1+ 1

n

)n
.

By Example 8.2.6 e = ∑∞
k=0

1
k! . Observe that when k ≥ 3, then k! > 4k−2. Hence

2 <
5
2
=

2

∑
k=0

1
k!

< e <
2

∑
k=0

1
k!

+
∞

∑
k=3

(
1
4

)k−2

=
5
2
+

1
3
< 3.

In particular, e is not an integer.

Theorem 8.3.1 (Euler). The number e is irrational.

There are many proofs of this fact. The one I have chosen uses the idea used to show
e < 3 above. The same method was used in our proof that

√
2 is irrational.

Proof. Suppose e is rational. Let a,b be natural numbers, such that e = a/b. Then
b > 1 since e is not an integer and

a
b
=

b

∑
n=0

1
n!

+
∞

∑
n=b+1

1
n!

since both sides equals e. Multiplying by b! and rearranging gives

b!
∞

∑
n=b+1

1
n!

= b!
a
b
−b!

b

∑
n=0

1
n!

= (b−1)!a−
b

∑
n=0

b(b−1) · · ·(b− (n+1)) (8.1)

(the empty product is interpreted as being = 1). The right hand side is a sum/
difference of products of integers, hence an integer. The left hand side is > 0, hence
the right hand side is a natural number. But estimating the left hand side leads to a
contradiction, in fact

0 <
∞

∑
n=b+1

b!
n!

<
∞

∑
n=b+1

(
1

b+1

)n−b

=
1/(b+1)

1−1/(b+1)
=

1
b
< 1. (8.2)

We used b > 1 to establish the last inequality. So ∑∞
n=b+1

b!
n! is an integer in the open

interval ]0,1[. �
Remark 8.3.2. Comparing to Remark 3.5.5 the equation x = y is Eq. (8.1).

Charles Hermite is perhaps best known for proving that e is transcendental.
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Theorem 8.3.3 (Hermite 1873). The number e is transcendental.

Proof. Suppose e is algebraic. Let a j be integers such that

anen +an−1en−1 + · · ·+a1e+a0 = 0. (8.3)

We may assume a0 �= 0. If not we can reduce the degree of the polynomial by
dividing by e. Let

fp(x) :=
xp−1 (x−1)p (x−2)p · · ·(x−n)p

(p−1)!

where p is an integer > 1. Then fp is a polynomial of degree (n+1) p− 1, some-
times called the Hermite polynomial. Let

Fp(x) :=
(n+1)p−1

∑
j=0

f ( j)
p (x), (8.4)

where f ( j)
p is fp differentiated j times. Then

F ′
p(x)−Fp(x) =

(n+1)p−1

∑
j=1

f ( j)
p (x)−

(n+1)p−1

∑
j=0

f ( j)
p (x) =− fp(x),

since f (np+p)
p (x) = 0. It follows that

(
Fp(x)e

−x)′ =
(
F ′

p(x)−Fp(x)
)

e−x =− fp(x)e
−x.

Using the fundamental theorem of calculus we get
ˆ m

0
fp(x)e

−xdx = Fp(0)−Fp(m)e−m.

Multiply by amem and sum over m = 0,1, . . . ,n we get

n

∑
m=0

amem
ˆ m

0
fp(x)e

−xdx =
n

∑
m=0

amemFp(0)−
n

∑
m=0

amFp(m) (8.5)

=−
n

∑
m=0

amFp(m).

Where we used the sum ∑n
m=0 amemFp(0) is = 0 by (8.3).

To complete the proof we will show (a) that the left hand side of (8.2) converges
to zero as p→∞ and (b) that the right hand side of (8.2) is a non-zero integer for an
infinite number of integers p. This is a contradiction, hence verifying the claims (a)
and (b) completes the proof.
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(a): If 0≤ x≤ n, then

∣
∣ fp(x)

∣
∣≤ n(n+1)p−1

(p−1)!
for 0≤ x≤ n, (8.6)

since |x− k| ≤ n for k = 0,1, . . . ,n and 0≤ x ≤ n. Now, if nn+1 < p, then (as in the
verification of Example 8.2.6)

∣
∣
∣
∣
∣
n(n+1)p−1

(p−1)!

∣
∣
∣
∣
∣
= nn · nn+1

1
· nn+1

2
· · · nn+1

nn+1 ·
nn+1

nn+1 +1
· · · nn+1

p−2
· nn+1

p−1

≤ nn · nn+1

1
· nn+1

2
· · · nn+1

nn+1 · 1 · · · 1 · nn+1

p−1

= nn · MM+1

M!
· 1

p−1
,

where M := nn+1. Hence,
∣
∣
∣
∣

ˆ m

0
fp(x)e

−xdx

∣
∣
∣
∣≤ m ·nn · MM+1

M!
· 1

p−1
−→
p→∞

0.

Consequently, the left hand side of (8.2) converges to zero as p→ ∞.
(b) Conceptual Version: By definition of fp(x), each f (i)p (m) is an integer, divisi-

ble by p except when m = 0 and j = p−1.

In fact, when m �= 0 the only non-zero terms in f ( j)
p (m) are from terms where the

factor (x−m)p has been differentiated exactly p times, and then p! cancels (p−1)!
leaving a factor of p.

When m = 0 the only non-zero terms in f ( j)
p (m) = f ( j)

p (0) are from terms where
the factor xp−1 has been differentiated exactly p−1 times giving a factor of (p−1)!.
If j ≥ p, then one of the terms (x−m)p with m �= 0 has been differentiated at least
once giving an additional factor of p, yielding a factor of p! as before. Finally, when

j = p−1 and m = 0 we get f (p−1)
p (0) = (−1)p...(−n)p.

So
n

∑
m=0

amFp(m) = a0(−1)p...(−n)p + pM

where M is an integer derived from all the non-zero terms, where m �= 0 or where
m = 0 and j≥ p. If p is a prime > n and > |a0| , then the term a0(−1)p...(−n)p is not
divisible by p. Thus ∑n

m=0 amFp(m) is a non-zero integer. This completes the proof.
(b) Computational Version: Write

(p−1)! · fp(x) = g0(x)g1(x) · · ·gn(x),
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where g0(x) := xp−1 and gi(x) := (x− i)p for 1≤ i≤ n. It follows from the product
rule that

(p−1)! · f ( j)
p (x) = ∑

j0+ j1+···+ jn= j
g( j0)

0 (x)g( j1)
1 (x) · · ·g( jn)

n (x), (8.7)

where the sum is over all vectors ( j0, j1, . . . , jn) of integers ji ≥ 0 such that j0+ j1+
· · ·+ jn = j.

Repeatedly differentiating g0 we see that

g(k)0 (x) = (p−1)(p−2) · · ·(p− k)xp−k−1 (8.8)

when 1≤ k ≤ p−1 and g(k)0 (x) = 0 when p−1 < k. By (8.8)

g(k)0 (m) =

{
(p−1)(p−2) · · ·(p− k))mp−k−1 if 0≤ k ≤ p−1

0 if k > p−1
. (8.9)

The boundary cases k = 0 and k = p− 1 are interpreted as g(0)0 (m) = mp−1 and

g(p−1)
0 (m) = (p−1)!.

Let 1≤ i≤ n. Repeatedly differentiating gi we see that

g(k)i (x) = p(p−1)(p−2) · · ·(p− k+1)(x− i)p−k (8.10)

when 1≤ k ≤ p and g(k)i (x) = 0 when p < k. By (8.10), if 1≤ i≤ n, then

g(k)i (m) =

{
p(p−1) · · ·(p− k+1))mp−k if 0≤ k ≤ p

0 if k > p
. (8.11)

The boundary cases k = 0 and k = p are interpreted as g(0)i (m) = (m− i)p and

g(p)
i (m) = p!. Note, g(k)i (m) is an integer for all 0 ≤ i ≤ n, all 0 ≤ k, and all

0≤ m≤ n. Setting x = m in (8.7) gives

(p−1)! · f ( j)
p (m) = ∑

j0+ j1+···+ jn= j
g( j0)

0 (m)g( j1)
1 (m) · · ·g( jn)

n (m). (8.12)

For m = 0, it follows from (8.9) that g(k)0 (0) = 0 if k �= p− 1 and g(p−1)
0 (0) =

(p−1)!. So using (8.12) it follows that f ( j)
p (0) = 0 when j < p− 1 and when p−

1 ≤ j only the terms with j0 = p− 1 in the sum (8.12) can be non-zero. Since

g(p−1)
0 (0) = (p−1)! all the terms in the sum (8.12) with j0 = p−1 have a factor of
(p−1)!. So for p−1≤ j, (8.12) can be written as

f ( j)
p (0) = ∑

j1+···+ jn= j−p+1
g( j1)

1 (0)g( j2)
2 (0) · · ·g( jn)

n (0). (8.13)
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Hence, in either case j < p−1 or p−1≤ j, f ( j)
p (0) is an integer. By (8.4) Fp(0) is

an integer.

Fix 1≤m≤ n. It follows from (8.11) that g(k)m (m) = 0 if k �= p and g(p)
m (m) = p!.

So using (8.12) it follows that f ( j)
p (m) = 0 = p ·0 when j < p and when p≤ j only

the terms with jm = p in the sum (8.12) can be non-zero. Since g(p)
m (m) = p! all

the terms in the sum (8.12) with jm = p have a factor of p!. In either case j < p or
p≤ j, f ( j)

p (m) is an integer multiple of p. By (8.4)

Fp(m) is an integer multiple of p when 1≤ m≤ n. (8.14)

Since f ( j)
p (m) is an integer for all 0 ≤ j and all 0 ≤ m ≤ n, it follows from

(8.4) that Fp(m) is an integer. Hence the right hand side −∑n
m=0 amFp(m) of (8.2) is

an integer. To complete the proof we must show that the integer ∑n
m=0 amFp(m) is

non-zero for an infinite number of p. We will complete the proof by showing that
∑n

m=0 amFp(m) is not a multiple of p for infinitely many p.
If m �= 0, then Fp(m) is a multiple of p by (8.14). Hence we must show that

a0Fp(0) is not a multiple of p for infinitely many p. Since f j)
p (0)= 0 when j < p−1,

it follows from (8.4) and (8.13) that

Fp(0) =
(n+1)p−1

∑
j=p−1

f ( j)
p (0) =

(n+1)p−1

∑
j=p−1

∑
j1+···+ jn= j−p+1

g( j1)
1 (0) · · ·g( jn)

n (0).

If ji > 0 for some 1≤ i≤ n, then it follows from (8.11) that g( ji)
i (0) is a multiple of

p. Hence,
Fp(0) = g1(0) · · ·gn(0)+ pM

for some integer M. So

a0Fp(0) = a0 (−1)p (−2)p · · ·(−n)p + pa0M.

Consequently, if p is a prime and p > max{|a0| ,n}, then a0Fp(0) is not a multiple
of p. �

8.4 Bump Functions�

The purpose of this section is to construct a function φ : R→ R, such that

• 0≤ φ(x)≤ 1 for all x in R
• φ(0) = 1
• φ(x) = 0 for all |x| ≥ 1
• φ is C ∞ on R

Such a function is called a bump function. See Fig. 8.1.
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Fig. 8.1 The bump function φ constructed in this section

Step 1: If x > 0, then Taylor’s Theorem with Lagrange remainder tells us

xn

ex =
xn

∑n+1
k=0

xk

k! + ec xn+2

(n+2)!

≤ xn

xn+1

(n+1)!

=
(n+1)!

x

we used all terms in the first denominator are ≥ 0 and retained the term with k =
n+1. Consequently,

xn

ex → 0 as x→ ∞.

Hence, if p is a polynomial, then

p(x)
ex → 0 as x→ ∞.

If 1 < x, then x < x2, so ex < ex2
. Consequently,

0≤ |p(x)|
ex2 ≤ |p(x)|

ex → 0 as x→ ∞.

Since, 1/t → ∞ as t ↘ 0 it follows that for any polynomial p

p(1/t)e−1/t2 → 0 as t ↘ 0.

A similar argument yields the same conclusion for t ↗ 0.

Step 2: Let f (x) := e−1/x2
for x �= 0. Then f ′(x) = 2

x3 f (x), f ′′(x) =
(
−6
x4 + 2

x3

)
f (x),

by induction f (n)(x) = qn(1/x) f (x), where qn is a polynomial.

Exercise 8.4.1. Carry out the induction suggested above.

Step 3: (Euler) Let

ψ(x) :=

{
e−1/x2

when 0 < x

0 when x≤ 0
.

Clearly, ψ is C ∞ on R\{0}. See Fig. 8.2.
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Fig. 8.2 The function ψ

• ψ is continuous at 0, by Step 1 with p(1/x) := 1, i.e., p(t) = 1.
• ψ is differentiable at 0 and ψ ′(0) = 0, because

ψ(x)−ψ(0)
x−0

=
1
x
ψ(x)→ 0 as x→ 0

by Step 1 with p(1/x) = 1/x, i.e., p(t) = t.
• ψ ′ is differentiable at 0 and ψ ′′(0) = 0, because

ψ ′(x)−ψ ′(0)
x−0

=
q1(1/x)ψ(x)

x
→ 0 as x→ 0

by Step 1 with p(1/x) = q1(1/x)/x, i.e., with p(t) = tq1(t).

Exercise 8.4.2. Show that for any n ∈ N0, the nth derivative of ψ exists at 0 and
ψ(n)(0) = 0.

Remark 8.4.3. In particular, for any n, the Taylor polynomial Tnψ associated with ψ
at 0 is Tnψ(x) = 0.

Proposition 8.4.4. ψ maps ]−∞,0] onto {0} and ]0,∞[ onto ]0,1[.

Proof. Note −1/x2 is a strictly increasing function mapping ]0,∞[ onto ]−∞,0[.
Since exp is a strictly increasing function mapping ]−∞,0[ onto ]0,1[, the com-
position e−1/x2

= exp(−1/x2) is a strictly increasing function mapping ]0,∞[ onto
]0,1[.

Step 4: Let φ : R→ R be determined by

φ(x) := e2ψ(1+ x)ψ(1− x).

See Fig. 8.1.

• φ is C ∞ on R, since ψ is.
• If x ≥ 1, 1− x ≤ 0, so φ(x) = 0, since ψ(1− x) = 0. Similarly, if x ≤ −1, then

φ(x) = 0, since ψ(1+ x) = 0.
• φ(0) = e2ψ(1)ψ(1) = e2e−1e−1 = 1.
• 0≤ φ(x) for all x, since 0≤ ψ(x) for all x.
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It remains to verify that φ(x)≤ 1 for all x between −1 and 1.

Exercise 8.4.5. Prove φ ′(x)≥ 0 when −1 < x < 0 and φ ′(x)≤ 0 when 0 < x < 1.

It follows from the exercise above that φ(0) is the global maximum of φ on ]−1,1[.
Thus φ is a bump function.

Problems

Problems for Sect. 8.1

1. log
(

x
y

)
= log(x)− log(y).

2. log(x1/n) = 1
n log(x) for any n ∈ N.

3. log
(
xp/q

)
= p

q log(x), for any rational number p/q. (We cannot replace p/q by a
real number r, since we have not yet defined xr for irrational r’s.)

4. Let f (x) := log(1+ x). Note f is defined for x >−1.
(i) Show by induction that

f (n)(x) =
(−1)n+1(n−1)!

(1+ x)n for n ∈ N.

(ii) Show that the nth Taylor polynomial for f at 0 is

Tn f (x) =
n

∑
k=1

(−1)k+1 xk

k

and the Lagrange Remainder is

Rn f (x) =
(−1)n

n+1
xn+1

(1+ c)n+1

for some c between 0 and x.

Problems for Sect. 8.2

1. Prove log(xr) = r log(x) for any real number r and any x > 0.

2. If f : [0,1]→ R is differentiable and f (0) = f (1) = 0, then

∀a ∈ R,∃c ∈]0,1[, f ′(c) = a f (c).

[Hint: Apply Rolle’s Theorem to f (x)eax.]
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3. There are irrational numbers a and b such that ab is rational. [Hint:

(√
2
√

2
)√2

=

2.]

4. Let f : R→ R be C 1. Suppose f (s+ t) = f (s) f (t) for all s, t in R. Use Theorem
8.2.3 to show there exists A,B in R, such that f (x) = AeBx for all x in R.

5. Let f : R→ R be continuous. Suppose f (s+ t) = f (s) f (t) for all s, t in R. Show
there exists A,B in R, such that f (x) = AeBx for all x in R.

6. Use upper and lower sums to evaluate
´ 1

0 exdx.

7. Let Γ (x) :=
´ ∞

0 tx−1e−tdt. The first two parts of the problem shows that Γ (x)
exists for x > 0. The last two parts establish a connection to the factorial n!.

a. Prove
´ 1

0 tx−1e−tdt = lima↘0
´ 1

a tx−1e−tdt exists for all x > 0.

b. Prove
´ ∞

1 tx−1e−tdt = limb→∞
´ b

1 tx−1e−tdt exists for all x > 0.
c. Prove Γ (x+1) = xΓ (x) for all x > 0.
d. Prove Γ (n+1) = n! for all integers n≥ 0.

8. Let f (x) = log(x). Recall, Taylor’s formula with integral remainder f (x) =
Tn f (x)+Rn f (x) where

Tn f (x) =
n

∑
j=0

f ( j)(a)
j!

(x−a) j, Rn f (x) =
1
n!

ˆ x

a
(x− t)n f (n+1)(t)dt.

Let a = 1. Suppose 1 < x.

(a) Find the second Taylor polynomial T2 f (x).
(b) When 1≤ x≤ t we have (x− t)n ≤ (x−1)n. Use this to find an upper bound

for the integral determining R2 f (x).[This upper bound will depend on x.]
(c) Find T2(2).
(d) Use part (b) to find a number ε > 0 such that |log(2)−T2 f (2)|< ε .
(e) Use parts (c) and (d) to find numbers α and β such that α ≤ log(2)≤ β .

9. Suppose f :]0,∞[→ R is continuous and f (st) = f (s)+ f (t) for all s, t > 0. Let
g(x) = f (ex) for all x in R. Prove the following claims:

(a) g is continuous on R.
(b) g(x+ y) = g(x)+g(y) for all real numbers x and y.
(c) Prove there is a real number k, such that g(x) = kx for all real numbers x.
(d) Prove f (t) = k log(t) for all t > 0.

If f : R → R is continuous and f (x + y) = f (x) + f (y) for all x,y ∈ R, then
f (x) = kx for some real number k. See the Problems for Sect. 2.1. The next problem
constructs a function f : R→ R such that f (x+y) = f (x)+ f (y) for all x,y ∈ R, yet
f (x) �= kx. Hence, the continuity assumption cannot be omitted.
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First Recall a Bit of Linear Algebra

Let V be a vector space over the field F. A subset B of V is a basis for V if B is
linearly independent and spans V .

Linear independent:

a1,a2, . . . ,an ∈ F,b1,b2, . . . ,bn ∈ B,
n

∑
k=1

akbk = 0 =⇒ b1 = b2 = · · ·= bn = 0

Spans:

∀v ∈V,∃a1,a2, . . . ,an ∈ F,b1,b2, . . . ,bn ∈ B,
n

∑
k=1

akbk = v

By linear independence ∑n
k=1 akbk = ∑n

k=1 a′kbk =⇒ ak = a′k for k = 1,2, . . . ,n.
A basic fact of linear algebra is that any vector space has a basis.

R as a Vector Space Over Q

Suppose B is a basis for R as a vector space over Q. If B is finite, then it follows,
that R is countable, hence B is not finite. The same argument shows that B is not
countable. See Chap. 4.

Let p1, p2, . . . be the primes. The numbers (vectors) log(p1), log(p2), . . . are lin-
early independent over the rationals.

Proof. Let c1,c2, . . . ,cn be rationals such that

c1 log(p1)+ c2 log(p2)+ · · ·+ cn log(pn) = 0.

Multiplying by the common denominator of c1,c2, . . . ,cn we may assume the c′ks all
are integers. But

log
(

pc1
1 pc2

2 · · · pcn
n

)
= 0 =⇒ pc1

1 pc2
2 · · · pcn

n = 1 =⇒ c1 = c2 = · · ·= cn = 0.

The last implication is the fundamental theorem of arithmetic. �
One can show that the sets √

p1,
√

p2, . . .

and
√

2,

√√
2,

√√√
2, . . .

both are linearly independent over the rationals. Any decent Modern Algebra book
contains the details.
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10. Let B be a basis for R over Q. Without Loss Of Generality we may assume
1 ∈ B. Define a function f : R→ R by

f (a1 +a2b2 + · · ·+anbn) = a1

where ak ∈ Q and b1 = 1,b2, . . . ,bn are in B. Prove:

(a) f is well-defined, i.e, prove f is a function.
(b) For all x,y ∈ R, f (x+ y) = f (x)+ f (y).
(c) f is not continuous.
(d) There is no constant k ∈ R, such that f (x) = kx for all x ∈ R.

Problems for Sect. 8.3

The problems for this section should be worked in order, or the results of the previ-
ous problems taken on faith before attempting one of the later problems.

The first problem below is an example implementing the strategy in Remark
3.5.5.

1. Let p > 0 be an integer. Suppose ep = a
b for some positive integers a and b. For

positive integers n consider the polynomials

fn(x) :=
xn (1− x)n

n!

and

Fn(x) :=
2n

∑
j=0

p2n− j f ( j)
n (x)

where f ( j)
n (x) is fn(x) differentiated j times. Some hints are provided in the

brackets.

(i) Show pFn(x)−F ′
n(x) = p2n+1 fn(x). [First show F ′

n(x) =∑2n
j=1 p2n− j+1 f ( j)

n (x).]

(ii) Show
(

Fn(x)ep(1−x)
)′

=−p2n+1 fn(x)ep(1−x). [Use (i).]

(iii) Show Fn(0)ep−Fn(1) =
´ 1

0 p2n+1 fn(x)ep(1−x)dx. [Use (ii).]
(iv) Show 0 < aFn(0)− bFn(1). [Use ep = a/b and that p2n+1 fn(x)ep(1−x) is a

positive continuous function and not = 0 for all x in [0,1].]

(v) Show
´ 1

0 p2n+1 fn(x)ep(1−x)dx≤ p2n+1ep

n! . [Use fn(x)e−x ≤ 1/n!.]

(vi) Show p2n+1

n! ≤ p2p2+3

p2!
· 1

n when p2 < n. [Similar to an argument from the
verification of Example 8.2.6.]

(vii) Show 0 < aFn(0)− bFn(1) < 1 for large n. [By (iii) aFn(0)− bFn(1) =
b
´ 1

0 p2n+1 fn(x)ep(1−x)dx. Use (iv), (v), and (vi).]
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(viii) Show n! f ( j)
n (x) = ∑ j

k=0(
j
k )g

(k)
n (x)h( j−k)

n (x), where gn(x) = xn and hn(x) =
(1− x)n . [Apply the product rule for derivatives.]

(ix) Show g(k)n (0) = 0 when k < n, g(n)n (x) = n!, and g(k)n (x) = 0 when n < k.

[Differentiating gn(x) = xn gives g(k)n (x) = n(n− 1) · · ·(n− k+ 1)xn−k for
k ≤ n. As usual, x0 = 1.]

(x) Show h(k)n (0) is an integer for all k. [Differentiating hn(x) = (1− x)n gives

h(k)n (x) = (−1)kn(n−1) · · ·(n− k+1)(1− x)n−k for k ≤ n.]

(xi) Show f ( j)
n (0) is an integer. [Combine (viii), (ix), and (x).]

(xii) Show Fn(0) is an integer. [Use (xi) and the definition of Fn(x).]
(xiii) Show Fn(1) is an integer. [Repeat (ix), (x), (xi), (xii) interchanging the roles

of gn(x) and hn(x) and of 0 and 1, as appropriate.]
(xiv) Show aFn(0)−bFn(1) is an integer. [Combine (xii) and (xiii).]
(xv) Conclude ep is irrational. [Use (vii) and (xiv).]

In the language of Remark 3.5.5 ep ≈ Fn(1)
Fn(0)

with error 1
Fn(0)

´ 1
0 p2n+1 fn(x)

ep(1−x)dx. The key parts of the remark are provided by (vii) and (xiv).

2. If p and q are positive integers, then ep/q is irrational.

3. If r �= 0 is rational, then er is irrational.

Problems for Sect. 8.4

Solutions and Hint for the Exercises

Exercise 8.1.2. Splitting the interval and using a change of variables does the job.

Exercise 8.1.3. This is clear if n = 1. Suppose log(xn) = n log(x) for some n ∈N.
Then log(xn+1) = log(x · xn) = · · · .

Exercise 8.2.2. For example, log(exp(x)exp(y)) = log(exp(x))+ log(exp(y)) =
x+ y. Applying exp to both sides gives the desired equality.

Exercise 8.2.5. exp(3) = exp(1+ 1+ 1) = exp(1)exp(1)exp(1) = e3 and e =
exp(1) = exp

(
1
2 +

1
2

)
= exp

(
1
2

)
exp
(

1
2

)
, so exp

(
1
2

)
= e1/2.

Exercise 8.4.1. If q(t) = ∑aktk then q(1/x)
x2 = p(1/x), where p(t) = ∑aktk+2.

Exercise 8.4.2. A simple proof by induction works.

Exercise 8.4.5. If −1 < x < 1, then 0 < 1− x and 0 < 1+ x.



Part II



Analysis

Sequences and series of numbers and functions, including power series and
Fourier series, form the core of this part. The last chapter is an introduction to
point set topology. Among the applications are proofs of the fundamental theorem
of algebra, of the Weierstrass approximation theorem, of Weyl’s uniform distribu-
tion theorem, a proof of the irrationality of the number π. Constructions of a space
filling curve, of the trigonometric functions, of the number π, and of nowhere dif-
ferentiable continuous functions,

Much of the material in this part involves the interaction of two limits. In partic-
ular, much of the material in this part can be interpreted as studying when two limit
can be interchanged.



Chapter 9
Convergence of Sequences

This chapter covers convergence of numerical sequences in some detail. This is fol-
lowed by a discussion of convergence of sequences of functions, in particular, of
uniform convergence of a sequence of functions. Applications include, Leibnitz In-
tegral Rule, Fubini’s Theorem, the Approximate Identity Lemma, and a proof of the
Fundamental Theorem of Algebra. The later completes the discussion of polynomi-
als begun in Proposition 1.4.11.

9.1 Real and Complex Sequences

We discussed basic ideas related to sequences in Sects. 1.6 and 1.7. In this section
we will expand on these considerations. In the first part of this section we discuss
sequences of complex numbers. Then we characterize continuity of a function in
terms convergence of sequences. Finally, we discuss properties of sequences that
require an order, hence we restrict attention to sequences of real numbers.

A sequence in a set X is a mapping from N to X . Instead of using function
notation it is customary to use subscripts for sequences. So, a sequence is a mapping
a : N→ X and the value of the mapping at the positive integer n is a(n) = an. We
will usually write (an) or a1,a2, . . . in place of a : N→ X . Two sequences are equal
if they are equal as functions, that is, (an) = (bn), if an = bn for all n ∈ N.

Exercise 9.1.1. The sequences

1,2,3,2,3,2,3, . . . and 1,2,3,1,2,3, . . .

are not equal, because . However, the sets

{1,2,3,2,3,2,3, . . .} and {1,2,3,1,2,3, . . .}

are equal, both are equal to . Fill in the two blanks.
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Convergence

We discussed elementary properties of convergence of sequences in Sect. 1.6. For
emphasis we restate the definition here.

Definition 9.1.2. Let (an) be a sequence of points in C and let a ∈ C. We say that
(an) is converges to a if

∀ε > 0,∃N ∈ N,∀n ∈ N,n > N =⇒ |an−a|< ε .

If (an) converges to a, then we say that a is the limit of (an) and we write an → a,
an −→

n→∞
a, liman = a, limn an = a, or limn→∞ an = a. We say (an) is convergent, if

(an) converges to some point in C. We say (an) is divergent or diverges if (an) is
not convergent.

Note |an − a| < ε is equivalent to an ∈ Bε(a). So we can rewrite the definition of
convergence as

∀ε > 0,∃N ∈ N,n > N =⇒ an ∈ Bε(a).

Recall, from Sect. 1.6, as sequence converging to zero is called a null sequence.
Clearly,

Proposition 9.1.3. an → a iff (an−a) is null.

Recall, from Sect. 1.2, that a point p is an accumulation point of the set A, if there
are points in A\{p} arbitrarily close to p.

Exercise 9.1.4. Let A be a subset of C and let p ∈ C. Then p is an accumulation
point of A if and only if there is a sequence of points an ∈ A such that, an �= p for all
n and an → p.

Subsequences

If b1,b2,b3, . . . is obtained from a1,a2,a3, . . . by striking out some of the terms of
a1,a2,a3, . . . , then (bn) is a subsequence of (an).

Example 9.1.5. The sequence 2, 3, 2, 3, 2, 3, . . . is a subsequence of 1, 2, 3, 2, 3, 2,
3, . . . obtained by striking out the first term. The sequence 2, 3, 2, 3, 2, 3, . . . is also
a subsequence of 1, 2, 3, 1, 2, 3, . . . obtained by striking out all the 1’s, an infinite
number of term, but still leaving an infinite number of terms.

More formally, a sequence (bn) is a subsequence of the sequence (an), is there is a
strictly increasing function ϕ : N→N, such that bn = aϕ(n). It is customary to write
bn = ain , that is, a subsequence of (an) is usually denoted by (ain) .

Exercise 9.1.6. in = ϕ(n)≥ n for all n.

Exercise 9.1.7. If an → L and (bn) = (ain) , then bn = ain → L.
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Exercise 9.1.8. Basic facts about subsequences.

1. Any sequence is a subsequence of itself. What is ϕ?
2. A subsequence of a subsequence is a subsequence of the original sequence. That

is, if (cn) is a subsequence of (bn) and (bn) is a subsequence of (an), then (cn) is
a subsequence of (an). How are the ϕ’s related?

3. If (bn) is the subsequence of (an) obtained by omitting the first m terms, write a
formula for ϕ.

The following is one of the “big” theorems about sequences, so the proof must be
non-trivial.

Theorem 9.1.9 (Sequential Compactness, Bolzano–Weierstrass). Any bounded
sequence of complex numbers has a convergent subsequence.

Proof. Let (xn) be a bounded sequence of real numbers. Since the sequence (xn)
is bounded it has a lower bound, i.e., there is a r such that r ≤ xn for all n. The
sequence yn := xn− r is ≥ 0. If yin → b then xin = yin + r → b+ r. Hence, we may
assume xn ≥ 0 for all n.

Exercise 9.1.10. Why is there a positive integer m, such that the set A0 := {n ∈ N |
m≤ xn < m+1} is infinite?

Let d0 := m, then
A0 = {n ∈ N | d0 ≤ xn < d0 +1}.

Exercise 9.1.11. Why is there an m ∈ {0,1, . . . ,9}, such that the set A1 := {n ∈ N |
d0.m≤ x0,n < d0.m+1/10} is infinite?

Let d1 := m. Then

A1 = {n ∈ N | d0.d1 ≤ xn < d0.d1 +1/10}.

Since d0 ≤ d0.d1 ≤ xn < d0.d1 +1/10≤ d0 +1 we conclude A1 ⊆ A0.
Inductively, suppose k ∈N, and we have constructed d j ∈ {0,1, . . . ,9}, such that

Ak = {n ∈ N | d0.d1 · · ·dk ≤ xn < d0.d1 · · ·dk +1/10k}

is infinite. Then there is m ∈ {0,1, . . . ,9}, such that the set Ak+1 := {n ∈ N |
d0.d1 · · ·dkm≤ xn < d0.d1 · · ·dkm+1/10k+1} is infinite. Let dk+1 := m, then

Ak+1 = {n ∈ N | d0.d1 · · ·dkdk+1 ≤ xn < d0.d1 · · ·dkdk+1 +1/10k+1

and Ak+1 ⊆ Ak.
Let i1 be the smallest element of A1, i2 the smallest element of A2 \ {i1}, i3 the

smallest element of A3 \{i1, i2}, and so on. Let yn := xin .

Exercise 9.1.12. Why is (yn) a subsequence of (xn)?

Let b := d0.d1d2 · · · .
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Exercise 9.1.13. Why does yn → b?

We have established Bolzano–Weierstrass for real sequences.

Exercise 9.1.14. Any bounded sequence of complex numbers has a convergent sub-
sequence.

This completes our proof of the Bolzano–Weierstrass Theorem. �
Corollary 9.1.15 (Limit Point Compactness). A bounded infinite set of complex
numbers has an accumulation point.

Proof. Let D be a bounded infinite set. Let x1 ∈ D, let x2 ∈ D \ {x1}, let x3 ∈ D \
{x1,x2}, and so on. Since D is infinite the process does not stop after a finite number
of step, hence we get a sequence (xn). The sequence (xn) is bounded, since D is
bounded. Hence (xn) has a convergent subsequence (xin). The limit of (xin) is an
accumulation point of D. �
Exercise 9.1.16. Prove the last claim in the proof of Limit Point Compactness.

Cauchy Sequences

A sequence (xn) of complex numbers is Cauchy, if given any ε > 0, there exists
N = N(ε) such that ∀m,n ∈ N,

m,n≥ N =⇒ |xm− xn|< ε .

Exercise 9.1.17. Any convergent sequence is a Cauchy sequence.

The main result in Cauchy sequences is that the converse is true, this is Theo-
rem 9.1.21. The proof is an application of Limit Point Compactness.

Lemma 9.1.18. Let (xn) be a Cauchy sequence of complex numbers. If some subse-
quence (xin) of (xn) is convergent, then (xn) is convergent.

Exercise 9.1.19. Prove the Lemma.

Exercise 9.1.20. Any Cauchy sequence is bounded.

As a consequence of sequential compactness we have:

Theorem 9.1.21 (Cauchy Completeness). Any Cauchy sequence of complex num-
bers is convergent to a complex number.

Exercise 9.1.22. Prove the Theorem.

Verifying that a sequence is convergent using the definition of convergence requires
us to “guess” the limit. Verifying that a sequence is Cauchy does not require us to
know the value of the limit. Consequently, it is sometimes simpler to show that a
sequence is convergent by showing it is Cauchy.
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Example 9.1.23. Let x1 := 1 and inductively xn+1 := 1
1+xn

when n≥ 1. Then (xn) is

converges to
√

5−1
2 . The first few terms of this sequence are 1, 1

2 ,
2
3 ,

3
5 ,

5
8 ,

8
13 , · · · The

Fibonacci sequence make an (unexpected?) appearance in analysis. The sequence
1,1,2,3,5,8,13,21,34,55, . . . is named after Leonardo Pisano Bigollo (c. 1170, Pisa
to c. 1250, Pisa) who was known as Fibonacci.

Proof. We begin by showing (xn) Cauchy and consequently convergent. Note x1 ≥
1
2 . If xn ≥ 1

2 , then xn+1 ≥ 1
1+1/2 = 2

3 ≥
1
2 . By induction xn ≥ 1

2 for all n. Hence,

|xn+1− xn|=
∣
∣
∣
∣

1
1+ xn

− 1
1+ xn−1

∣
∣
∣
∣

=
|xn−1− xn|

(1+ xn)(1+ xn+1)

≤ |xn−1− xn|
(3/2)(3/2)

≤ 1
2
|xn− xn−1| ,

since 4
9 <

1
2 . It follows that |x3− x2| ≤ 1

2 |x2− x1| , |x4− x3| ≤ 1
2 |x3− x2| ≤ 1

22 |x2− x1| ,
continuing in this manner we see

|xn+1− xn| ≤
1

2n−1 |x2− x1|=
1
2n .

for all n ≥ 1. Where the equality used x2 = 1/2, so that x1 − x2 = 1/2. Hence, if
m > n, then

|xn− xm| ≤ |xn− xn+1|+ |xn+1− xn+2|+ · · ·+ |xm−1− xm|

≤ 1
2n +

1
2n+1 + · · ·+ 1

2m−1

=
1
2n

(
1+

1
2
+ · · ·+ 1

2m−n−1

)
<

1
2n−1 .

Consequently, (xn) is Cauchy and therefore convergent.
It remains to determine the limit. Suppose xn → L. Since xn ≥ 0 we have L ≥ 0.

Also, xn+1 → L and by the algebra of limits 1
1+xn

→ 1
1+L , using 1+L �= 0. Hence

xn+1 =
1

1+xn
implies L = 1

1+L . Solving this equation for its positive root gives L =
√

5−1
2 . �

Remark 9.1.24. The argument, used to show that if |xn+1− xn| ≤ 1
2 |xn− xn−1| for

all n≥ 2, then (xn) is Cauchy, is a standard technique.
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Sequences and Continuity

Definition 9.1.25. Let M and N be subsets of the complex plane. Let f : M → N be
a function and let a ∈ M. We say that f is sequentially continuous at a, if ( f (an))
converges to f (a), whenever (an) converges to a.

We will show that a function is continuous if and only if it is sequentially continuous.
As an application, we show that the sequence determined by x1 := 1 and xn+1 :=√

1+ xn is Cauchy and use sequential continuity of the function f (y) =
√

1+ y to
find the limit of (xn) .

Theorem 9.1.26 (Sequential Continuity). Let D be a subset of the complex plane
f : D → C and a ∈ D. Then f is continuous at a iff an ∈ D and an → a implies
f (an)→ f (a).

Proof. Suppose f is continuous at a and an → a. Let ε > 0 be given. Pick δ > 0
such that |x− a| < δ implies | f (x)− f (a)| < ε . Pick N such that n ≥ N implies
|an−a|< δ . Then n≥ N =⇒ |an−a|< δ =⇒ | f (an)− f (a)|< ε .

Conversely, suppose f is not continuous at a. Since f is not continuous at a
there is an ε > 0 so that for any δ > 0 there is at least one x ∈ BM(a,δ ) such
that f (x) /∈ BN( f (a),ε). Let δ = 1

n , there is an an ∈ D such that |a− an| < 1
n and

| f (a)− f (an)| ≥ ε . Consequently, an → a and f (an) �→ f (a). �
Example 9.1.27. Let x1 := 1 and inductively xn+1 :=

√
1+ xn. Then xn →

√
5+1
2 . The

first few terms of this sequence are

1,
√

2,

√
1+

√
2,
√

1+
√

1+
√

2,

√

1+

√

1+

√
1+

√
2, · · · .

Proof. As in Example 9.1.23 we begin by showing that (xn) is Cauchy. By induction
xn ≥ 1 for all n. Let f (y) :=

√
1+ y. Then xn+1 = f (xn) and f ′(y) = 1

2
√

1+y
≤ 1

2 for
all y≥ 0. By the Mean Value Theorem

|xn+1− xn|= | f (xn)− f (xn−1)|
=
∣
∣ f ′(c)

∣
∣ |xn− xn−1|

≤ 1
2
|xn− xn−1| .

Repeating an argument from Example 9.1.23 it follows that (xn) is Cauchy.
Let L := limn→∞ xn. Since f is continuous f (xn)→ f (L) by sequential continuity.

Hence xn+1 = f (xn) implies L = f (L), that is L =
√

1+L. Solving this equation for

its positive root gives L =
√

5+1
2 . �
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Monotone Sequences in R

A sequence (xn) of real numbers is increasing, if xn ≤ xn+1 for all n, it is strictly
increasing, if xn < xn+1 for all n. If xn ≥ xn+1 (resp. xn > xn+1) for all n, then (xn) is
decreasing (resp. strictly decreasing). A sequence is monotone, if it is increasing or
decreasing. Similarly, a sequence is strictly monotone if it is either strictly increasing
or strictly decreasing.

The following result is similar to Exercise 5.1.2.

Theorem 9.1.28 (Monotone Convergence). If (an) is increasing, then an → sup{an |
n ∈ N}.

Proof. There are two cases. sup{an | n ∈ N}< ∞ and sup{an | n ∈ N}= ∞.
Suppose sup{an | n ∈ N} < ∞. In this case {an | n ∈ N} is bounded and b :=

sup{an | n ∈ N} < ∞ is the least upper bound for {an | n ∈ N}. For any ε > 0,
b− ε < b, so b− ε is not an upper bound for {an | n ∈ N}. Hence, for some N,
b− ε < aN . Since (an) is increasing, b− ε < aN ≤ an, for all n≥ N. Consequently,

0≤ b−an < ε for all n≥ N.

Thus an → b.
Suppose sup{an | n ∈ N} = ∞. In this case {an | n ∈ N} does not have an upper

bound. So for any K, there is an N, such that K < aN . Since (an) is increasing

K < aN ≤ an for all n≥ N.

Thus an → ∞. �
Corollary 9.1.29. If (an) is decreasing, then an → inf{an | n ∈ N}.

Proof. Applying the theorem to (−an), gives

−an → sup{−an | n ∈ N}=− inf{an | n ∈ N}.

Hence an application of the theorem completes the proof. �
Example 9.1.30. It follows from monotone convergence that 0 < r < 1 implies rn →
0. We already established this in Sect. 1.7 using a different argument.

Proof. Let an := rn. Multiplying r < 1 by rn gives an+1 = rn+1 < rn = an, so (an)
is decreasing and bounded below by 0. Hence, by monotone convergence, an = rn

is convergent to L := inf{rn | n ∈ N} as n→ ∞. It remains to show that L = 0.
Since r > 0, an = rn > 0, in particular, L≥ 0. Now bn := an+1 = rn+1 is a subse-

quence of (an), hence bn → L. But bn = r an → r L. Since a sequence has at most one
limit L = rL. So (1− r)L = L− rL = 0. Consequently, 1− r �= 0 implies L = 0. �
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Limit Superior and Limit Inferior

Recall, from Sect. 1.2 and the beginning of this section, that a point p is an ac-
cumulation point of the set A, if there are points in A \ {p} arbitrarily close to p.
The following is a related notion for sequences of complex numbers, it requires that
there are arbitrarily large subscripts for which xk is close to p, and allows xk = p for
those subscripts:

Definition 9.1.31. Let x j ∈ C. A point p ∈ C is a limit point of (x j), if

∀ε > 0, ∀m ∈ N, ∃ j ∈ N, j ≥ m and |x j− p|< ε

Example 9.1.32. Some examples of limits points of sequences are:

1. 1 and 2 are limit points of the sequence 0,1,2,1,2,1,2,. . .
2. 0 and 1 are limit points of the sequence 1

2 , 1, 1
4 , 1, 1

8 , . . . ; i.e., of the sequence

(xn) determined by xn :=

{
1
2n if n is odd

1 if n is even
.

3. 1 is a limit point of the sequence (yn) determined by

yn :=

{
1 if n is a power of 2

n if n is not a power of 2
.

For the related sets we have:
4. The set {0, 1, 2, 1, 2, 1, 2, . . .}= {0,1,2} does not have any accumulation points.
5. 0 is the only accumulation point of the set {xn | n ∈ N}=

{
1, 1

2 ,
1
4 , . . .

}
.

6. The infinite set {yn | n ∈ N} does not have any accumulation points.

Theorem 9.1.33. Let (xn) be a sequence and let p be a point. Then p is a limit point
of (x j) iff there exists a subsequence (xin) such that xin → p as n→ ∞.

Proof. Suppose there is a subsequence (xin) such that xin → p as n → ∞. Let ε >
0 and m ∈ N be given. Pick N such that |xin − p| < ε for all n ≥ N. Then n =
max{N,m} implies |xin − p|< ε . Since in ≥ n ≥ m it follows that p is a limit point
of (xn).

Conversely, suppose p is a limit point of (xn). Setting ε = 1 and m= 1 gives n1 :=
j ≥ 1 such that |p− xn1 |< 1. Setting ε = 1/2 and m = 1+n1 gives n2 := j ≥ 1+n1

such that |p− xn2 | < 1/2. Setting ε = 1/3 and m = 1+ n2 gives n3 := j ≥ 1+ n2

such that
∣
∣p− xn3

∣
∣< 1/3. Continuing in this manner we get n1 < n2 < n3 < · · · such

that
∣
∣p− xnk

∣
∣< 1/k. Thus

(
xnk

)
is a subsequence of (xk) converging to p. �

Suppose (xk) is a sequence of real numbers. Let

yk := sup{x j | j ≥ k}.

The sequence (yk) is decreasing, in fact, yk+1 ≤ yk, since {x j | j ≥ k+1} is a subset
of {x j | j ≥ k}. By monotone convergence limk→∞ yk exists, it might equal −∞. We
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define the limit superior of the sequence (x j) to be

limsup
j→∞

x j := lim
k→∞

yk = lim
k→∞

sup
j≥k

x j,

where sup j≥k x j = sup
{

x j | j ≥ k
}
. We will also write

lim
j→∞

x j := limsup
j→∞

x j.

Example 9.1.34. Let x j := 1+(−1) j 1
j for all integers j ≥ 1. Then

yk = sup
{

1+(−1) j 1
j | j ≥ k

}
=

{
1+ 1

k if k is even

1+ 1
k+1 if k is odd

,

hence limsup j→∞ x j = limk→∞ yk = 1. Mixing in some numbers smaller than one

does not change the limit superior. For example, if b2 j−1 := 1+(−1) j 1
j and b2 j :=

(−1) j 1
j for all j ∈ N, then limsup j→∞ b j = 1.

Exercise 9.1.35. If xk :=−k, then lim j→∞x j =−∞.

Proposition 9.1.36. If (x j) is a bounded sequence of real numbers, then limsupx j

is a limit point of (x j).

Proof. Let y := limsup j→∞ x j and yk := sup
{

x j | j ≥ k
}
. Let ε > 0 and m be given.

Pick N such that k ≥ N implies |y− yk|< ε/2. Let k := max{N,m}. Since yk− ε
2 is

not an upper bound for {x j | j ≥ k} there is a j ≥ k such that yk− ε
2 < x j ≤ yk. Now

j ≥ k ≥ m and

|x j− y| ≤ |x j− yk|+ |yk− y|< ε
2
+

ε
2
= ε .

Thus y is a limit point of (x j). �
The limit superior of a sequence is its largest limit point:

Proposition 9.1.37. Let (x j) be a sequence of real numbers. If p is a limit point of
the sequence (x j) , then p≤ limsupx j.

Proof. Let p be some limit point of (x j) and let y := limsup j→∞ x j be the limit
superior of (x j) . We need to show that p≤ y. Let yk := sup{x j | j ≥ k} and let (xn j)
be some subsequence converging to p. Now xnk ∈ {x j | j ≥ k} since nk ≥ k. Hence
xnk ≤ yk. Since xnk → p and yk → y as k → ∞ we have p≤ y. �

Similar to the definition of the limit superior, the sequence

zk = inf
j≥k

x j := inf
{

x j | j ≥ k
}

is an increasing sequence and we define the limit inferior by
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limx j = liminf
j→∞

x j := lim
k→∞

inf
j≥k

x j = lim
k→∞

zk.

The reader may verify that the limit inferior of a sequence is its smallest limit point.
Since inf{x j | j ≥ k} ≤ sup{x j | j ≥ k} for all k, we have

liminf
k→∞

xk ≤ limsup
k→∞

xk.

Example 9.1.38. If x1,x2,x3, . . . is an enumeration of the rationals in [0,1], then den-
sity of rationals implies that every point in [0,1] is a limit point of the sequence (xn) .

Below we give alternative characterizations of the limit superior and the limit in-
ferior of sequences. These characterizations are motivated by a restatement of the
definition of the limit of a sequence.

Lemma 9.1.39. If p,xn are of real numbers, then xn → p as n→ ∞ iff for any ε > 0
the sets {k | xk < p− ε} and {k | p+ ε < xk} both are finite.

Proof. Follows directly from the definition of the limit of a sequence. �
Exercise 9.1.40. Suppose (xn) is a bounded sequence of real numbers. A real num-
ber t is the limit superior of (xk) iff for any ε > 0 (i) the set {k | t−ε < xk} is infinite
and (ii) the set {k | t + ε < xk} is finite.

Exercise 9.1.41. Suppose (xn) is a bounded sequence of real numbers. A real num-
ber t is the limit inferior of (xk) iff for any ε > 0 (i) the set {k | t− ε < xk} is finite
and (ii) the set {k | t + ε < xk} is infinite.

The following characterization of the existence of the limit of a sequence in term
of limsup and liminf is a direct consequence of Lemma 9.1.39, Exercise 9.1.40 and
Exercise 9.1.41. We give a different proof below.

Theorem 9.1.42. Let (x j) be a sequence of real numbers. The sequence (x j) is con-
vergent iff liminfk→∞ xk = limsupk→∞ xk.

Proof. Suppose liminfk→∞ xk = limsupk→∞ xk. Let

x := liminf
k→∞

xk = limsup
k→∞

xk.

Let yk := sup j≥k x j and zk := inf j≥k x j. Then

zk ≤ x j ≤ yk for j ≥ k.

In particular, zk ≤ xk ≤ yk, since zk → x and yk → x, then xk → x.
Conversely, suppose xn → x. Since the limit superior is a limit point there is a

subsequence (xin) of (xn) such that xin → limsupk→∞ xk. Since a subsequence has the
same limit a the “mother” sequence x = limsupk→∞ xk. Similarly, the limit inferior
equals x. �
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Example 9.1.43. If an := (−1)n+1 and bn := −an, then an + bn = 0 for all n and
limsupan = limsupbn = 1. Consequently, limsup(an+bn) = 0< 2= (limsupan)+
(limsupbn) .

Similarly, limsup(anbn) =−1 < 1 = (limsupan)(limsupbn) .

9.2 Sequences of Functions

In this section, we discuss pointwise and uniform convergence of sequences of func-
tions. We also discuss how pointwise and uniform convergence interacts with the
basic notions of calculus: continuity, the derivative, and the integral. Uniform con-
vergence is important because it allows us to establish several results about inter-
changing two limits.

Uniform Convergence

Let D be a subset of the complex plane. Suppose fn, f : D→ C. If for every x in D,
fn(x)→ f (x) as n→ ∞, then fn converges pointwise to f on D. In symbols

∀x ∈ D,∀ε > 0,∃N = N(x,ε)> 0,n≥ N =⇒ | fn(x)− f (x)|< ε .

Uniform convergence on D requires N to be independent of x. More precisely, the
sequence fn converges uniformly to f on D provided

∀ε > 0,∃N = N(ε)> 0,∀x ∈ D,n≥ N =⇒ | fn(x)− f (x)|< ε .

See Fig. 9.1. We will write fn → f , if fn converges pointwise to f , and fn ⇒ f , if
fn converges uniformly to f . To emphasize this notation:

fn → f pointwise convergence

fn ⇒ f uniform convergence

Example 9.2.1. Let fn(x) := x/n and f (x) := 0. Then
(i) fn converges pointwise to f on R,

(ii) fn does not converge uniformly to f on R, and
(iii) fn converges uniformly to f on any compact interval [a,b].

Proof. (i) Fix x. Let ε > 0 be given. Pick N such that |x|
N < ε . (For example, let

N := 1+ |x|
ε .) Then n≥ N implies | fn(x)|= |x|

n ≤ |x|
N < ε .

(ii) Let ε := 1. Let N be given. Let n := N and x := N +1, then fN(x) = N+1
N >

1 = ε .
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Fig. 9.1 A function f , the band determined by f (x)− ε < g(x)< f (x)+ ε and a function g inside
this bound

(iii) Let ε > 0 be given. Pick k > 0 such that [a,b] ⊆ [−k,k]. Let N > k
ε , e.g.,

N := 1+ k
ε . Let x ∈ [a,b] and n≥ N. Then | fn(x)|= |x|

n ≤ k
N < ε . �

Uniform Convergence and Continuity

Uniform convergence is of interest because uniform convergence passes some nice
properties of the functions fn on to the limit function f . We establish some examples
below.

Example 9.2.2. Let

fn(x) :=

⎧
⎪⎨

⎪⎩

−1 if x <− 1
n

nx if − 1
n ≤ x≤ 1

n

1 if 1
n < x

and f (x) :=

⎧
⎪⎨

⎪⎩

−1 if x < 0

0 if x = 0

1 if 0 < x

,

then each fn is continuous on R, f is not continuous at 0, and fn → f . See Fig. 9.2.

The example shows that the pointwise limit of a sequence of continuous functions
need not be continuous, but the uniform limit of a sequence of continuous functions
is a continuous function. Since continuity of g at x0 means g(x)→ g(x0) as x → x0

we can think of this result as being about interchanging two limits: the limit in n and
the limit in x.

Theorem 9.2.3. Let f , fn : D→ C and let x0 ∈ D. Suppose fn ⇒ f on D.

1. If each fn is continuous at x0, then f is continuous at x0.
2. If each fn is uniformly continuous on D, then f is uniformly continuous on D.
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Fig. 9.2 Illustrating that fn does not converge uniformly to f in Example 9.2.2. The figure shows
f , the band f (x)− ε < g(x)< f (x)+ ε with ε = 1

3 , and the functions fn, n = 1,2,3

Proof. Let ε > 0 be given. [The proof is in two steps, first we find a good N, then
we find δ .] By the triangle inequality

| f (x)− f (x0)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(x0)|+ | fn(x0)− f (x0)|.

Since ε/3 > 0, uniform convergence gives an N, such that | f (t)− fN(t)|< ε/3 for
all t in D. Hence

| f (x)− f (x0)|<
ε
3
+ | fN(x)− fN(x0)|+

ε
3
.

Since fN is continuous at x0 and ε/3 > 0, there is a δ > 0, such that |x− x0| < δ
implies | fN(x)− fN(x0)|< ε/3. Hence

|x− x0|< δ =⇒ | f (x)− f (x0)|<
ε
3
+

ε
3
+

ε
3
= ε .

This proves the first part. �
Exercise 9.2.4. Prove the second part of the theorem.

Uniform Convergence and Integrals

We show pointwise limits of integrable functions need not be integrable and that
uniform limits of integrable functions are integrable.

Exercise 9.2.5. Let (xn) be an enumeration of the rationals in the interval [0,1]. Let
fn(x) = 0 except fn(x) = 1 for x ∈ {x1, . . . ,xn} . Prove each fn is integrable and the
pointwise limit function is not integrable.

Theorem 9.2.6. If fn : [a,b]→ R are integrable and converge uniformly to f , then

f is integrable and
´ b

a fn →
´ b

a f .
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Proof. We cannot use the Evaluation Theorem for Integrals (Theorem 7.2.5), be-
cause we have not assumed that I = limn→∞

´ b
a fn exists.

Let ε > 0 be given. Let N be so large that n≥ N implies | fn(x)− f (x)|< ε
3(b−a) ,

for all x ∈ [a,b] . Let sn (resp. Sn) be a lower (resp. upper) step function for fn, such
that ∑Sn−∑sn <

ε
3 . Then

f (x)< fn(x)+
ε

3(b−a)
≤ Sn(x)+

ε
3(b−a)

, for all x ∈ [a,b] .

So S = Sn +
ε

3(b−a) is an upper step function for f . Similarly, s = sn − ε
3(b−a) is a

lower step function for f . But

∑S−∑s =∑
(

Sn +
ε

3(b−a)

)
−∑

(
sn−

ε
3(b−a)

)

=∑Sn−∑sn +∑ 2ε
3(b−a)

(xi− xi−1)

=∑Sn−∑sn +
2ε
3

<
ε
3
+

2ε
3

= ε .

It follows from Theorem 7.2.3 that f is integrable. Furthermore, for n≥ N we have

∑s≤∑sn ≤
ˆ b

a
fn ≤∑Sn ≤∑S

and

∑s≤
ˆ b

a
f ≤∑S.

So both
´ b

a f and
´ b

a fn are in the interval [∑s,∑S]. Hence

∣
∣
∣
∣
∣

ˆ b

a
f −
ˆ b

a
fn

∣
∣
∣
∣
∣
≤∑S−∑s < ε .

Consequently,
´ b

a fn converges to
´ b

a f . �
Remark 9.2.7. The proof does not use that the fn’s form a sequence. For example,
a very similar proof shows that, if ft is integrable on [a,b] for all t and ft ⇒ f as
t → t0, then f is integrable on [a,b] and

´ b
a ft →

´ b
a f .

Here ft ⇒ f as t → t0 means

∀ε > 0,∃δ > 0,∀x ∈ [a,b],0 < |t− t0|< δ =⇒ | ft(x)− f (x)|< ε .

We just replaced the discrete parameter n with the continuous parameter t in the
definition of uniform convergence. This is similar to some of the variations on limits
in Sects. 1.5 and 1.6.

Remark 9.2.8. We can rewrite the limit
´ b

a fn →
´ b

a f in the theorem as
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lim
n

ˆ b

a
fn =

ˆ b

a
lim

n
fn.

Since the integral is a kind of limit process, this is an example of interchanging two
limits.

Uniform Convergence and Derivatives

The following result is about a sequence of differentiable functions passing differ-
entiability on to the limit function.

Corollary 9.2.9. Let fn, f , and g be real valued functions defined on some interval
I. If each fn have a continuous derivative on I, the sequence fn converges pointwise
to f on I, and the sequence f ′n converges uniformly to g on I, then f is differentiable
on I and f ′ = g.

One can prove this without using integrals, done this way the proof is a bit tedious.
We hide the complications by using the theory of the Riemann integral.

Proof. Let x and x0 be points in I. By the FTC-Evaluation we can write

fn(x) = fn(x0)+

ˆ x

x0

f ′n.

Letting n→ ∞ we get

f (x) = f (x0)+

ˆ x

x0

g

where we used the pointwise convergence of fn and the uniform convergence of f ′n.
Now g is continuous, since it is the uniform limit of continuous functions. Conse-
quently, it follows from FTC-Derivative that f ′ = g. �

Partial Derivatives

Given a function g : [a,b]× [c,d]→ R of two variables, supposing y → g(x,y) is
integrable for each x we can consider the function

f (x) :=
ˆ d

c
g(x,y)dy

defined for x ∈ [a,b] . Imposing suitable conditions on g we establish continuity and
differentiability of the function f .

Exercise 9.2.10. If g : [a,b]× [c,d]→ R is continuous, then f (x) =
´ d

c g(x,y)dy is
continuous [a,b]→ R.
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If g is a function of two variables, for example g(x,y), then gx = ∂xg = ∂g
∂x is the

derivative of g with respect to the first variable, that is

gx(s, t) := lim
h→0

g(s+h, t)−g(s, t)
h

.

The function gx is called a partial derivative of g. The partial derivative with respect
to the second variable gy is defined in a similar manner. We can now establish a
result about interchanging integration and differentiation. This is one of Gottfried
Wilhelm von Leibniz (1 July 1646, Leipzig to 14 November 1716, Hanover) many
contributions to the early development of Calculus.

Theorem 9.2.11 (Leibniz Integral Rule). Suppose g : R× [c,d]→C is continuous
and that the partial derivative gx exists and is continuous on R× [c,d]. Let f : R→C
be determined by

f (t) :=
ˆ d

c
g(t,y)dy,

then f is differentiable on R and

f ′(t) :=
ˆ d

c
gx(t,y)dy.

Proof. Fix a point t0. Clearly,

f (t)− f (t0)
t− t0

=

ˆ d

c

g(t,y)−g(t0,y)
t− t0

dy.

Hence, if we know

g(t,y)−g(t0,y)
t− t0

⇒ gx (t0,y) as t → t0,

the convergence being uniform in y, then we can finish the proof by interchanging
the limit and the integral (Theorem 9.2.6).

By the Mean Value Theorem there is an st,y between t0 and t such that

g(t,y)−g(t0,y)
t− t0

= gx(st,y,y).

(Note, we do not know anything about sh,y except it is between t and t0. For example,
there is no reason to think y → st,y is continuous or even integrable.) To complete
the proof, we will show gx(st,y,y) converges uniformly (in y) to gx(t0,y) as t → t0.

Let ε > 0 be given. We must find a δ > 0, not depending on y, such that

|t− t0|< δ implies
∣
∣gx(st,y,y)−gx(t0,y)

∣
∣< ε .
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By uniform continuity of gx on [t0 − 1, t0 + 1]× [c,d] (Exercise 5.4.7), there is
a 0 < δ < 1 such that |(u,v)− (α,β )| < δ implies |gx(u,v)−gx(α,β )| < ε for all
pairs of points (u,v) and (α,β ) in [t0−1, t0 +1]× [c,d].

If |t− t0|< δ , then |st,y− t0|< δ , since st,y is between t and t0. Hence
∣
∣(st,y,y)− (t0,y)

∣
∣=
∣
∣st,y− t0

∣
∣< δ

and consequently
∣
∣gx(st,y,y)−gx(t0,y)

∣
∣< ε as we needed to show. (We chose δ < 1

to force st,y to be in [t0−1, t0 +1].) �

Fubini’s Theorem for Riemann Integrals�

Let f : [a,b]× [c,d]→ R be continuous, by Exercise 9.2.10 the function g(x) :=
´ d

c f (x,y)dy is continuous and therefore integrable. Hence, we can consider the it-
erated integral

ˆ b

a

(ˆ d

c
f (x,y)dy

)

dx.

Similarly, we can consider
´ d

c

(´ b
a f (x,y)dx

)
dy. The following theorem, named

after Guido Fubini (19 January 1879, Venice to 6 June 1943, New York City), shows
that these two integrals are equal. The version below was established by Paul David
Gustav du Bois-Reymond (2 December 1831, Berlin to 7 April 1889, Freiburg) in
1872, 30 years prior to the publication of Fubini’s work.

Theorem 9.2.12 (Fubini). Suppose f is continuous on [a,b]× [c,d]. Then

ˆ d

c

(ˆ b

a
f (x,y)dx

)

dy =
ˆ b

a

(ˆ d

c
f (x,y)dy

)

dx.

Proof. Let F(x,y) :=
´ x

a f (u,y)du and Φ(x) :=
´ d

c F(x,y)dy. By FTC-Derivative

Fx = f . Hence, by Leibniz’ Integral Rule Φ ′(x) =
´ d

c Fx(x,y)dy =
´ d

c f (x,y)dy. The
rest of the proof is two applications of FTC-Evaluation:

´ d
c

(´ b
a f (x,y)dx

)
dy =

´ d
c

(´ b
a Fx(x,y)dx

)
dy since Fx = f

=
´ d

c F(b,y)−F(z,y)dy FTC-Evaluation
=Φ(b)−Φ(a) definition of Φ
=
´ b

a Φ ′(x)dx FTC-Evaluation

=
´ b

a

(´ d
c f (x,y)dy

)
dx Leibniz.

This calculation completes the proof. �
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9.3 Convolution

Let f ,g be functions defined on the real line. Suppose f ,g are integrable on any
compact interval and one is = 0 outside some compact interval, then the convolution
of f and g is

f ∗g(x) =
ˆ ∞

−∞
f (x− y)g(y)dy. (9.1)

The integral is not improper: If g = 0 outside [a,b], the integral is over the interval
[a,b]. If f = 0 outside [a,b] the integral is over the interval [x− b,x− a]. Equa-
tion (9.1) used that the product of two integrable functions is integrable and that if
f is integrable, so is g(x) := f (a− x) for any constant a.

The change of variables u = x− y shows that f ∗g = g∗ f . The reader may state
and verify other basic algebraic properties of convolution, for example, f ∗ (g∗h) =
( f ∗g)∗h, f ∗ (g+h) = ( f ∗g)+( f ∗h), and f ∗ (ag) = a( f ∗g) for any constant a.

Exercise 9.3.1. Let f and g be continuous functions defined on the real line. If one
of f and g is = 0 outside some bounded interval, then f ∗g is a continuous function
on the real line.

Approximate Identities

A sequence (gn) functions on the real line is called an approximate identity, if each
gn is integrable on any compact interval and

1. gn(x)≥ 0 for all n [positivity]
2.
´ ∞
−∞ gn(x)dx = 1 for all n [integral one]

3. For any δ > 0,
´
|x|≥δ gn(x)dx→ 0 as n→ ∞ [concentrated near the origin]

Where
´
|x|≥δ f :=

´ −δ
−∞ f +

´ ∞
δ f .

Exercise 9.3.2. If f is a continuous on R and f = 0 outside some compact interval,
then f is uniformly continuous on R.

Exercise 9.3.3. If f is a continuous on R and f = 0 outside some compact interval,
then f is bounded on R.

Theorem 9.3.4 (Approximate Identity Lemma). Let (gn) be an approximate
identity and let f be continuous on R. If f = 0 outside some compact interval, then
f ∗gn converges uniformly (on R) to f as n→ ∞.

Proof. Since f is bounded on R, there is an M be such that | f (x)| ≤M for all x ∈ R.
Let ε > 0 be given. Use the uniform continuity of f to pick δ > 0 so that |x−y| ≤

δ implies | f (x)− f (y)| < ε/2. Use property (3) of (gn) to pick N so that n ≥ N
implies 2M

´
|x|≥δ gn(x)dx < ε/2.
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Property (2) of (gn) implies f (x) = f (x)
´ ∞
−∞ gn(y)dy =

´ ∞
−∞ f (x)gn(y)dy, hence

f ∗gn(x)− f (x) =
ˆ ∞

−∞
( f (x− y)− f (x))gn(y)dy.

Writing
´ ∞
−∞ =

´
|y|≥δ +

´
|y|≤δ gives the equality below.

| f ∗gn(x)− f (x)|=
∣
∣
∣
∣
∣

ˆ

|y|≥δ
( f (x− y)− f (x))gn(y)dy

+

ˆ

|y|≤δ
( f (x− y)− f (x))gn(y)dy

∣
∣
∣
∣
∣

≤
ˆ

|y|≥δ
2Mgn(y)dy+

ˆ

|y|≤δ

ε
2

gn(y)dy

<
ε
2
+

ε
2
= ε .

The first inequalities uses | f (x− y)− f (x)| ≤ 2M to bound the first term and that
|y| ≤ δ implies | f (x)− f (y)|< ε/2 to bound the second term.

The second inequality uses 2M
´
|x|≥1/n gn(x)dx < ε/2 to bound the first term and

that properties (1) and (2) of (gn) implies
ˆ

|y|≤1/n

ε
2

gn(y)dy≤ ε
2

ˆ ∞

−∞
gn =

ε
2

to bound the second term. This completes the proof. �
One reason that convolution is important is that the convolution of two functions

tends to inherit the “good” properties of both functions. For example:

Proposition 9.3.5. Suppose f ∈ C 1(R) (i.e., f ′ exists and is continuous on R). If g
is continuous on R and = 0 outside some compact interval, then f ∗g ∈ C 1(R) and
( f ∗g)′ = f ′ ∗g.

Proof. This is essentially a special case of Theorem 9.2.11. Suppose g = 0 outside
[c,d].

Let φ(x,y) := f (x−y)g(y), then φ and φx(t,y) = f ′(t−y)g(y) are continuous on
R×R. Since ( f ∗g)(t) =

´ d
c φx(t,y)dy Theorem 9.2.11, tells us that

( f ∗g)′(t) =
ˆ d

c
φx(t,y)dy = f ′ ∗g(t).

Finally, f ′ ∗g is continuous by Exercise 9.3.1. �
Exercise 9.3.6. Suppose f ∈ C 1(R) and = 0 outside some compact interval and g
is continuous on R, then f ∗g is differentiable on R and ( f ∗g)′ = f ′ ∗g on R.
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Combining this with the Approximate Identity Lemma we see that if the approxi-
mate identity (gn) consists of C 1− functions, then f ∗gn is a uniform approximation
of the continuous function f by C 1− functions.

9.4 The Fundamental Theorem of Algebra�

This section is an application of iterated integrals and the uniform convergence the-
orem for integrals. We assume familiarity with polar coordinates z = r eiθ for z ∈ C
and with the exponential function eiθ , see Chap. 11.

Theorem 9.4.1 (Fundamental Theorem of Algebra). Let p be a polynomial of
degree at least one. Then p(z) = 0 for some z ∈ C.

Proof. Let p(z) = ∑n
k=0 akzk. Suppose an �= 0 and p(z) �= 0 for all z ∈ C. Then g :

[0,∞)× [0,2π]→ C determined by

g(r,ϑ) =
1

p(reiϑ )

has continuous partial derivatives

gr =
−p′

(
reiϑ)eiϑ

p(reiϑ )
2 and gϑ =

−p′
(
reiϑ) ireiϑ

p(reiϑ )
2

in particular
gϑ = ir gr. (9.2)

Let f (r) =
´ 2π

0 g(r,ϑ)dϑ . Then f ′(r) =
´ 2π

0 gr(r,ϑ)dϑ , by Theorem 9.2.11. Mul-
tiplying by ir and using (9.2) gives the first equality below.

ir f ′(r) =
ˆ 2π

0
gϑ (r,ϑ)dϑ = g(r,2π)−g(r,0) = 0,

The middle equality uses FTC-Evaluation and the last equality is a consequence of
ei2π = ei0.

Hence f ′(r) = 0 for all r, thus f is constant. Specifically,

f (r) = f (0) =
2π

p(0)
�= 0 for all r.

On the other hand

∣
∣
∣p(reiϑ )

∣
∣
∣=

∣
∣
∣
∣
∣

n

∑
k=0

akrkeikϑ

∣
∣
∣
∣
∣
≥ |an|rn−

∣
∣
∣
∣
∣

n−1

∑
k=0

akrkeikϑ

∣
∣
∣
∣
∣

so
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∣
∣
∣p(reiϑ )

∣
∣
∣≥ |an|rr−

n−1

∑
k=0

|ak|rk = rn

(

|an|−
n−1

∑
k=0

|ak|rk−n

)

. (9.3)

Since |an|−∑n−1
k=0 |ak|rk−n → |an| as r →∞, if follows that

∣
∣p(reiϑ )

∣
∣⇒∞ as r →∞,

the convergence is uniform in θ , since the right hand side of (9.3) does not depend
on θ . Consequently,

g(r,ϑ) =
1

p(reiθ )
⇒ 0 as r → ∞

uniformly in ϑ . Hence

f (r) =
ˆ 2π

0
g(r,ϑ)dϑ → 0 as r → ∞

contradicting that f (r) = 2π/p(0) �= 0 for all r. �
By repeated applications of the Fundamental Theorem of Algebra and Lemma

1.4.13 it follows that any polynomial is a product of linear factors:

Corollary 9.4.2. If p(z) = ∑n
k=0 akzk, n > 0 and an �= 0, then

p(z) = an(z− z1)(z− z2) · · ·(z− zn)

for some z1,z2, . . . ,zn in C.

Proof. Let z1 be a root of p. By Lemma 1.4.13 there is a polynomial p1 of degree
n−1 such that p(z) = (z−z1)p1(z). Similarly, if z2 is a root of p1, then p1(z) = (z−
z2)p2(z) where p2 has degree n−2. Hence p(z) = (z− z1)(z− z2)p2(z). Continuing
in this manner we see that

p(z) = (z− z1)(z− z2) · · ·(z− zn)pn(z)

where pn has degree 0, hence pn is a constant. Expanding the product, and compar-
ing coefficients to zn, it follows that pn(z) = an. �

Problems

Problems for Sect. 9.1

1. Prove the following claims.
(i) If an = p for all n, then (an) converges to p. [Hint: Set N := 1.]
(ii) If p �= q, a2n−1 = p, and a2n = q, then (an) is divergent. [Hint: Suppose (an)
is convergent to a. Consider the cases a = p and a �= p.]
(iii) If liman = p and liman = q, then p = q. [Hint: If p �= q, then setting
ε := |p−q|/2 leads to a contradiction. ]
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2. Give a direct proof of limit point compactness by mimicking the proof of
sequential compactness. [Hint: One step is to find an integer m such that
A0 := {x ∈ D | m≤ x < m+1} is infinite.]

3. If (xn) is not bounded, then there is a subsequence (xin) such that |xin | → ∞.
4. For a sequence (xn) of real or complex numbers, let L [(xn)] be the set of limits

of all convergent subsequences of (xn) , hence

L [(xn)] := {b ∈ R | xin → b, for some subsequence of (xn)} .

Let (an) be a sequence of real numbers. Let (bn) be a sequence of points in
L [(an)] . Suppose bn → b. Show b ∈ L [(an)] by completing the following steps:
(a) If t ∈ L [(an)] and ε > 0, then the set

{n ∈ N | |an− t|< ε}

is infinite.
(b) Why is there an integer n1 ≥ 1 such that |an1 −b|< 1

2 ?
(c) Why is there an integer n2 > n1 such that |an2 −b|< 1

4 ?
(d) Suppose we have constructed n1 < n2 < .. . < nk such that

∣
∣an j −b

∣
∣< 1

2 j for

j = 1,2, . . . ,k. Why is there an integer nk+1 > nk such that
∣
∣ank+1 −b

∣
∣< 1

2k+1 ?
(e) Why does ank → b?

Cauchy Sequences

5. Let (xn) be a sequence of complex numbers. If there is a constant c < 1, such
that

|xn+1− xn| ≤ c|xn− xn−1|
for all n≥ 2, then (xn) is convergent.

6. If xn := log(n), then xn+1− xn → 0 and (xn) is not Cauchy.

7. Give an example of a sequence (xn) such that |xn+1− xn| ≤ 1/n and (xn) is not
Cauchy.

Sequences and Continuity

8. Give an example of a continuous function f and a divergent sequence (an) such
that ( f (an)) is convergent.

To simplify the notation we will say that a sequence of points in A is convergent
in A, if the sequence is convergent and the limit is a point in A. That is, if A is a
subset of the complex plane, an ∈ A for all n, and an → a for some a ∈ A, then



9.4 The Fundamental Theorem of Algebra� 199

we say (an) is convergent in A. For example, (1/n) is convergent in [0,2] and
(1/n) is not convergent in [0,2].
The goal of the following problems is to extend the sequential continuity theo-
rem slightly. Namely to establish

Corollary 9.4.3. Let M and N be subsets of the complex plane. Let f : M → N
be a function and let a ∈ M. Suppose that ( f (an)) is convergent in N, whenever
an → a in M. Then f is continuous at a.

9. Let f : M → N be a function and let a ∈ M. Suppose xn → a =⇒ ( f (xn)) is
convergent. Let an → a and bn → a. If f (an)→ c and f (bn)→ d, prove that
c = d. [Hint: Let x1 := a1,x2 := b1, x3 := a2, x4 := b2, etc.]

10. Let f : M → N be a function and let a ∈ M. Suppose xn → a =⇒ ( f (xn)) is
convergent. Let an → a. Prove f (an)→ f (a). [Hint: Use the previous problem
with bn := a for all n.]

11. Prove the corollary above.
The next group of problems explore connections between uniform continuity
and sequences.

12. Let f : D→ C. Then f is uniformly continuous on D iff for any sequences (xn)
and (yn) is D, xn− yn → 0 implies f (xn)− f (yn)→ 0.

13. Let f : D → C be uniformly continuous on D. If (xn) is a Cauchy sequence in
D, then ( f (xn)) is a Cauchy sequence in C.

14. Let f (x) := x2. Show f maps Cauchy sequences onto Cauchy sequences and
f is not uniformly continuous. [You may take the domain of f to be R or C.]
Hence the converse in the previous problem fails.

Monotone Sequences

15. Let xn := 1+n
1+2n .

(a) Use Monotone Convergence to prove that (xn) is convergent.
(b) Use the definition of the limit of a sequence to show that xn → 1

2 as n→ ∞.
16. Let

xn := 1
n+1 +

1
n+2 + · · ·+

1
2n .

Use Monotone Convergence to show that (xn) is convergent. The limit is log(2),
but you need not prove this fact.

17. Let (Tn exp)(x) be the nth Taylor polynomial of exp at x0 = 0. Prove the se-
quence ((Tn exp)(1)) is an increasing sequence converging to exp(1) = e.

Limit Superior and Limit Inferior

18. Give an example of a sequence whose set of limits points equals the set

{0}∪
{

1
k | k = 1,2, . . .

}
.
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19. (i) If an := 1+(−1)n and bn := 1− (−1)n calculate

limsup(anbn)

(limsupan)(limsupbn)

limsup(an +bn) and

(limsupan)+(limsupbn)

(ii) Repeat part (i) for the limit inferior.
20. limsup(an +bn)≤ limsupan + limsupbn

21. liminfan + liminfbn ≤ liminf(an +bn).
22. If t is a limit point of (xk) then

liminfxk ≤ t ≤ limsupxk.

23. Suppose an > 0. Prove an+1
an

→ L implies a1/n
n → L.

24. If limsupan = ∞, then there is a subsequence (ain) such that ain → ∞.

25. Formulate and prove the analogue of Exercise 9.1.40 for the limit inferior.
26. Verify the claim in Example 9.1.38.
27. Give a detailed proof of Lemma 9.1.39.
28. Use Lemma 9.1.39, Exercises 9.1.40 and 9.1.41 to give an alternative proof of

Theorem 9.1.42.
29. For a sequence (an) let L(an) denote the set of limits of all convergent subse-

quences of (an) . Does there exists a sequence (an) in the closed interval [0,1]
such that
a. L(an) has three elements?
b. L(an) is countably infinite?
c. L(an) is the set of rational numbers in [0,1]?
If you answers “yes” to one of the parts above, provide an example of such a
sequence. If you answer “no” prove that no such sequence can exist.

Problems for Sect. 9.2

1. Let fn(x) := x
(

1
n − x

)
and f (x) :=−x2.

(i) fn → f on R.
(ii) fn �⇒ f on R.
(iii) fn ⇒ f on the closed interval [0,1].

2. Let fn(x) := xn and f (x) := 0.
(i) Let 0 < a < 1. Prove fn ⇒ f on [0,a].
(ii) Find a function g such that fn → g on [0,1].
(iii) Prove fn �⇒ g on [0,1].
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3. [Dini’s Theorem] If fn ↘ 0 pointwise on [a,b], then fn ⇒ 0 on [a,b].
Consequently:

Theorem 9.4.4. Monotone convergence to a continuous function implies uniform
convergence.

4. Give an example of functions f , fn : [0,1]→ R and x,xn ∈ [0,1], such that
each fn is continuous, fn → f , xn → x and fn(xn) �→ f (x).

5. Let fn, f : [0,1]→ R and x,xn ∈ [0,1], such that each fn is continuous, fn ⇒ f ,
and xn → x. Prove fn(xn)→ f (x).

6. Prove that a continuous function on a closed bounded interval is the uniform
limit of step functions, thereby obtaining a second proof that a continuous func-
tion is integrable.

7. If f : [0,1]→ R is continuous, then
´ 1

0 f = limn→∞∑n
k=1 f

(
k
n

)
1
n .

8. Let f : R→ C be continuous. Suppose f (x) = 0 for all |x|> 1. Then
(a) f is uniformly continuous.
(b) Suppose yn → y∞. If gn(x) := f (x− yn), show gn ⇒ g∞ on R.

9. Let fn : [0,1]→ R be determined by

fn(x) :=

{
1
q if x = p

q with q < n

0 otherwise
,

then f∞ is the Riemann function. Prove fn converges uniformly to f∞. Why is´ 1
0 fn = 0 for all n ∈ N? Consequently, Theorem 9.2.6 shows f∞ is integrable

with integral = 0.
10. Suppose g : R× [a,b]→ R is continuous. Show f : R→ R determined by

f (x) :=
ˆ b

a
g(x,y)dy

is continuous.
11. If fn converges uniformly to f on some open interval I and each fn is differen-

tiable at x0 ∈ I, must f be differentiable at x0?
12. Show ˆ 1

0

(ˆ 1

0

x− y

(x+ y)3 dy

)

dx �=
ˆ 1

0

(ˆ 1

0

x− y

(x+ y)3 dx

)

dy.

Why does this not contradict Fubini’s Theorem?
13. For each n = 1,2,3, . . . let

fn(x) =

{
1 when n−1≤ x < n

0 otherwise
.

Prove the following claims:
(a) fn → 0 pointwise on R.
(b) fn �⇒ 0 on R. [Does there exist a function g such that fn �⇒ g on R?]
(c)
´ ∞

0 fn = 1 for all n.
(d) limn→∞

(´ ∞
0 fn

)
�=
´ ∞

0 (limn→∞ fn) . [Where (limn→∞ f )(x) := limn→∞
( fn(x)) .]
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Problems for Sect. 9.3

1. If f is continuous on R and = 0 outside some compact interval and g is inte-
grable on any compact interval, then f ∗g is continuous on R.

2. If f is continuous on R, g is integrable on [a,b] , and g = 0 outside [a,b], then
f ∗g is continuous on [a,b].

3. Let gn(x) :=

{
n if 0≤ x≤ 1

n

0 otherwise
. Show that if f is continuous on R and = 0 on

R\ [a,b] for some real numbers a < b, then f �gn ⇒ f on R.
4. If ϕ is the bump function from Sect. 8.4, then gn(x) := nαϕ(nx) is an approxi-

mate identity, when α
´
ϕ = 1.

5. If f is C 2 and g is C 3, then f ∗g is C 5.
A function is C ∞ if it can be differentiated arbitrarily many times. Continuous
functions can be uniformly approximated by C ∞-functions:

6. Let gn(x) := nϕ(nx), where ϕ is the bump function from Sect. 8.4. Let f be
uniformly continuous on R, prove f ∗gn ⇒ (

´
ϕ) f on R and that f ∗gn is C ∞.

7. Let g : R→ R be C 1. For any real number a, show

f (x) :=
ˆ x

a
g(x− t)dt

is differentiable and find a formula for f ′. [Hint: You can check your formula
by evaluating the integral for specific functions g.]

8. Let a,b ∈ R. Suppose y = f (x) satisfies the differential equation

y′′+ay′+by = 0.

In particular, we assume f ′(x) and f ′′(x) exist for all x ∈ R. Show f (x) is C ∞.
9. Let a,b ∈ R and let r : R→ R be continuous. Suppose g(x) satisfies the initial

value problem

y′′+ay′+by = 0, y(0) = 0,y′(0) = 1.

Show y = f (x) :=
´ x

0 g(x− t)r(t)dt satisfies the initial value problem

y′′+ay′+by = r(x), y(0) = y′(0) = 0.

10. Let (gn) be an approximate identity. Let f be bounded and uniformly contin-
uous on R. If there is a compact interval [a,b] such that all the gn = 0 outside
[a,b], then f ∗gn converges uniformly (on R) to f as n→ ∞.
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Problems for Sect. 9.4

Solutions and Hints for the Exercises

Exercise 9.1.1. 2 �= 1, the fourth terms disagree. Both sets equal {1,2,3}.
Exercise 9.1.4. p is an accumulation point of A iff A∩B′ε(p) �= /0 for all ε . So, if p

is an accumulation point of A, then for each n we can pick a point an in A∩B′1/n(p).

Exercise 9.1.6. ϕ(1) ≥ 1 since ϕ(1) ∈ N. Suppose n ∈ N and ϕ(n) ≥ n. Then
ϕ(n+1)> ϕ(n) since ϕ is strictly increasing and n+1 > n. Hence, ϕ(n+1)> n,
and consequently, ϕ(n+1)≥ n+1.

Exercise 9.1.7. Let ε > 0 be given. Pick N such that n≥ N implies |an−L|< ε .
Then n≥ N implies in ≥ n≥ N, hence |ain −L|< ε .

Exercise 9.1.8. (1) ϕ(n) = n. (2) By composition. (3) ϕ(n) = n+m.

Exercise 9.1.10. Since (xn) is bounded and xn ≥ 0, there is an integer L, such
that 0 ≤ xn < L for all n. Hence, N =

⋃L−1
j=0 {n ∈ N | j ≤ xn < j+1} . Since a finite

union of finite sets is a finite set, at least one of the sets {n ∈ N | j ≤ xn < j+1} ,
j = 0,1, . . . ,L−1 must be infinite.

Exercise 9.1.11. Similar to Exercise 9.1.10 using

A0 =
9⋃

m=0

{n ∈ N | d0.m≤ xn < d0.m+1/10} .

Exercise 9.1.12. We must show i1 < i2 < i3 < · · · . Now i2 is the smallest element
of A2 \{i1} ⊆ A1 \{i1} . Hence i2 is in A1. But i2 �= i1 and i1 is the smallest element
of A1, consequently i1 < i2.

Similarly, i3 is the smallest element of A3 \ {i1, i2} ⊆ A2 \ {i1, i2} . Hence i3 is
in A2 \ {i1} . But i3 �= i2 and i2 is the smallest element of A2 \ {i1} , consequently
i2 < i3. The desired sequence of inequalities follows by induction.

Exercise 9.1.13. By construction yn and b are in the interval [d0.d1 · · ·dn, d0.d1 · · ·
dn + 1/10n] for all n. Since the interval has length 1/10n, we conclude |yn − b| ≤
1/10n for all n.

Exercise 9.1.14. If (xn + iyn) is bounded, then (xn) and (yn) are bounded. Since
(xn) is a bounded sequence of real numbers we just showed it has a convergent
subsequence (xin) . Since (yin) is a bounded sequence of real numbers it has a con-
vergent subsequence

(
yi jn

)
. It follows that

(
xi jn

+ iyi jn

)
is convergent.

Exercise 9.1.16. Let b := limxin . Let ε > 0 be given. Pick N such that n ≥ N
implies |xin −b| < ε . Then xiN and xiN+1 both are in Bb(ε) and at least one of them
is �= b.

Exercise 9.1.17. If xn → x, then |xn− xm| ≤ |xn− x|+ |x− xm|.
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Exercise 9.1.19. If xin → x, then |x− xm| ≤ |x− xin |+ |xin − xm| .
Exercise 9.1.20. There is an N such that m,n ≥ N implies |xm− xn| < 1. Hence

|xm|< 1+ |xN | for all m≥ N.

Exercise 9.1.22. Cauchy =⇒ bounded =⇒ convergent subsequence. And con-
vergent subsequence implies convergent.

Exercise 9.1.40. Let t := limsupk→∞ xk. Recall yk := sup{x j | k ≤ j}. Since t−
ε < t and yk → t as k → ∞, there is an N such that yk > t − ε when k ≥ N. Since
yk = sup{x j | k ≤ j} there is a j ≥ k such that x j > t− ε . This gives (i).

Pick N such that bN < t + ε . Since x j ≤ bN < t + ε for all j ≥ N, we get (ii).
Conversely suppose (i) and (ii). By (i) yk = sup{x j | k ≤ j} > t − ε . Hence

limyk ≥ t− ε . Since ε > 0 is arbitrary, we concluded limyk ≥ t. Similarly, (ii) im-
plies limyk ≤ t.

Exercise 9.2.4. Similar to the first part. Since fN is uniformly continuous the
same δ works for all x0.

Exercise 9.2.5 To see that fn is integrable use step functions with partition points
at the xi’s. The limit function is zero on the rationals and one on the irrationals. By
density of rationals any lower step functions has sum ≤ 0. Similarly, any upper step
function has sum ≥ 1.

Exercise 9.2.10. Let ε > 0 be given. By Exercise 5.4.7 g is uniformly continuous.
Hence there is a δ > 0 such that |(x,y)− (u,v)| < δ implies |g(x,y)− g(u,v)| <
ε/(d− c). If |x− x0|< δ , then |(x,y)− (x0,y)|= |x− x0|< δ .

Exercise 9.3.1 Similar to part of the proof of Theorem 9.2.11.

Exercise 9.3.2 Suppose f = 0 outside [a,b]. Then f is uniformly continuous on
[a− 1,b + 1]. Hence there is a 0 < δ < 1 such that |x− y| < δ implies | f (x)−
f (y)| < ε for all x and y in [a− 1,b+ 1]. Since δ < 1, we get |x− y| < δ implies
| f (x)− f (y)|< ε for all x and y in R.

Exercise 9.3.3 If | f (x)| ≤M for x ∈ [a,b], then | f (x)| ≤M for all x ∈ R.

Exercise 9.3.6 One way is to mimic the proof of Theorem 9.2.11. Fix x0 we will
show f ∗ g is differentiable at x0 with derivative f ′ ∗ g(x0). Let φ(x,y) := f (x−
y)g(y), then φ and φx(t,y) = f ′(t− y)g(y) are continuous on R×R. Note that

f ∗g(t) =
ˆ x0+1−a

x0−1−b
f (t− y)g(y)dy =

ˆ x0+1−a

x0−1−b
φ(t,y)dy

for t ∈ [x0−1,x0 +1]. By the Mean Value Theorem

f (t− y)− f (x0− y)
t− x0

= f ′(xt − y)

for some xt between t and x0. And so on.



Chapter 10
Series

We study infinite sums (series) of numbers and of functions. Among the topics
are products of series, the Riemann rearrangement theorem, and the theory of
power series. As applications we construct a space filling curve, construct a con-
tinuous nowhere differentiable functions, and prove the Weierstrass Approximation
Theorem.

10.1 Series of Numbers

We begin by recalling some of Sect. 1.7 where we briefly considered infinite series.
The main aim in Sect. 1.7 was to establish convergence of the geometric series
∑∞

k=0 zk for |z|< 1.
Let x = (x j) be a sequence of complex numbers. We will assign a meaning to the

infinite sum
∞

∑
k=1

xk = x1 + x2 + x3 + · · ·

To do so we consider the (finite) partial sums sn of the first n terms, that is

sn = sn [x] = sn [(x j)] :=
n

∑
k=1

xk = x1 + x2 + · · ·+ xn−1 + xn,n ∈ N.

Each of these is a finite sum so we can, at least in principle, calculate each of them.
We say that ∑∞

k=1 xk is convergent, if the sequence (sn) is convergent to some
complex number. Otherwise we say that ∑∞

k=1 xk is divergent. When ∑∞
k=1 xk is con-

vergent, we will write
∞

∑
k=1

xk := lim
n→∞

n

∑
k=1

xk = lim
n→∞

sn.

Hence, we can make use of our discussion of sequences to establish results about
series.
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If the xk are real numbers and sn →∞, we will write ∑∞
k=1 xk =∞ and we will say

that ∑∞
k=1 xk diverges to ∞. Similarly for divergence to −∞.

Exercise 10.1.1 (Linearity). If ∑∞
k=1 xk and ∑∞

k=1 yk are convergent and a and b are
complex numbers, then ∑∞

k=1(axk +byk) is convergent and

∞

∑
k=1

(axk +byk) = a
∞

∑
k=1

xk +b
∞

∑
k=1

yk.

Proposition 10.1.2. The convergence of an infinite series does not depend on any
finite number of terms.

Proof. If yk = xk when k > n and m > n, then

sm [(xk)] =
m

∑
k=1

xk = c+
m

∑
k=1

yk = c+ sm [(yk)]

where

c :=
n

∑
k=1

(xk− yk) .

Hence, sm [(xk)] = c+ sm [(yk)] for all m > n. Thus, sm [(xk)] is convergent as m→∞
iff sm [(yk)] is convergent as m→ ∞. �

We considered geometric series in Sect. 1.7. Our results are summarized in:

Example 10.1.3 (Geometric Series). Consider the sum ∑∞
k=0 zk. In this case, sn =

1+ z+ z2 + · · ·+ zn−1 and zsn = z+ z2 + · · ·+ zn−1 + zn, hence, sn− zsn = 1− zn.
Solving for sn gives

sn =
n−1

∑
k=0

zk =
1− zn

1− z
.

It follows that ∑∞
k=0 zk is convergent and

∞

∑
k=0

zk =
1

1− z

when |z| < 1 and divergent when 1 ≤ |z| . Furthermore, ∑∞
k=0 zk = ∞ when z is real

and 1≤ z.

Remark 10.1.4. Setting z= 2, the argument above shows the geometric series ∑∞
k=02k

is divergent. In fact, the partial sums grow without bound. Hence the series diverges
to infinity. Is there a way to get a finite sum for this series? Yes! In fact, using the
2-adic metric, a distance function different from the absolute value, the sum ∑N

k=0 2k

converges to 1
1−2 =−1 as N →∞. This is possible, in part, because the 2-adic metric

is not related to the order on R.
In addition to considering notions of distance different from absolute values,

there are many other ways of assigning a finite sum to an ordinarily divergent series,
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see Hardy (1949). Among such methods are summability methods. We will use the
Cesàro summability method in Chap. 12, as part of our discussion of convergence
of Fourier series.

Exercise 10.1.5. Some simple facts.

1. (Test for Divergence) If ∑∞
k=1 xk is convergent, then xn → 0.

2. If ∑∞
k=1 xk is convergent, then ∑∞

k=N xk → 0 as N → ∞.
3. If each xk ≥ 0, then ∑∞

k=1 xk is convergent if and only if the sequence of partial
sums (sn) is bounded.

One of the “big” theorem in Sect. 9.1 is that a sequence of numbers is convergent
iff it is a Cauchy sequence. In the context of series, this result takes the form:

Proposition 10.1.6 (Cauchy Criterion). ∑∞
k=1 xk is convergent if and only if

∀ε > 0,∃N ∈ N,∀m,n ∈ N : m≥ n≥ N =⇒
∣
∣
∣
∣
∣

m

∑
k=n

xk

∣
∣
∣
∣
∣
< ε . (10.1)

Proof. Since sm − sn = ∑m
k=n+1 xk, when n < m, the sequence (sn) is Cauchy iff

(10.1) holds. �
We will say that ∑∞

k=1 xk is absolutely convergent, if ∑∞
k=1 |xk| is convergent.

Exercise 10.1.7. If ∑∞
k=1 xk is absolutely convergent, then ∑∞

k=1 xk is convergent.

Convergence Tests

The following result is sometimes called the Comparison Test, using it is the most
important way to show that a series is convergent.

Theorem 10.1.8 (Dominated Convergence Theorem). If |xk| ≤ yk for all k and
∑∞

k=1 yk is convergent, then ∑∞
k=1 xk is absolutely convergent.

Proof. Let ε > 0 be given. Since ∑∞
k=1 yk is convergent, the Cauchy criterion gives us

an N, such that m≥ n≥ N implies ∑m
k=n yk < ε . Since |xk| ≤ yk implies ∑m

k=n |xk| ≤
∑m

k=n yk, we conclude m≥ n≥N implies ∑m
k=n |xk|< ε . So, by the Cauchy criterion,

∑∞
k=1 |xk| is convergent. �
The ratio and root tests follow from the Dominated Convergence Theorem by

dominating by suitable geometric series.

Exercise 10.1.9 (Ratio Test). If there exists an r < 1 such that
∣
∣
∣ xn+1

xn

∣
∣
∣ ≤ r for all

sufficiently large n, then ∑∞
k=1 xk is absolutely convergent.

Exercise 10.1.10 (Root Test). If there exists an r < 1 such that n
√
|xn| ≤ r for all

sufficiently large n, then ∑∞
k=1 xk is absolutely convergent.
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Example 10.1.11 (The Riemann Zeta Function). The sum ζ (a) := ∑∞
n=1

1
na is con-

vergent, when a > 1.

Proof. The basic estimate needed is

∞

∑
n=1

1
na =

∞

∑
k=0

2k+1−1

∑
n=2k

1
na ≤

∞

∑
k=0

2k+1−1

∑
n=2k

1
2ak

=
∞

∑
k=0

2k

2ak =
∞

∑
k=0

(
1

2a−1

)k

.

The last sum is a convergent geometric series with sum 2a−1/
(
2a−1−1

)
. It follows

that the partial sums sm := ∑m
n=1

1
na are bounded by 2a−1/

(
2a−1−1

)
. �

Exercise 10.1.12. Give a similar proof that ∑∞
n=1

1
na is divergent when a≤ 1.

Example 10.1.13 (Euler Constant). Let

γn :=
n

∑
k=1

1
k
− log(n+1) =

ˆ n+1

1

(
1
�x� −

1
x

)
dx =

n

∑
k=1

ˆ k+1

k

(
1
�x� −

1
x

)
dx.

Note, 0 ≤ 1
�x� −

1
x ≤

1
k −

1
k+1 = 1

k(k+1) <
1
k2 , when k ≤ x ≤ k + 1. Hence, (γn) is

an increasing sequence bounded by ∑∞
k=1

1
k2 . In particular, (γn) is convergent. The

Euler constant γ is the limit of the sequence (γn) .

Exercise 10.1.14 (Integral Test). Suppose f : [1,∞) → [0,∞[ is decreasing. Let
xk = f (k). Then

´ ∞
1 f is convergent if and only if ∑∞

k=1 xk is convergent.

If (ak) is a sequence, then we can think of the partial sum An := ∑n
k=1 ak as the inte-

gral of (ak) and of the difference αn := an−an+1 as (the negative of) the derivative
of (ak) at n. If we do so, then the following is an analogues of the Fundamental
Theorem of Calculus.

Lemma 10.1.15 (Fundamental Theorem of Discrete Calculus). Let (ak) be as
sequence, if αk := ak−ak+1, then

m

∑
k=1

αk = a1−am+1

for all m≥ 1.

Proof. The left hand side is

(a1−a2)+(a2−a3)+ · · ·+(am−am+1).

So the result follows by cancellation. �
We will also use the analogue of integration by parts:
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Lemma 10.1.16 (Summation by Parts). Let (ak) and (bk) be sequences. Let αn :=
an−an+1 and Bn := ∑n

k=1 bk, then

n

∑
k=1

αkBk =
n

∑
k=1

akbk−an+1Bn.

Proof. α1B1 = (a1− a2)b1 = a1b1− a2B1 so the claim is true if f n = 1. Suppose
n≥ 1 and

n

∑
k=1

αkBk =
n

∑
k=1

akbk−an+1Bn.

Hence,

n+1

∑
k=1

αkBk =
n

∑
k=1

αkBk +αn+1Bn+1

=
n

∑
k=1

akbk−an+1Bn +αn+1Bn+1

= · · ·

Exercise 10.1.17. Fill in the missing details in the proof of the Summation by Parts
rule. �

The following is a general form of the alternating series test.

Theorem 10.1.18 (Dirichlet’s Test). Suppose a1 ≥ a2 ≥ a3 ≥ ·· · ≥ 0 and an → 0.
If (bk) be a sequence of complex numbers such that the sequence of partial sums
Bn := ∑n

k=1 bk is bounded, then ∑∞
k=1 akbk is convergent.

Proof. Since (Bn) is bounded, there is an M such that |Bn| ≤M for all n. Let αk :=
ak−ak+1, then αk ≥ 0 and by the Fundamental Theorem of Discrete Calculus

m

∑
k=1

αk = a1−am+1.

Hence, ∑∞
k=1αk is convergent with sum a1. Now |αkBk| ≤ Mαn, so the Dominated

Convergence Theorem, implies ∑∞
k=1αkBk is absolutely convergent

By Summation by Parts,

n

∑
k=1

akbk =
n

∑
k=1

αkBk +an+1Bn.

We will show that the right hand side is convergent at n→ ∞.
Since, an → 0, we have |an+1Bn| ≤ Man+1 → 0. Consequently, ∑n

k=1 akbk →
∑∞

k=1αkBk. �
Leibniz is sometimes credited with the discovery of:
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Corollary 10.1.19 (Alternating Series Test). Suppose a1 ≥ a2 ≥ a3 ≥ ·· · and an →
0. Then ∑∞

k=1(−1)kak is convergent.

Proof. Set bk = (−1)k+1 in Dirichlet’s Test. �
Example 10.1.20. We saw above that ∑∞

k=1
1
k is not convergent. Setting ak := 1

k in
the alternating series test shows that ∑∞

k=1(−1)k+1 1
k is convergent. Consequently,

∑∞
k=1(−1)k+1 1

k is convergent and not absolutely convergent.

A series that is convergent and not absolutely convergent is called conditionally
convergent.

Products of Series

Formally, that is without paying attention to convergence issues, we have
(

∞

∑
j=0

a jx
j

)(
∞

∑
k=0

bkxk

)

=
∞

∑
n=0

(

∑
j+k=n

a jbk

)

xn

where ∑ j+k=n a jbk = ∑n
j=0 a jbn− j is the sum of the terms whose subscripts add up

to n, that is the coefficient to xn. Setting x = 1, this suggests the formula in the next
theorem.

Theorem 10.1.21 (Cauchy Product). Suppose ∑∞
j=0 a j and ∑∞

k=0 bk are absolutely
convergent. If

cn :=
n

∑
j=0

a jbn− j = ∑
j+k=n

a jbk, (10.2)

then ∑∞
n=0 cn is absolutely convergent and

∞

∑
n=0

cn =

(
∞

∑
j=0

a j

)(
∞

∑
k=0

bk

)

.

Proof. We begin by showing that the partial sums ∑N
n=0 |cn| are bounded. Once we

have established that we know ∑∞
n=0 cn is absolutely convergent.

N

∑
n=0

|cn|=
N

∑
n=0

∣
∣
∣
∣
∣ ∑j+k=n

a jbk

∣
∣
∣
∣
∣
≤

N

∑
n=0

∑
j+k=n

∣
∣a jbk

∣
∣

= ∑
j+k≤N

∣
∣a jbk

∣
∣≤
(

N

∑
j=0

∣
∣a j
∣
∣
)(

N

∑
k=0

|bk|
)

(10.3)

≤
(

∞

∑
j=0

∣
∣a j
∣
∣
)(

∞

∑
k=0

|bk|
)

.
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The middle inequality used that the triangle {( j,k) | j+ k ≤ N} is contained in the

Fig. 10.1 The square is the region {( j,k) | 0≤ j,k ≤ N} corresponding to the sum(
∑N

j=0 a j

)(
∑N

k=0 bk
)
= ∑N

j=0 ∑
N
k=0 a jbk. The boundary between the two triangles is the line

j + k = N, corresponding to the sum cN = ∑ j+k=N a jbk. The lower triangle is the region
{( j,k) | 0≤ j+ k ≤ N} corresponding to the sum ∑N

n=0 cn = ∑ j+k≤N a jbk. The upper triangle
corresponds to the sum ∑N

j,k=0
j+k>N

a jbk

square [0,N]× [0,N], see Fig. 10.1. Considering this square and triangle also shows

N

∑
n=0

cn =

(
N

∑
j=0

a j

)(
N

∑
k=0

bk

)

−

⎛

⎜
⎝

N

∑
j,k=0
j+k>N

a jbk

⎞

⎟
⎠ .

Where the notation ∑N
j,k=0
j+k>N

means we are summing over the triangle

{
( j,k) ∈ N2

0 | 0≤ j ≤ N,0≤ k ≤ N,N < j+ k
}
.
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It remains to show that the last term ∑N
j,k=0
j+k>N

a jbk → 0 as N → ∞. But

∣
∣
∣
∣
∣
∣
∣

N

∑
j,k=0
j+k>N

a jbk

∣
∣
∣
∣
∣
∣
∣
≤

N

∑
j,k=0
j+k>N

∣
∣a jbk

∣
∣

≤ ∑
j+k>N

∣
∣a jbk

∣
∣→ 0

as N → ∞. To verify the → 0, note the sequence sN := ∑ j+k≤N

∣
∣a jbk

∣
∣ is bounded

above by
(
∑∞

j=0 a j

)
(∑∞

k=0 bk) by (10.3). Hence, (sN) is convergent, because it is

bounded and increasing. Let s := limN→∞ sN , then ∑ j+k>N

∣
∣a jbk

∣
∣= s− sN → 0. �

Rearrangements�

The purpose of this section is to expose one of the benefits of working with abso-
lutely convergent series. For simplicity we only consider series of real numbers.

If ∑∞
k=1 xk is an infinite series, then ∑∞

k=1 yk is a rearrangement of ∑∞
k=1 xk, if there

is a one-to-one and onto function φ : N→ N such that yn = xφ(n).

Theorem 10.1.22. If ∑∞
k=1 xk is absolutely convergent, then every rearrangement

∑∞
k=1 yk is also absolutely convergent and ∑∞

k=1 yk = ∑∞
k=1 xk.

Proof. Let s := ∑∞
k=1 xk. Let ε > 0 be given. Pick N, such that ∑∞

k=N |xk| < ε/2.
Pick M such that each x1,x2, . . . ,xN is one of y1,y2, . . . ,yM. If n > M, then the terms
x1,x2, . . . ,xN in ∑n

k=1 xk−∑n
k=1 yk cancel out, the surviving terms are ±xk with k >

N. Hence, ∣
∣
∣
∣
∣

n

∑
k=1

xk−
n

∑
k=1

yk

∣
∣
∣
∣
∣
≤

∞

∑
k=N

|xk|<
ε
2
.

Consequently, the calculation
∣
∣
∣
∣
∣

∞

∑
k=1

xk−
n

∑
k=1

yk

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

∞

∑
k=1

xk−
n

∑
k=1

xk

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

n

∑
k=1

xk−
n

∑
k=1

yk

∣
∣
∣
∣
∣

<
∞

∑
k=n+1

|xk|+
ε
2
≤

∞

∑
k=N

|xk|+
ε
2

<
ε
2
+

ε
2
= ε

completes the proof. �
Remark 10.1.23. It can be shown that if every rearrangement of ∑∞

k=1 xk is conver-
gent, then ∑∞

k=1 xk is absolutely convergent. However, we will not prove this result.
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Note this does not assume the rearrangement converge to the same limit, that is part
of the conclusion.

Theorem 10.1.24 (Riemann Rearrangement Theorem). Let xn ∈ R for all n. Sup-
pose ∑xn converges, but does not converge absolutely. Then ∑xn can be rearranged
to have any real number as its sum, to be divergent to ∞, and to be divergent to −∞.

Proof. Let

x+n :=

{
xn when 0≤ xn

0 when xn < 0

be the positive part of xn and let

x−n :=

{
0 when 0≤ xn

xn when xn < 0

be the negative part of xn. Then

xn = x+n + x−n and |xn|= x+n − x−n .

Suppose ∑x−n is convergent. Then ∑x+n =∑(xn−x−n ) shows that ∑x+n is convergent,
and consequently, ∑ |xn| = ∑(x+n − x−n ) is convergent, a contradiction. A similar
argument shows that ∑x+n is not convergent. Hence,

∑x−n =−∞ and ∑x+n = ∞.

Let a1,a2, . . . be the positive terms and let b1,b2, . . . be the negative terms. We saw
∑an = ∞ and ∑bn = −∞. Let t be some real number. The desired rearrangement
∑yn is achieved as follows. Pick positive terms such that

a1 +a2 + · · ·+aN1−1 < t and

a1 +a2 + · · ·+aN1 > t

then pick negative terms such that

a1 +a2 + · · ·+aN1−1 +b1 + · · ·+bM1−1 > t and

a1 +a2 + · · ·+aN1−1 +b1 + · · ·+bM1 < t

then pick positive terms such that

a1 + · · ·+aN1−1 +b1 + · · ·+bM1−1 +aN1+1 + · · ·+aN2−1 < t and

a1 + · · ·+aN1−1 +b1 + · · ·+bM1 +aN1+1 + · · ·+aN2 > t

continuing in this way gives the desired rearrangement.
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By construction 0 < ∑N1
k=1 yk− t < aN1 . For N1 < n < N1 +M1,

0 <
n

∑
k=1

yk− t ≤
N1

∑
k=1

yk− t < aN1

while

0 < t−
N1+M1

∑
k=1

yk <−bM1 .

For N1 +M1 < n < N1 +M1 +N2,

0 < t−
n

∑
k=1

yk ≤ t−
N1+M1

∑
k=1

yk <−bM1

while

0 <
N1+M1+N2

∑
k=1

yk− t < aN2 .

It remains to show that aNj → 0 and bMj → 0. Since ∑xn is convergent, xn → 0,
hence an → 0 and bn → 0. Consequently, aNj → 0 and bMj → 0.

Remark 10.1.25. To summarize: addition is commutative when working with abso-
lutely convergent series, but not when working with conditionally convergent series.

Example 10.1.26. Let ∑∞
k=1 yk be a rearrangement of the alternating Harmonic series

∑∞
k=1 (−1)k+1 1

k . Assume the positive terms in ∑∞
k=1 yk are in the same order as in

the original series and that the negative terms are in the same order as in the original
series. For example, ∑∞

k=1 yk could be

1+
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11
− 1

6
+ · · · (10.4)

but, for example, could not be

1+
1
5
− 1

2
+

1
3
+

1
9
− 1

4
+

1
7
+

1
11
− 1

6
+ · · · .

Let Pn be the number of positive terms in ∑n
k=1 yk, then Nn := n−Pn is the number of

negative terms in ∑n
k=1 yk. Recall, γn := ∑n

k=1
1
k − log(n+1) converges by Example

10.1.13. Calculating we get

n

∑
k=1

yk =
Pm

∑
k=1

1
2k−1

−
Nn

∑
k=1

1
2k

=

(
2Pn

∑
k=1

1
k
−

Pn

∑
k=1

1
2k

)

−
Nn

∑
k=1

1
2k

= γ2Pn + log(2Pn +1)− 1
2 (γPn + log(Pn +1))− 1

2 (γNn + log(Nn +1))

= γ2Pn − 1
2 (γPn + γNn)+

1
2 log

(
(2Pn +1)(2Pn +1)
(Pn +1)(Nn +1)

)
.
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Hence, if Pn → ∞, Nn → ∞, and Pn
Nn
→ a, then ∑∞

k=1 yk = log(2)+ 1
2 log(a) . In par-

ticular, ∑∞
k=1 (−1)k+1 1

k = log(2) and the sum of the rearrangement in (10.4) equals
3
2 log(2) .

10.2 Series of Functions

Let S be some set. Let fn : S→ C for all n ∈ N. Let gn(x) = ∑n
k=1 fk(x). We say that

∑∞
k=1 fk(x) is convergent, if (gn(x)) is convergent for all x ∈ S, and we set

∞

∑
k=1

fk(x) := lim
n→∞

n

∑
k=1

fk(x).

We say that ∑∞
k=1 fk(x) is uniformly convergent on S, if (gn(x)) is uniformly conver-

gent on S.
The following is a version of the Dominated Convergence Theorem.

Theorem 10.2.1 (Weierstrass M-Test). Let S be some set and let fn : S → C be a
sequence of functions. Suppose there exists a sequence (Mn) of positive real numbers
such that

| fn(x)| ≤Mn, for all n ∈ N and all x ∈ S.

If ∑∞
n=1 Mn is convergent, then ∑∞

k=1 fk(x) is uniformly convergent on S.

Proof. Fix x ∈ S. Since | fk (x)| ≤ Mk and ∑Mk is convergent the series ∑∞
k=1 fk(x)

is convergent by Dominated Convergence. Hence, setting f (x) := ∑∞
k=1 fk(x) de-

termines a function f : S → C. To complete the proof we need to show gn(x) =
∑n

k=1 fk(x) converges uniformly to f on S.
Let ε > 0 be given. We must find an N such that n ≥ N =⇒ | f (x)−gn(x)|< ε

for all x ∈ S. Pick N such that ∑∞
k=N Mn < ε . For n≥ N we have

| f (x)−gn(x)|=
∣
∣
∣
∣
∣

∞

∑
k=n+1

fk(x)

∣
∣
∣
∣
∣
≤

∞

∑
k=n+1

Mk < ε

for any x in S. �
Corollary 10.2.2. If each fn in the Weierstrass M-test is continuous, then the sum
f (x) = ∑∞

k=1 fk(x) is continuous.

Proof. The functions gn = ∑n
k=1 fk are continuous, since they are finite sums of

continuous functions. Using gn ⇒ f and that uniform limits of continuous functions
are continuous completes the proof. �
Example 10.2.3. We showed in Example 8.2.6 that ∑∞

k=0 xk/k! converges uniformly
to ex on any interval [−M,M].
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10.3 Space Filling Curves�

A function f : [0,1]→ [0,1]2 is called space filling if it is onto. A continuous func-
tion f : [0,1]→ R2 is called a curve.

Theorem 10.3.1. Space filling curves exists.

To prove this theorem we will construct such a function. Curiously enough, this
will use a function C → [0,1]2 we considered in Exercise 3.6.2, here C denotes the
Cantor set. This curve was discovered by Isaac Jacob Schoenberg (21 April 1903,
Galaţi to 21 February 1990).

Example 10.3.2 (Schoenberg). Let

f (t) :=

⎧
⎪⎨

⎪⎩

0 if 0≤ t ≤ 1/3

3t−1 if 1/3≤ t ≤ 2/3

1 if 2/3≤ t ≤ 1.

(10.5)

This determines a continuous function f defined on [0,1]. Extend f to [−1,1] by
setting f (−t) := f (t) for 0 ≤ t ≤ 1 and then to all of R, by periodicity, setting
f (t + 2k) = f (t), for −1 < t ≤ 1 and k ∈ Z. Since f (−1) = f (1) we arrive at a
continuous function f : R→ [0,1], see Fig. 10.2.

1 1
3 0 1

3
2
3 1 4

3 2 3 4

Fig. 10.2 The periodic function f (t)

For t ∈ R let

x(t) :=
∞

∑
j=1

2− j f
(
32 j−2t

)
and (10.6)

y(t) :=
∞

∑
k=1

2−k f
(

32k−1t
)

By the Weierstrass M−test with Mj := 2− j the functions x and y are continuous. Let
g(t) = (x(t),y(t)), then g is continuous. We will show that g maps the Cantor set C
onto the square [0,1]2. Hence, writing a point t ∈C as

t =
∞

∑
n=1

dn

3n , where dn ∈ {0,2},
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we will show

g

(
∞

∑
n=1

dn

3n

)

=

(
∞

∑
j=1

d2 j−1

2 j+1 ,
∞

∑
k=1

d2k

2k+1

)

. (10.7)

Consequently, on the Cantor set g equals the function from Exercise 3.6.2. In par-
ticular, g maps the Cantor set C onto the closed unit square [0,1]2 . In particular, g
is a continuous function mapping the interval [0,1] onto the square [0,1]2. Hence,
establishing (10.7) completes the proof.

Proof. (Proof of (10.7)) Clearly, (10.7) is equivalent to

x

(
∞

∑
n=1

dn

3n

)

=
∞

∑
j=1

d2 j−1

2 j+1 (10.8)

and

y

(
∞

∑
n=1

dn

3n

)

=
∞

∑
k=1

d2k

2k+1 . (10.9)

To establish (10.8) we must show

f

(

32 j−2
∞

∑
n=1

dn

3n

)

=
d2 j−1

2
, (10.10)

since x(∑∞
n=1 dn3−n) =∑∞

j=1 2− j f
(
32 j−2∑∞

n=1 dn3−n
)
. So (10.10) must be a conse-

quence of the construction of f . Since f has period two, writing 32 j−2∑∞
n=1 dn3−n

as an even integer plus a remainder is useful:

32 j−2
∞

∑
n=1

dn

3n =
∞

∑
n=1

dn32 j−2

3n =
2 j−2

∑
n=1

dn32 j−2

3n +
d2 j−1

3
+

∞

∑
n=2 j

dn32 j−2

3n

= 2k+
d2 j−1

3
+δ ,

where k := ∑2 j−2
n=1

dn
2 32 j−2−n and δ := ∑∞

n=2 j dn32 j−2−n. Using dn ∈ {0,2} for all n,
it follows that k is an integer and that

0≤
∞

∑
m=2

d2 j−2+m

3m ≤
∞

∑
m=2

2
3m =

2/9
1−1/3

=
1
3
.

In particular, 0≤ δ ≤ 1
3 .

Using f has period 2 and k is an integer we arrive at

f

(

32 j−2
∞

∑
n=1

dn

3n

)

= f

(
d2 j−1

3
+δ
)
. (10.11)
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Using (10.5) and 0≤ δ ≤ 1
3 , we have f (δ ) = 0 and f

(
2
3 +δ

)
= 1. Hence, it follows

from (10.11) that

f

(

32 j−2
∞

∑
n=1

dn

3n

)

=

{
0 if d2 j−1 = 0

1 if d2 j−1 = 1
,

but this is (10.10).
A similar argument establishes (10.9). We have established (10.7), hence, we

shown g is a space filling curve. �
Exercise 10.3.3. Show that (10.9) holds.

We saw in Sect. 4.2 that there are bijections f : [0,1]→ [0,1]2. The following shows
that you cannot have everything. In particular, a space-filling curve cannot be one-
to-one. This is due to Eugen Otto Erwin Netto (30 June 1848, Halle to 13 May 1919,
Giessen).

Theorem 10.3.4 (Netto’s Theorem). No function f : [0,1]→ [0,1]2 is 1-1, onto,
and continuous.

This is Theorem 13.4.3.

10.4 Power Series

Given a sequence of constants an and a point z0 we can form a power series

∞

∑
n=0

an(z− z0)
n = a0 +a1(z− z0)+a2(z− z0)

2 +a3(z− z0)
3 + · · · ,

z0 is the point about which the power series is expanded. By definition (z− z0)
0 = 1

so the first term is the constant a0. We allow an, z, and z0 to be complex numbers.

For Taylor series we start with a function f and a point x0, set ak := f (k)(x0)
k! and

then ask for which x the Taylor series

∞

∑
k=0

ak (x− x0)
k

equals f (x). Example 8.2.6 illustrates this. When studying power series we start
with a sequence ak and a point z0 and then define a function f by setting f (z) :=

∑∞
k=0 ak (z− z0)

k . We study properties of functions defined in terms of power series,
these properties depend on the given data: the sequence an and the point z0. We begin
by studying the domain of such functions. We also study continuity, derivatives, and
integrals of these functions.
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Convergence

The most basic question is: given ak and z0 for which z does the series ∑∞
k=0 ak

(z− z0)
k converge? Clearly ∑∞

k=0 ak (z− z0)
k is a translate of ∑∞

k=0 akzk, so we will
consider the case z0 = 0.

It turns out that there is a R such that ∑∞
k=0 akzk is convergent for all z ∈ C with

|z| < R and divergent for all z ∈ C with |z| > R. The following formula for this
R was discovered by Cauchy and rediscovered by Jacques Salomon Hadamard (8
December 1865 Versailles, France to 17 October 1963 Paris, France).

Theorem 10.4.1 (Cauchy–Hadamard Formula). Given a power series ∑∞
k=0 akzk

let

R :=
1

limsupn→∞
n
√
|an|

. (10.12)

• If |z|< R, then ∑∞
k=0 akzk is absolutely convergent.

• If R < |z| , then ∑∞
k=0 akzk is divergent.

We use the interpretations 1
0 = ∞ and 1

∞ = 0.

Proof. The proof relies on two facts about the limit superior. Suppose limsupbk = L,
then (i) for any M > L the set {k | bk > M} is finite and (ii) there is a subsequence
bnk → L.

Let L := limsupn→∞
n
√
|an| then R = 1/L. Let z be some complex number. We

must show that, if |z|< R then ∑∞
n=0 anzn is convergent, and if R < |z| then ∑∞

n=0 anzn

is not convergent.
Suppose |z|< R, in particular 0 < R, hence L < ∞. Pick S, such that |z|< S < R.

Then ∑∞
k=0 (|z|/S)k is a convergent geometric series and

1
S
>

1
R
= L.

So, by one of the characterizations of the limit superior, for all but a finite number
of k we have

|ak|1/k ≤ 1
S
.

Multiplying by |z| and raising both sides to the kth power yields

∣
∣
∣akzk

∣
∣
∣≤
(
|z|
S

)k

.

Since ∑∞
k=0 (|z|/S)k is convergent, Dominated Convergence shows ∑∞

n=0 anzn is ab-
solutely convergent.

Conversely, suppose R < |z| , in particular R �= ∞, hence 0 < L. Pick S, such that
R < S < |z| . Hence 1

S < L. Let ank be a subsequence such that

∣
∣ank

∣
∣1/nk → L as k → ∞.
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Since 1
s < L, for all but a finite number of k, we have

∣
∣ank

∣
∣1/nk > 1

S . It follows that

∣
∣ank znk

∣
∣=
(∣
∣ank

∣
∣1/nk |z|

)nk ≥
(
|z|
s

)nk

→ ∞

as k→∞. Consequently, akzk �→ 0 as k→∞. Thus, ∑∞
n=0 anzn is not convergent. �

Definition 10.4.2. The number R in Eq. (10.12) is called the radius of convergence
of the power series ∑∞

n=0 anzn.

Remark 10.4.3. If 0 < R < ∞, the power series ∑∞
k=0 akzk may converge at none,

some, or all points on the circle |z|= R.

Due to the usefulness of uniform convergence, we make the following observation.

Lemma 10.4.4. Let R be the radius of convergence of the power series ∑akxk. If
0 < S < R, then ∑akxk converges uniformly in the closed disk |x| ≤ S.

Proof. By the Cauchy–Hadamard Theorem ∑akSk is absolutely convergent. For x
in the disk |x| ≤ S,

∣
∣akxk

∣
∣ ≤

∣
∣akSk

∣
∣ , hence the result follows from the Weierstrass

M−test with Mk :=
∣
∣akSk

∣
∣ . �

Calculus

The following lemma is useful in establishing some of the results below.

Lemma 10.4.5. If M > 0, then M1/n → 1 as n→ ∞.

Proof. Suppose M > 1, then M1/n > 1 for all n. Let ε > 0. By Bernoulli’s inequality
(1+ ε)n ≥ 1+nε , for any n ∈ N. Hence,

1+ ε ≥ (1+nε)1/n , for any n ∈ N.

Pick N ∈ N with 1+Nε ≥M. Let n≥ N. Then 1+nε ≥M and therefore

0 < M1/n−1≤ (1+nε)1/n−1≤ (1+ ε)−1 = ε .

Consequently, M1/n → 1 as n→ ∞.
If M = 1, then M1/n = 1 for all n. If M < 1, then 1/M1/n = (1/M)1/n → 1. �

Remark 10.4.6. Alternative proofs of the lemma. (a) If |z|< 1, the series ∑∞
k=0 zk is

a convergent geometric series. When z = 1, the series ∑∞
k=0 zk is divergent. Hence

the power series ∑∞
k=0 zk has radius of convergence R = 1. Consequently, so does

∑∞
k=0 Mzk =M∑∞

k=0 zk. By Cauchy–Hadamard limsupM1/k = 1. Since the sequence(
M1/k

)
is monotone, M1/k → 1. (b) Using exponential functions and logarithms:

M1/n = exp
(

1
n log(M)

)
→ e0 = 1 as n→ ∞.
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Exercise 10.4.7. If ∑∞
n=0 anxn has radius of convergence R and [a,b]⊂]−R,R[, then

´ b
a ∑∞

n=0 anxn dx = ∑∞
n=0 an

´ b
a xn dx.

Exercise 10.4.8. n1/n → 1 as n→ ∞.

Exercise 10.4.9. ∑∞
n=0 anxn and ∑∞

n=1 nanxn−1 have the same radius of convergence.

Exercise 10.4.10. If ∑∞
n=0 anxn has radius of convergence R and |y|< R, then f (x) =

∑∞
n=0 anxn is differentiable at y and f ′(y) = ∑∞

n=1 nanyn−1, that is

(
∞

∑
n=0

anyn

)′
=

∞

∑
n=0

(anyn)′ .

10.5 The Weierstrass Approximation Theorem�

In this section, we will reproduce Weierstrass’ original proof of the Weierstrass
Approximation Theorem. Weierstrass proved this theorem when he was 70 years
old. There are several other proofs of this important theorem.

The Weierstrass Approximation Theorem states that given any continuous func-
tion f defined on a compact interval [a,b] , there is a sequence of polynomials pn

such that pn ⇒ f on [a,b] .

Theorem 10.5.1 (Weierstrass Approximation Theorem). Let f : [a,b]→ C be
continuous and let ε > 0. There exists a polynomial p such that

| f (t)− p(t)|< ε , for all t ∈ [a,b] .

Picking a pn for each ε = 1/n yields:

Corollary 10.5.2. If f is continuous on [a,b], then there is a sequence of polynomi-
als pn, such that pn converges uniformly to f on [a,b].

The rest of this section contains the proof of the Weierstrass Approximation Theo-
rem. Apart from some preparatory work, that was well known at the time Weierstrass
proved this result, the proof is about one page long.

Convolution by a Polynomial

Below, we will need that convolution of a function and a polynomial is a polynomial.

Lemma 10.5.3. Let f be a continuous function on R that equals zero outside some
bounded interval and let p be a polynomial, then f ∗ p is a polynomial.
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Proof. Suppose p(x) = ∑n
k=0 akxk has degree n. Since ak (x− y)k = ∑k

j=0βk, j(y)x j,
where each βk, j(y) is a polynomial of degree k− j ≤ k (explicit expressions for the
β j(y) can be read off from the binomial theorem, but are not needed here), then

p(x− y) =
n

∑
k=0

ak (x− y)k =
n

∑
k=0

k

∑
j=0

βk, j(y)x
j

=
n

∑
j=0

n

∑
k= j

βk, j(y)x
j =

n

∑
j=0

b j(y)x j

where b j(y) :=∑n
k= j βk, j(y) is a polynomial of degree ≤ n. Choose R so that f (x) =

0 if |x| ≥ R. The calculation

f ∗ p(x) =
ˆ ∞

−∞
f (y)p(x− y)dy

=

ˆ R

−R
f (y)

(
n

∑
k=0

bk(y)xk

)

dy

=
n

∑
k=0

(ˆ R

−R
f (y)bk(y)dy

)
xk

shows that f ∗ p is a polynomial in x of degree ≤ n. �
Remark 10.5.4. Using the binomial theorem, one can verify that

b j(y) =
n

∑
k= j

ak(−1)k− j
(

k
j

)
yk− j.

But we do not need this explicit formula in the proof above.

Similar calculations can be found in our proof that
√

2 is irrational (Theorem 3.5.4)
and in the proof of Lemma 1.4.12.

An Approximate Identity

We use the function e−x2/2 to construct an approximate identity.

Lemma 10.5.5. The improper integral
´ ∞
−∞ exp(−x2/2)dx is convergent.

Proof. Since (−x)2 = x2 conclude
´ 0
−∞ exp(−x2/2)dx =

´ ∞
0 exp(−x2/2)dx. There-

fore
´ ∞
−∞ exp(−x2/2)dx= 2

´ 1
0 exp(−x2/2)dx+2

´ ∞
1 exp(−x2/2)dx. We must show

that the improper integral
´ ∞

1 exp(−x2/2)dx is convergent.

Since x2 ≥ x when x≥ 1 we have
´ N

1 exp(−x2/2)dx≤
´ N

1 exp(−x/2)dx. By the

FTC-Evaluation we have
´ N

1 exp(−x/2)dx = 2e−1/2−2e−N/2 → 2e−1/2 as N →∞.
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So, the sequence
´ N

1 exp(−x2/2)dx is increasing and bounded by 2/
√

e, hence

ˆ ∞

1
exp(−x2/2)dx = lim

N→∞

ˆ N

1
exp(−x2/2)dx

is convergent. �
Let A :=

´ ∞
−∞ exp(−x2/2)dx. Then A is some strictly positive real number. It can

be shown that A =
√

2π, but the value of A is not of importance to us.
Let E(x) = A−1 exp(−x2/2), for x ∈ R. Then E(x)> 0 for all x since A > 0 and

exp(t)> 0 for all t. Also, we choose A such that
´ ∞
−∞ E(x)dx = 1.

Let

gn(x) := nE(nx) =
n
A

exp

(
−n2x2

2

)

for all n ∈ N and x ∈ R.

Lemma 10.5.6. (gn) is an approximate identity.

Proof. (1) Positivity: gn(x) = nE(nx)> 0 for all n and x. (2) Integral:
ˆ ∞

−∞
gn(x)dx =

ˆ ∞

−∞
nE(nx)dx =

ˆ ∞

−∞
E(u)du = 1.

using the change of variables u = nx. (3) It remains to check that gn concentrated
near the origin. Let δ > 0 be given. We must show that

´
|x|≥δ gn → 0 as n→ ∞. For

any integer n≥ 1 we have
ˆ

|x|≥δ
gn(x)dx = 2

ˆ ∞

δ
nE(nx)dx

= 2
ˆ ∞

nδ
E(u)du

by the change of variables u = nx. If nδ ≥ 1, then
ˆ ∞

nδ
E(u)du =

1
A

ˆ ∞

nδ
exp(−u2/2)du

≤ 1
A

ˆ ∞

nδ
exp(−u/2)du

=
2
A

exp(−nδ/2).

Since exp(−nδ/2)→ 0 as n→ ∞ we are done. �
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Proof of the Weierstrass Approximation Theorem

Having taken care of the preliminaries, we are now ready to give the proof of the
Weierstrass Approximation Theorem.

Let ε > 0 be given.

Let F(x) := f (x)−
(

f (a)+ f (b)− f (a)
b−a (x−a)

)
for x ∈ [a,b]. Then F(a) = F(b) =

0. So setting F(x) = 0 for x ∈ R \ [a,b] makes F a continuous function on R. F is
uniformly continuous (Exercise 9.3.2) and bounded (Exercise 9.3.3) on R.

We will find a polynomial Q such that |F(x)−Q(x)|< ε on [a,b]. Setting p(x) :=

Q(x)+ f (a)+ f (b)− f (a)
b−a (x−a) then completes the proof.

Remark 10.5.7. The idea is: (i) Fix a large n so F � gn is uniformly close to F, this
is possible due to the Approximate Identity Lemma. (ii) Find a Taylor polynomial
q that is uniformly close to gn, this is possible by Example 8.2.6. (iii) Verify F �
q is uniformly close to F � gn. (iv) Since q is a polynomial, Q := F � q is also a
polynomial. Apart from “book keeping” all of the work is in (iii) and the lemmas
above.

Let ε > 0 be given. Since (gn) is an approximate identity (Lemma 10.5.6), it follows
from the Approximate Identity Lemma that we can pick n0 so large that

∣
∣F ∗gn0(x)−F(x)

∣
∣<

ε
2

for all x ∈ R. (10.13)

Let R > 0 be an integer, such that −R ≤ a < b ≤ R. Let M > 0 be a real number
such that |F(t)| ≤M for all t ∈ R.

Recall, from Sect. 10.2 that for any S > 0 the polynomials pn(x) := ∑n
k=0

xk

k! −→n→∞
exp(x) uniformly on [−S,0]. In fact, if KS := SS+1/S!, we showed in Example 8.2.6
that

|ex− pn(x)| ≤ ec KS

n+1
<

KS

n+1

for all x ∈ [−S,0]. Where we used that if x ∈ [−S,0] and c is between x and 0, then
c < 0, so ec < 1.

Let S := 2R2n2
0. Pick N so large that KS

N+1 ≤
A
n0

ε
4RM , then

|pN(x)− exp(x)|< A
n0

ε
4RM

for all x ∈
[
−2R2n2

0,0
]
. Let q(x) := n0

A pN
(
−n2

ox2/2
)
. Then q is a polynomial of

degree 2N. Since −2R≤ x≤ 2R implies −2R2n2
0 ≤− n2

0x2

2 ≤ 0 we have

∣
∣q(x)−gn0(x)

∣
∣=
∣
∣
∣
∣
n0

A
pN

(
−n2

ox2

2

)
− n0

A
exp

(
−n2

ox2

2

)∣∣
∣
∣

<
ε

4RM
(10.14)
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for all x in [−2R,2R] .
For t ∈ [−R,R]. We have the equalities (the third uses F(x) = 0 for |x| ≥ R).

|F ∗gn0(t)−F ∗q(t)|= |F ∗ (gn0 −q)(t)|

=

∣
∣
∣
∣

ˆ ∞

−∞
F(x)

(
gn0(t− x)−q(t− x)

)
dx

∣
∣
∣
∣

=

∣
∣
∣
∣

ˆ R

−R
F(x)

(
gn0(t− x)−q(t− x)

)
dx

∣
∣
∣
∣

≤
ˆ R

−R
|F(x)|

∣
∣gn0(t− x)−q(t− x)

∣
∣dx

≤
ˆ R

−R
M

ε
4RM

dx

= M
ε

4RM
2R =

ε
2
.

The first inequality is a special case of
∣
∣
∣
´ b

a h
∣
∣
∣ ≤
´ b

a |h|. The second inequality used

|F(t)| ≤ M and that x, t ∈ [−R,R] implies t − x ∈ [−2R,2R] so can use (10.14) to
conclude

∣
∣gn0(t− x)−q(t− x)

∣
∣≤ ε/2 for all x, t ∈ [−R,R].

Using this inequality and (10.13) we have

|F ∗q(t)− f (t)|= |F ∗q(t)−F(t)|
≤ |F ∗q(t)−F ∗gn0(t)|+ |F ∗gn0(t)−F(t)|

<
ε
2
+

ε
2
= ε .

for t ∈ [a,b]⊆ [−R,R]
It remains to note that Q := F ∗q is a polynomial by Lemma 10.5.3.

Problems

Problems for Sect. 10.1

1. Suppose ∑an is convergent. Let bn := a2n−1 +a2n for all n. Show ∑bn is conver-
gent.

2. Suppose an ≥ 0, bn ≥ 0, ∑a2
n is convergent, and ∑b2

n is convergent. Show ∑anbn

is convergent. [Hint: (a−b)2 ≥ 0.]

3. Look up Raabe’s test and give a proof of this test.
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4. If an = bn := (−1)n+11/
√

n+1, then ∑an and ∑bn are convergent by the Alter-
nating Series Test. Let cn be determined by (10.2). Show that ∑cn is divergent.

5. If ∑an is absolutely convergent and ∑bn is convergent. Let cn be determined by
(10.2). Must ∑cn be convergent?

6. Let ak := 1
k − log

(
1+ 1

k

)
.

a. Show ak > 0.
b. Prove ∑∞

1 ak is convergent. [The sum γ := ∑∞
k=1 ak is Euler’s constant.]

7. Suppose a1 ≥ a2 ≥ a3 ≥ ·· · ≥ 0 and let (bk) be a sequence of complex num-
bers such that the sequence of partial sums Bn := ∑n

k=1 bk is convergent. Show
∑∞

k=1 akbk is convergent. [Hint: Modify the proof of Dirichlet’s Test.]

8. Suppose an ≥ 0 and ∑an is convergent.

a. Assuming there is a real number B such that |bn| ≤ B for all n, show ∑anbn is
convergent.

b. Assuming ∑bn is convergent, show ∑anbn is convergent.

Problems for Sect. 10.2.

1. Let fn be a sequence of integrable functions on the interval [a,b]. If ∑∞
n=1 fn

converges uniformly to f on [a,b], then f is integrable on [a,b] and

ˆ b

a
∑
n

fn =∑
n

ˆ b

a
fn.

2. Show ∑∞
k=0 xk sin(kx) is convergent for x ∈]−1,1[.

Problems for Sect. 10.3

1. Show that y is not differentiable at any point.

Problems for Sect. 10.4
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1. Show the Cauchy–Hadamard formula implies the root test.

2. Use Lemma 10.4.4 and that a uniform limit of continuous functions is a contin-
uous function to show: If ∑∞

n=0 anxn has radius of convergence R, then f (x) =
∑∞

n=0 anxn is continuous on the open disk {x | |x|< R}.
3. Suppose ∑∞

n=0 anxn =∑∞
n=0 bnxn on some interval ]−δ ,δ [. Show that an = bn for

all n.

4. Find the radius of convergence of ∑∞
k=0 kkzk.

5. Find the radius of convergence of ∑∞
k=0

1
k! zk.

6. Find the radius of convergence of ∑∞
k=0 k!zk.

Problems for Sect. 10.5

1. We did not prove a change of variables formula for improper integrals. Carefully
verify the claim:

´ ∞
−∞ nE(nx)dx =

´ ∞
−∞ E(u)du in the proof of Lemma 10.5.6.

Solutions and Hints for the Exercises

Exercise 10.1.1. ∑n
k=1 (axk +byk) = a∑n

k=1 xk + b∑n
k=1 yk the right hand side con-

verges to a∑∞
k=1 xk +b∑∞

k=1 yk.

Exercise 10.1.5. (1) xn+1 = sn+1 − sn → s− s = 0. (2) ∑∞
k=N+1 xk = ∑∞

k=1 xk −
sN → ∑∞

k=1 xk −∑∞
k=1 xk = 0. (3) sn+1 = sn + xn+1 so (sn) is increasing, hence con-

vergent iff bounded.

Exercise 10.1.7. Since |∑m
k=n xk| ≤ ∑m

k=n |xk| , this follows from the Cauchy crite-
rion.

Exercise 10.1.9. We may assume the inequality holds for all n. It follows that
|xn+1| ≤ |x1|rn, hence an application of the Dominated Convergence Theorem com-
pletes the proof.

Exercise 10.1.10. Similar to the previous exercise.

Exercise 10.1.12. This really is similar to Example 10.1.11. The change is we
want the inequality to go the other way, so the sequence of partial sums will be
unbounded. This can be accomplished by using 1

na ≥ 1
2a(k+1) for n between 2k and

2k+1−1.

Exercise 10.1.14. Suppose
´ ∞

1 f is convergent. Since f is decreasing s = ∑n
k=1

f (k)1]k,k+1[ is a lower step function for f on the interval [1,n+1]. Hence ∑n
k=1 xk =

∑s ≤
´ n+1

1 f . Consequently, the partial sums (∑n
k=1 xk) is bounded by

´ ∞
1 f . The

converse is similar, using S = ∑n
k=2 f (k)1]k−1,k[ is an upper step function for f on

the interval [1,n].
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Exercise 10.1.17. Show −an+1Bn +αn+1Bn+1 = an+1bn+1−an+2Bn+1.

Exercise 10.3.3. Similar to what we did for x.

Exercise 10.3.3 For each n either an < t or an = t. For n with an �= t we have

f (bn)− f (an)

bn−an
=

bn− t
bn−an

f (bn)− f (t)
bn− t

+
t−an

bn−an

f (t)− f (an)

t−an
.

Exercise 10.4.7. This is a consequence of Theorem 9.2.6.

Exercise 10.4.8. (1+ ε)n ≥ nε [why?]. So n1/n ≤ (1/ε)1/n(1+ ε). Now use that
(1/ε)1/n → 1 as n→ ∞. Other proofs are also possible.

Exercise 10.4.9. Follows from the previous exercise and the Cauchy–Hadamard
formula.

Exercise 10.4.10. This is a simple consequence of Corollary 9.2.9.



Chapter 11
Trigonometric Functions and Applications

We investigate the sine and cosine functions, show the Weierstrass function is con-
tinuous and nowhere differentiable, construct the number π, establish that π is an
irrational number, and give a brief treatment of polar coordinates. We also discuss
arc length, in particular, we show and circumference of the unit circle is 2π. Finally,
we show the area of the unit circle equals π.

The basic transcendental functions are the logarithm log(x), the exponential
function ex, and the sine and cosine functions sin(x) and cos(x). We investigated
log(x) and ex in Chap. 8.

In the first two sections our treatment is precise, but somewhat informal, with
many results and proofs stated in passing.

11.1 Exponential Function

We begin by using power series to extend the exponential function to a function of
a complex variable. For a complex number z ∈ C, let

exp(z) :=
∞

∑
k=0

zk

k!
, (11.1)

where the conventions z0 = 1 and 0! = 1 tell us that the first term is equal to 1 for
any z. When z is a real number the right-hand side is the power series for the usual
exponential function, hence (11.1) extends the usual exponential function from R to
C. We will sometimes write ez := exp(z) for z ∈ C.

Exercise 11.1.1. The radius of convergence is R = ∞.

Since the radius of convergence is R = ∞, the series is uniformly convergent on any
bounded subset of C. Hence, the exponential function exp determined by (11.1) is a
continuous function mapping C→ C.
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By manipulating the power series we see that

exp(z)exp(w) = exp(z+w).

In fact, this is an application of the Cauchy product:

∑
j

z j

j! ∑k
wk

k!
=∑

n

(

∑
j+k=n

z jwk

j!k!

)

=∑
n

(z+w)n

n!

the last equality is the Binomial Theorem: (z+w)n = ∑ j+k=n
n!

j!k! z jwk.

11.2 Trigonometric Functions

By the power series expansion (11.1)

exp(−iy) =∑ (−iy)n

n!
=∑

(
iy
)n

n!
=∑ (iy)n

n!
= exp(iy),

for y ∈ R. Hence,

|exp(iy)|2 = exp(iy)exp(iy) = exp(0) = 1.

So exp(iy) is a point on the unit circle a2 + b2 = 1 in the plane R2 = C. For y ∈ R,
we define the sine and cosine functions as the real and imaginary parts of exp(iy) :

cos(y) := Reexp(iy) and

sin(y) := Imexp(iy),

for y ∈ R. Thus, exp(iy) = cos(y) + isin(y). Since exp(i0) = 1 = 1+ i0 we have
cos(0) = 1 and sin(0) = 0.

Since |eiy|= 1 we have

cos2(y)+ sin2(y) = 1,

in particular,−1≤ cos(y)≤ 1 and−1≤ sin(y)≤ 1. By taking the real and imaginary
parts of

ei(x+y) = eix eiy

we see that

cos(x+ y) = cos(x)cos(y)− sin(x)sin(y)

sin(x+ y) = cos(x)sin(y)+ sin(x)cos(y).
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Setting x = y gives cos(2x) = cos2(x)− sin2(x) and sin(2x) = 2sin(x)cos(x).

Exercise 11.2.1. Prove

cos(−y) = cos(y)

sin(−y) =−sin(y)

for all y ∈ R.

Exercise 11.2.2. Use the power series expansion of exp(iy) to verify that

cos(y) =
∞

∑
k=0

(−1)k y2k

(2k)!

sin(y) =
∞

∑
k=0

(−1)k y2k+1

(2k+1)!
.

Hence, cos′ = −sin and sin′ = cos . This can also be verified by differentiating
exp(iy) with respect to y :

exp′(iy) = iexp(iy)

by the chain rule, so

cos′(y)+ isin′(y) = i(cos(y)+ isin(y)) .

We could use the power series to define cos and sin of a complex variable, but
we will not need these extensions of sine and cosine from R to C.

Construction of π

Consider only x ≥ 0. By the Mean Value Theorem sin(x)− sin(0) = cos(a)(x−0)
for some c between 0 and x, hence

−x≤ sin(x)≤ x ∀x≥ 0, (11.2)

since −1≤ cos(c)≤ 1.

Lemma 11.2.3. For all x≥ 0,

1− 1
2 x2 ≤ cos(x)≤ 1. (11.3)

Proof. Let f (x) = cos(x). Then f (0) = 1, f (x) ≤ 1,∀x, and f ′(x) = −sin(x). By
(11.2) we have f ′(x) ≥ −x. Integrating this inequality over the interval [0,x] gives
f (x)− f (0)≥− 1

2 x2. �
Exercise 11.2.4. Prove

x− 1
6 x3 ≤ sin(x)≤ x ∀x≥ 0 (11.4)
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and
1− 1

2 x2 ≤ cos(x)≤ 1− 1
2 x2 + 1

24 x4 ∀x≥ 0. (11.5)

Lemma 11.2.5. cos(x) > 0 for 0 ≤ x <
√

2 and cos(x) = 0 has a solution between√
2 and

√
6−2

√
3.

Proof. Since 1− 1
2 x2 > 0 for 0 ≤ x <

√
2, it follows from the first inequality in

(11.5) that cos(x)> 0, when 0≤ x <
√

2. In particular, cos
(√

2
)
≥ 0.

Let a :=
√

6−2
√

3 and b :=
√

6+2
√

3. Then 0 < a < b and

x4−12x2 +24 =
(
x2−a2)(x2−b2)= (x−a)(x+a)(x−b)(x+b).

Hence, x4−12x2 +24 < 0 when a < x < b. It follows from the second inequality in
(11.5) that cos(a)≤ 0.

If cos
(√

2
)
= 0 or cos(a) = 0 we are done. If cos

(√
2
)
> 0 and cos(a)< 0, then

the Intermediate Value Theorem gives a c between
√

2 and a, such that cos(c) = 0.�
Let ω be the smallest positive root of cos(x) = 0. By Lemma 11.2.5

√
2≤ ω ≤

√
6−2

√
3.

Exercise 11.2.6.
√

6−2
√

3 <
√

3.

Let π := 2ω. Then cos(π/2) = cos(ω) = 0. Since cos(0) = 1 > 0 and π/2 is the
smallest positive root of cos(x) = 1 we have

cos(x)> 0 for 0 < x < π/2. (11.6)

Lemma 11.2.7. sin(π) = 0 and

sin(x)> 0 for 0 < x < π. (11.7)

Proof. Since sin(π) = 2sin(π/2) cos(π/2) = 0 we have shown that π is a root of
sin(x) = 0. It remains to establish (11.7). By (11.4) sin(x)≥ x(1− x2/6) hence

sin(x)> 0 for 0 < x <
√

6. (11.8)

Suppose sin(t) = 0 for some t in the open interval
]√

6,π
[
. Then

0 = sin(t) = 2sin(t/2)cos(t/2)

means that sin(t/2) = 0 or cos(t/2) = 0. Since t/2 < π/2, cos(t/2) = 0 contradicts
(11.6). Since t/2 < π/2 <

√
3 <

√
6, sin(t/2) = 0 contradicts (11.8). �
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Exercise 11.2.8. sin(π/2) = 1.

We can now verify all sort of properties of sin and cos, for example,

cos(π) = cos2(π/2)− sin2(π/2) = 0−1 =−1.

Similarly,

Exercise 11.2.9. sin(2π) = 0 and cos(2π) = 1.

Periodicity: cos(x+2π) = cos(x)cos(2π)− sin(x)sin(2π) = cos(x).

Exercise 11.2.10. sin(x+2π) = sin(x).

Exercise 11.2.11. Prove

cos(x) = sin(x+π/2) and

sin(x) =−cos(x+π/2).

Exercise 11.2.12. Prove

cos(x+π) =−cos(x) and

sin(x+π) =−sin(x).

Example 11.2.13. Since the unit circle is determined by the equation x2 + y2 = 1,
the area of the unit circle is

4
ˆ 1

0

√
1− x2dx = 4

ˆ π/2

0

√
1− sin2 (t)cos(t)dt

= 4
ˆ π/2

0
cos2 (t)dt

= 4
ˆ π/2

0

1
2 (1+ cos(2t))dt

=
(
2
(π

2

)
− sin(π)

)
− (2(0)− sin(0)) = π,

where the first equality used the change of variables formula (7.4) with x = g(t)
= sin(t) and the fourth equality used the derivative of (2t + sin2t) equals 2(1+ cos
(2t)) and the Fundamental Theorem of Calculus.

In Sect. 11.3, it is shown that the unit circle has length 2π.

Polar Coordinates

Given a point (x,y) with x,y ∈ R. We will show there is exactly one θ such that
−π < θ ≤ π and

(x,y) = r (cos(θ) ,sin(θ)) ,
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where r :=
√

x2 + y2.

Fix a point (x,y) ∈ R2. Let r :=
√

x2 + y2, α := x
r , and β := y

r . Then (x,y) =
r (α,β ) . Hence, the following lemma completes the proof.

Lemma 11.2.14. There is exactly one number θ , with −π < θ ≤ π such that

α = cos(θ) and β = sin(θ) .

Proof. By construction α2 +β 2 = 1. If α = 1 then β = 0, so θ = 0 and if α =−1
then β = 0, so θ = π. Hence, we will consider −1 < α < 1.

Since cos′(θ) =−sin(θ)< 0 for 0 < θ < π, the function cos : [0,π]→ [−1,1] is
a strictly decreasing continuous function mapping the interval [0,π] onto the interval
[−1,1] . Since −1 < α < 1, it follows from the Intermediate Value Theorem that
there is a θ , 0 < θ < π, such that cos(θ) = α. Using cos2 (θ)+ sin2 (θ) = 1 and
α2 +β 2 = 1 it follows that

sin(θ) =±β .
Hence, either sin(θ) = β or sin(−θ) =−sin(θ) = β . Using cos(−θ) = cos(θ) =
α, it follows that either (cos(θ) ,sin(θ))= (α,β ) or (cos(−θ) ,sin(−θ))= (α,β ) .
This established the existence of θ . The uniqueness follows from cos : [0,π] →
[−1,1] being strictly decreasing, hence one-to-one. �
Remark 11.2.15. Using z = x+ iy, |z| =

√
x2 + y2 = r, and eiθ = (cos(θ) ,sin(θ))

we can write
(x,y) = r (cos(θ) ,sin(θ))

as
z = reiθ = |z|eiθ .

11.3 Arc Length�

A curve is a continuous function φ : [a,b]→ C. For example, if f : [a,b]→ R is
a real valued continuous function, then φ (t) := (t, f (t)) determines a curve. The
length, called arc length, of the curve φ is

length(φ) := sup

{
n

∑
k=1

|φ (tk)−φ (tk−1)|
∣
∣
∣
∣
∣
n ∈ N and a = t0 < t1 < · · ·< tn = b

}

,

where the supremum is over all partitions of the closed interval [a,b] . A curve
whose length is finite is called rectifiable. The sum, corresponds to approximat-
ing the curve by line segments connecting the partition points (see Fig. 11.1). The
following lemma shows that the sum gets larger when we refine the partition, hence
taking the supremum in the definition of arc length makes sense.
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Fig. 11.1 Illustrating the definition of arc length and Lemma 11.3.1

Lemma 11.3.1. If a = t0 < t1 < · · · < tn = b is a refinement of a = s0 < s1 < · · · <
sm = b, then

m

∑
j=1

∣
∣φ (s j)−φ

(
s j−1

)∣∣≤
n

∑
k=1

|φ (tk)−φ (tk−1)| .

Proof. This is a direct consequence of the triangle inequality (see Fig. 11.1). �
Theorem 11.3.2 (Arc Length Formula). If x,y : [a,b]→R have continuous deriva-
tives on [a,b] , then

length(φ) =
ˆ b

a

√
x′ (t)2 + y′ (t)2 dt,

where φ (t) = (x(t) ,y(t)) . In particular, the curve φ is rectifiable.

Proof. Let a = t0 < t1 < · · · < tn = b be a partition of [a,b] . By the Mean Value
Theorem

n

∑
k=1

|φ (tk)−φ (tk−1)|=
n

∑
k=1

√
(x(tk)− x(tk−1))

2 +(y(tk)− y(tk−1))
2

=
n

∑
k=1

√(
x(tk)− x(tk−1)

tk− tk−1

)2

+

(
y(tk)− y(tk−1)

tk− tk−1

)2

(tk− tk−1)

(11.9)

=
n

∑
k=1

√
(x′ (ck))

2 +(y′ (dk))
2 (tk− tk−1)

for some ck,dk in [xk−1,xk] .
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By the Extreme Value Theorem both x′ and y′ have a largest value on [a,b] . Let
A be the largest value of x′ and let B be the largest value of y′. Using (11.9), we get

n

∑
k=1

|φ (tk)−φ (tk−1)| ≤
n

∑
k=1

√
A2 +B2 (tk− tk−1) =

√
A2 +B2 (b−a) .

Hence, φ is rectifiable and length(φ)≤
√

A2 +B2 (b−a) .

Let L := length(φ) and I :=
´ b

a

√
x′ (t)2 + y′ (t)2 dt. We must show L = I. Let

ε > 0 be given. By uniform continuity of x′ and of y′, there is a δ > 0, such that
|x′ (s)− x′ (t)| < ε/(b−a) and |y′ (s)− y′ (t)| < ε/(b−a) whenever |s− t| < δ .
Since L is finite, there is a partition a = t0 < t1 < · · · < tn = b of [a,b] such that

L− ε <
n

∑
k=1

|φ (tk)−φ (tk−1)| ≤ L. (11.10)

By the lemma inserting additional partition points increases the sum. Hence, the
inequalities hold for any refinement of the given partition. In particular, given any
δ > 0, we may assume tk− tk−1 < δ for all k.

Since x′ and y′ are continuous, it follows from the Extreme Value Theorem that
there are r′k,r

′′
k s′k,s

′′
k in [tk−1, tk] , such that
∣
∣x′
(
r′k
)∣∣≤

∣
∣x′ (t)

∣
∣≤
∣
∣x′
(
r′′k
)∣∣for all t ∈ [tk−1, tk]∣

∣y′
(
s′k
)∣∣≤

∣
∣y′ (t)

∣
∣≤
∣
∣y′
(
s′′k
)∣∣for all t ∈ [tk−1, tk] .

Then,

s :=
n

∑
k=1

√(
x′
(
r′k
))2

+
(
y′
(
s′k
))2

(tk− tk−1)

is a lower sum for I,

S :=
n

∑
k=1

√(
x′
(
r′′k
))2

+
(
y′
(
s′′k
))2

(tk− tk−1)

is an upper sum for I, and applying (11.9)

s≤
n

∑
k=1

|φ (tk)−φ (tk−1)| ≤ S. (11.11)

Using the reverse triangle inequality, Exercise E.1.8, i.e.,
∣
∣
∣
∣

√
a2

1 +b2
1−
√

a2
2 +b2

2

∣
∣
∣
∣≤
√
(a1−a2)

2 +(b1−b2)
2,

we get

S− s =
n

∑
k=1

(√(
x′
(
r′′k
))2

+
(
y′
(
s′′k
))2−

√(
x′
(
r′k
))2

+
(
y′
(
s′k
))2
)
(tk− tk−1)
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≤
n

∑
k=1

√(
x′
(
r′′k
)
− x′

(
r′k
))2

+
(
y′
(
s′′k
)
− y′

(
s′k
))2

(tk− tk−1)

≤
n

∑
k=1

√(
ε

(b−a)

)2

+

(
ε

(b−a)

)2

(tk− tk−1)

=
n

∑
k=1

ε
√

2
(b−a)

(tk− tk−1) = ε
√

2.

Hence, as ε → 0 both s → I and S → I. So by (11.11) ∑n
k=1 |φ (tk)−φ (tk−1)| → I.

But ∑n
k=1 |φ (tk)−φ (tk−1)| → L by (11.10). Thus I = L as we needed to show. �

The following example shows that arc eiθ , a≤ θ ≤ b of the unit circle has length
b−a.

Example 11.3.3. Let 0 ≤ a < b ≤ 2π. Consider φ (t) := (cos(t) ,sin(t)) as a curve
φ : [a,b]→ C. Then

length(φ) =
ˆ b

a

√
(−sin(t))2 +(cos(t))2 dt

=

ˆ b

a
1dt = b−a.

In particular, the unit circle has length 2π.

11.4 Weierstrass’ Nowhere Differentiable Function�

A continuous nowhere differentiable function was first constructed by Bolzano.
Bolzano used a geometric construction utilizing a limit of piecewise linear func-
tions. Bolzano’s construction is similar to a construction that is used to generate
fractal sets, sometimes called an Iterated Function System. The following is essen-
tially a reproduction of an argument given by Weierstrass in 1872 in a lecture to
the Royal Academy of Science in Berlin. Before Weierstrass publishes his example,
most mathematicians including Johann Carl Friedrich Gauss (30 April 1777 Braun-
schweig to 23 February 1855 Göttingen) thought that a continuous function would
have a derivative at most points. We presented a different example in Sect. 10.3.

Theorem 11.4.1. Let 0 < b < 1 a real number and let a be a positive odd integer. If
ab > 1 and 2

3 > π
ab−1 , then

f (x) =
∞

∑
n=0

bn cos(anxπ)

is continuous on R and not differentiable at any point in R.
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In what follows a and b will be fixed. For example, a = 13 and b = 1/2 satis-
fied the stated assumptions. The example in Sect. 10.3 was of the form f (x) =
∑∞

n=0 2−ng(9nx) where g is a continuous function of period two which is not differ-
entiable at all points. By contrast x → cos(xπ) is a continuous function of period
two which is differentiable at all points.

Since |bn cos(anxπ)| ≤ bn and ∑n bn is a convergent geometric series, it follows
from the Weierstrass M-test that f is uniformly continuous on R. So only the non-
differentiability claim is interesting.

Remark 11.4.2. If fN(x) := ∑N
n=0 bn cos(anxπ), then fN converges uniformly to f as

N → ∞. Each fN is C ∞, yet the limit function f does not have a derivative even at
one point.

Fix x0. For each m ∈ N0, let βm be the integer satisfying

1
2
≤ βm−amx0 <

3
2
. (11.12)

Since a > 1 we have, βm/am → x0. Hence, if f ′(x0) exists, then

f
(
βm
am

)
− f (x0)

βm
am − x0

→ f ′(x0).

We will show that

(−1)βm
f
(
βm
am

)
− f (x0)

βm
am
− x0

→ ∞.

Consequently, f ′(x0) does not exist.
Write

(−1)βm
f
(
βm
am

)
− f (x0)

βm
am
− x0

=
∞

∑
n=0

(−1)βmbn
cos
(

an βm
am π

)
− cos(anx0π)

βm
am − x0

=
m−1

∑
n=0

· · ·+
∞

∑
n=m

· · ·

= Am +Bm.

We will show that
|Am| ≤ (ab)m π

ab−1
(11.13)

and

Bm ≥ (ab)m 2
3
. (11.14)
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Using (11.13) and (11.14), it follows that

(−1)βm
f
(
βm
am

)
− f (x0)

βm
am
− x0

≥ Bm−|Am| ≥ (ab)m
(

2
3
− π

ab−1

)
→ ∞.

Hence, we just need to verify (11.13) and (11.14).
(11.13): By the Mean Value Theorem

Am =
m−1

∑
n=0

(−1)βmbn
cos
(

an βm
am π

)
− cos(anx0π)

βm
am − x0

=
m−1

∑
n=0

(−1)βmanbnπ
cos
(

an βm
am π

)
− cos(anx0π)

an
(
βm
am − x0

)
π

=
m−1

∑
n=0

(−1)βmanbnπ sin(cn,m),

for some cn,m. Taking the absolute value and using the triangle inequality we get

|Am|=
∣
∣
∣
∣
∣

m−1

∑
n=0

(−1)βmanbnπ sin(cn,m)

∣
∣
∣
∣
∣

≤
m−1

∑
n=0

anbnπ = π
(ab)m−1

ab−1

< π
(ab)m

ab−1
,

by evaluating the geometric series. Consequently, (11.13) holds.
(11.14): For n≥ m, we have

(−1)βm cos

(
an βm

am π
)
= (−1)βm cos

(
an−mβmπ

)
= (−1)βm(−1)βm = 1

since a is odd. For the same reason

(−1)βm cos(anx0π) = (−1)βm cos
(
an−manx0π

)

= (−1)βm cos
(
an−mβmπ+an−m (amx0−βm)π

)

= (−1)βm(−1)βm cos
(
an−m (amx0−βm)π

)

= cos
(
an−m (amx0−βm)π

)
.
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Hence,

Bm =
∞

∑
n=m

(−1)βmbn
cos
(

an βm
am π

)
− cos(anx0π)

βm
am − x0

=
∞

∑
n=m

bn 1− cos(an−m (amx0−βm)π)
βm
am − x0

= bm 1− cos((amx0−βm)π)
βm
am − x0

+
∞

∑
n=m+1

bn 1− cos(an−m (amx0−βm)π)
βm
am − x0

.

Since βm satisfies (11.12), we have cos((amx0−βm)π)≤ 0 and βm
am −x0 ≥ 0. (Note,

this is the only time we used (11.12), the rest of the proof just need the βm’s to be
integers.) Consequently,

Bm ≥ bm 1−0
βm
am − x0

+
∞

∑
n=m+1

bn 0
βm
am − x0

= ambm 1
βm−amx0

> (ab)m 1
3/2

.

This verifies (11.14).

Remark 11.4.3. One might think that continuous functions without derivatives are
exceptional. In fact, the opposite is true. The set of continuous functions on an in-
terval with a derivative at some point in that interval is a “vanishingly small” subset
of the set of all continuous functions on that interval. The author likes the Baire
category interpretation of “vanishingly small.” Baire category is named after René-
Louis Baire (21 January 1874, Paris to 5 July 1932, Chambéry). Other mathemati-
cians prefer other interpretations.

11.5 The Number Pi is Irrational�

Irrationality of π was first proven by Johann Heinrich Lambert (26 August 1728
Mülhausen, Elsaß to 25 September 1777 Berlin) in 1761. Lambert actually proved:
if x is rational, then tan(x) is irrational. So tan(π/4) = 1 implies π is irrational. Carl
Louis Ferdinand von Lindemann (12 April 1852 Hanover to 6 March 1939 Mu-
nich) proved in 1882 that ea is transcendental for every nonzero algebraic number
a. Setting in a = iπ in this result shows that π is transcendental.

Remark 11.5.1. It is not known whether or not any the numbers π± e,πe, or π
e are

rational. On the other hand, e is a root of

x2− (π+ e)x+πe = 0.
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Hence, if π + e and πe both are rational, then e would be algebraic of order 2,
contradicting Theorem 8.3.3. Thus, at least one of π+ e and πe is irrational.

Theorem 11.5.2 (Lambert). The number π is irrational.

Proof. Suppose π = a/b, where a and b are positive integers. Let

fn(x) :=
1
n!

xn(a−bx)n.

Then, fn(0) = fn(π) = 0 and fn(x)> 0 for 0 < x < π. Hence,

In :=
ˆ π

0
fn(x)sin(x)dx > 0.

Now,

0 < In ≤
ˆ π

0

πnan

n!
dx =

π (πa)n

n!
→ 0 as n→ ∞.

Hence, the proof is completed by showing that each In is an integer for all n ≥ 0.
Clearly,

I0 =

ˆ π

0
sin(x)dx = −cos(x)|π0 = 2.

Integrations by parts leads to

I1 =

ˆ π

0
x(a−bx)sin(x)dx =

ˆ π

0
(ax−bx2)sin(x)dx

= −(ax−bx2)cos(x)
∣
∣π
0 +

ˆ π

0
(a−2bx)cos(x)dx

= 0−2b

(
xsin(x)|π0 −

ˆ π

0
sin

)
= 4b.

Integrating by parts twice using fn+2(0) = fn+2(π) = 0, and f ′n+2(0) = f ′n+2(π) = 0
we see

In+2 =

ˆ π

0
fn+2(x)sin(x)dx =−

ˆ π

0
f ′′n+2(x)sin(x)dx,

hence we need a formula for f ′′n+2. For k ≥ 0,

f ′k+1(x) =

(
1

(k+1)!
xk+1(a−bx)k+1

)′

=
1
k!

(
xk(a−bx)k+1−bxk+1(a−bx)k

)

= fk(x)((a−bx)−bx)

= fk(x)(a−2bx) .

Using
(a−2bx)2 = a2−4abx+4bx2 = a2−4bx(a−bx)
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implies
fn(x)(a−2bx)2 = a2 fn(x)−4b(n+1) fn+1(x)

we get

f ′′n+2(x) = ( fn+1(x)(a−2bx)))′

= fn(x)(a−2bx)2−2b fn+1(x)

= a2 fn(x)−2b(2n+3) fn+1(x).

It follows that

In+2 =−
ˆ π

0

(
a2 fn(x)−2b(2n+3) fn+1(x)

)
sin(x)dx

= 2b(n+3)In+1−a2In.

Thus, In is an integer for all n. �

Problems

Problems for Sect. 11.1

1. Let f (x) := log(1+ x) for x >−1. Let

T (x) :=
∞

∑
k=0

f (k) (0)
k!

xk

be the Taylor series of f . Use the series to define a function

g(z) :=
∞

∑
k=0

f (k) (0)
k!

zk

of a complex variable z.

(a) Find the radius of convergence R of the power series.
(b) Show f (x) = T (x) for −R < x < R.
(c) Conclude f (x) = g(x) for −R < x < R.

Problems for Sect. 11.2

1. Prove that
´ ∞

0
sin(xt)
1+t2 dt converges uniformly. That is prove the improper integral

exists and

∀ε ,∃M,∀R,R > M =⇒
[
∀x,
ˆ ∞

0

sin(xt)
1+ t2 dt−

ˆ R

0

sin(xt)
1+ t2 dt < ε

]
.
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2. Prove eπ −π �= 20.

3. Suppose f is continuous. Let g(x) :=
´ x

0 sin(x−t) f (t)dt. Prove g′′+g= f . [Hint:
Begin by showing that g′ exists and finding a formula for g′.]

4. Let f (x) := cos(x)
1+x2 . Prove

´ 1
0 f < 1.

Problems for Sect. 11.3

1. Fix 0≤ a < b≤ 2π. Find the length of the curve φ(t) := eit , t ∈ [a,b] .

Problems for Sect. 11.4

1. Does
(
∑N

n=0 bn cos(anxπ)
)′

converge as N → ∞ for all x?

2. Use Corollary 9.2.9 to find a sufficient condition for the Weierstrass function to
be differentiable.

3. If x0 = 0, the proof in the text simplifies. Write out this simplification. [For ex-
ample, βm = 1 for all m and cos(anx0π) = 1.]

4. Continuation of Problem 3. Find integers βm such that

(−1)βm
f
(
βm
am

)
− f (0)

βm
am
−0

→−∞.

[Hint: Equation (11.12) must be replaced.]

5. Show it is possible to choose βm such that βm/am → x0 and

(−1)βm
f
(
βm
am

)
− f (x0)

βm
am
− x0

→−∞.

Thus, f ′(x0) cannot be a finite or even an infinite value.

Problems for Sect. 11.5

An alternative proof that π is irrational is outlined as sequence of problems below.
This proof is due to Ivan Morton Niven (25 October 1915, Vancouver to 9 May
1999, Eugene).
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Assume π = a/b for some positive integers a and b. For any natural number
n≥ 1, let

fn(x) :=
xn(a−bx)n

n!
and Fn(x) :=

n

∑
j=0

(−1) j f (2 j)
n (x),

where f (k) is the kth derivative of f . Note that a− bπ = 0. Expanding the product
in the definition of fn we see that fn(x) = 1

n! ∑
2n
k=n ckxk for some integers ck. Differ-

entiating this polynomial we get

(∗∗) f ( j)
n (x) =

1
n!

2n

∑
k=max{ j,n}

ck
k!

(k− j)!
xk− j,

for 0≤ j ≤ 2n.
The proof is now completed in 11 easy steps:

1. 0 ≤ fn(x) ≤ πnan/n! for 0 ≤ x ≤ π and all n [Directly from the definition of
fn.]

2. 0 <
´ π

0 fn sin for all n. [Since both fn and sin are > 0 on ]0,π[.]

3. There is an N such that
´ π

0 fn sin < 1. [Is a consequence of 1]

4. k!
n!(k− j)! is an integer for all n≤ j ≤ k. [ k!

n!(k−n)! is a binomial coefficient, hence

an integer. k!
n!(k−(n+1))! = (k−n) k!

n!(k−n)! , etc.]

5. fn(x) = fn(π − x) for all x and all n. [Directly from the definition of fn, since
a−b(π− x) = x.]

6. f j
n (0) = f ( j)

n (π) = 0, for all n, j such that 0≤ j < n. [By 5 and (∗∗).]

7. f ( j)
n (0) and f ( j)

n (π) are integers, for all n, j such that n ≤ j ≤ 2n. [By 4, 5, and
(∗∗).]

8. Fn(0) and Fn(π) are integers for all n. [By the definition of Fn, 6, and 7]

9. Fn +F ′′
n = fn for all n. [The point of the (−1) j in the definition of Fn.]

10. (F ′
n sin−Fn cos)′ = fn sin for all n. [Derived using 9]

11.
´ π

0 fn sin = Fn(0)−Fn(π) is an integer for all n. [By 8 and 10]

By 2, 3, and 11
´ π

0 fN sin is an integer in ]0,1[. This contradiction completes the
proof that π is irrational.

Solutions and Hints for the Exercises

Exercise 11.1.1. The ratio test show that the series is absolutely convergent for all z.
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Exercise 11.2.1. e−iy = eiy.

Exercise 11.2.2. ∑∞
k=0

(iy)k

k! = · · ·+ i · · · .
Exercise 11.2.4. Similar to our proof of (11.3).

Exercise 11.2.6.
√

6−2
√

3 <
√

3 ⇐6−2
√

3 < 3⇐3 < 2
√

3⇐9 < 12.

Exercise 11.2.8. 1 = cos2(π/2)+ sin2(π/2) = 0+ sin2(π/2) and sin(π/2)> 0.

Exercise 11.2.9. sin(2π) = 2sin(π)cos(π) = 2 · 0 · (−1) = 0 and cos2(2π) =
cos2(π)− sin2(π) = (−1)2−02 = 1.

Exercise 11.2.10. Similar to cos(x+2π) = cos(x).

Exercise 11.2.11. Similar to cos(x+2π) = cos(x) and sin(x+2π) = sin(x).

Exercise 11.2.12. Use Exercise 11.2.11.



Chapter 12
Fourier Series

Our approach to Fourier series is based on some rudimentary facts about linear
spaces equipped with an inner product. Our approach to pointwise convergence is
based on Dini’s criterion. We discuss uniform convergence and Cesàro summability
of Fourier series. We also show the Fourier series of a Riemann integrable function
convergences in the mean. We establish Weyl’s criterion for uniform distribution
of sequences. As an application, we establish the uniform distribution in the unit
interval of the fractional parts of the integer multiples of an irrational number.

12.1 Introduction

Attempting to diagonalize the derivative f →−i f ′ acting on function is the interval
[0,1] leads to the Fourier series for f .

Diagonalization�

Recall from linear algebra that given a linear transformation L on Rd or Cd it is often
useful to find an orthonormal basis ek, k = 1,2, . . . ,d such that

Lek = λkek

for some scalars λk. The ek are called eigenvectors and the λk are the corresponding
eigenvalues. The matrix of the transformation L with respect to the basis ek, k =
1,2, . . . ,d is a diagonal matrix with the λk’s as the entries on the diagonal. We will
focus on the Cd case. For x,y in Cd the dot product or inner product is

x · y =
d

∑
k=1

xkyk,
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where x = (x1, . . . ,xd) and y = (y1, . . . ,yd). The existence of an orthonormal basis
diagonalizing the transformation L is implied by

Lx · y = x ·Lx (12.1)

for all x,y in Cd . That the ek’s form an orthonormal basis means that

e j · ek =

{
1 if j = k

0 if j �= k

and for any x ∈ Cd there are scalars ak such that

x =
d

∑
k=1

akek.

For an orthonormal basis there is a formula for the scalars:

ak = x · ek.

That is

x =
d

∑
k=1

(x · ek)ek (12.2)

for all x in Cd .
Let R denote the set of Riemann integrable functions f : [0,1]→ C. Since the

product of two integrable functions is an integrable function, we can introduce an
inner product on R by setting

〈 f | g〉= 〈 f | g〉R = 〈 f | g〉2 :=
ˆ 1

0
f g =

ˆ 1

0
f (x)g(x)dx, (12.3)

for f and g in R.
We study the diagonalization problem for

L :=−i
d
dx

that is for L : f →−i f ′,

where f : [0,1]→ C. The i is there to make the analogue of (12.1) possible. Specifi-
cally, suppose L is defined on the set D(L) of differentiable functions f on [0,1] for
which f ′ is integrable and f (0) = f (1). If f and g are in D(L), then integration by
parts shows

〈L f | g〉=
〈
−i f ′ | g

〉
=

ˆ 1

0
−i f ′ g

=

ˆ 1

0
f (−ig′) =

〈
f | −ig′

〉
= 〈 f | Lg〉 ,



12.1 Introduction 249

since −i f (1)g(1)+ i f (0)g(0) = 0. Hence, the analogue of (12.1) holds. The eigen-
vector equation L f = λ f is

−i f ′ = λ f

so f ′ = iλ f , thus f (x) = ceiλx. The boundary condition f (0) = f (1) means c =
ceiλ , hence λ = 2πk for some integer k. Setting c = 1, we arrive at the eigenfunc-
tions

ek(x) = ei2πkx,k ∈ Z.

Note the eigenfunctions are orthonormal because

〈
e j | ek

〉
=

ˆ 1

0
ei2π( j−k)x dx =

{
1 if j = k

0 if j �= k
. (12.4)

It remains to investigate the analogue of (12.2), that is, can we write any f as

f = ∑
k∈Z

akek := lim
N→∞

N

∑
k=−N

akek

for some scalars ak and if the scalars ak are determined by the formula

ak = 〈 f | ek〉 .

Note, the sum is infinite, hence there are convergence questions that needs to be
investigated.

Fourier Series

The major contribution of Jean Baptiste Joseph Fourier (21 March 1768, Auxerre to
16 May 1830, Paris) to mathematics is now known as Fourier series. He also made
other major contributions to science, for example, he discovered the green house
effect.

Let ek (x) := ei2πx. If f is integrable on [0,1], then

f̂ (k) := 〈 f | ek〉=
ˆ 1

0
f ek =

ˆ 1

0
f (x)e−i2πkx dx (12.5)

are the Fourier coefficients of f . Since the integral is linear, f → f̂ is linear, in the
sense that if f and g are integrable and a and b are constants, then (a f +bg)̂ (k) =
a f̂ (k)+bĝ(k) for all k.

The N th partial sum of the Fourier series for f at x is

SN f (x) = (SN f )(x) :=
N

∑
k=−N

f̂ (k)ek(x) =
N

∑
k=−N

f̂ (k)ei2πkx. (12.6)
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Finally,

∑
k∈Z

〈 f | ek〉ek = ∑
k∈Z

f̂ (k)ek := lim
N→∞

SN f (12.7)

is the Fourier series associated with f . The limit in (12.7) can have several different
interpretations. Each interpretations leads to a different convergence question. We
investigate the following convergence questions:

• Pointwise convergence, i.e., for which f does SN f (x) −→
N→∞

f (x) for all x? See

Theorem 12.4.1 and Theorem 12.4.4.
• Uniform convergence, i.e., for which f does SN f ⇒

N→∞
f ? See Theorem 12.4.5

and Theorem 12.5.5.
• Convergence in the mean, i.e., convergence with respect to the norm

‖ f‖= ‖ f‖R = ‖ f‖2 := 〈 f | f 〉1/2 =

(ˆ 1

0
| f |2
)1/2

, (12.8)

i.e., for which f does ‖ f −SN f‖ −→
N→∞

0? See Theorem 12.7.3.

Convergence of ( fn) to g in the sense that ‖g− fn‖ → 0 is called L2−convergence
or convergence in the mean.

12.2 Linear Algebra

The diagonalization problem belongs to linear algebra. This section develops the
linear algebra we will need.

Let A be a set and let V be a set of complex valued functions defined on A. If
a f + cg ∈ V for all a,b ∈ C and all f ,g ∈ V , then V is a vector space.

A complex valued map f ,g ∈ V → 〈 f | g〉 ∈ C is an inner product on V , if for
all f ,g, and h in V and all complex numbers a and b

〈a f +bg | h〉= a〈 f | h〉+b〈g | h〉 (12.9)

〈 f | g〉= 〈g | f 〉 (12.10)

〈 f | f 〉 ≥ 0 (12.11)

〈 f | f 〉= 0 =⇒ f = 0 (12.12)

Equation (12.9) states the map f ∈V →〈 f | g〉 ∈C is linear for each fixed g∈V .

Lemma 12.2.1. If f ,g, and h are in V and a is a complex number, then

〈 f | g+h〉= 〈 f | g〉+ 〈 f | h〉
〈 f | ag〉= a〈 f | g〉 .
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Thus, for fixed f , the map g ∈ V → 〈 f | g〉 ∈ C is conjugate linear.

Proof. The calculations

〈 f | g+h〉= 〈g+h | f 〉= 〈g | f 〉+ 〈h | f 〉= 〈 f | g〉+ 〈 f | h〉 and

〈 f | ag〉= 〈ag | f 〉= a〈g | f 〉= a〈 f | g〉

based on (12.9) and (12.10), constitutes the proof. �

Riemann Integrable Functions

Comparing to (12.5) it is natural to consider

〈 f | g〉= 〈 f | g〉R :=
ˆ 1

0
f g (12.13)

on the vector space R of Riemann integrable functions. Since the product of two in-
tegrable functions is an integrable function, the integral makes sense. The properties
(12.9–12.11) are simple consequences of properties of the integral. For continuous
f we have (12.12), hence (12.13) determines an inner product on the set of contin-
uous functions. There are positive nonzero integrable functions with integral zero,
hence (12.12) does not hold. Thus 〈· | ·〉 is an inner product on R, except (12.12)
does not hold. The following is an adequate substitute for our purposes.

Exercise 12.2.2. Suppose f and g are integrable. If ‖ f‖= 0, then 〈 f | g〉= 0. Where
‖ f‖ :=

√
〈 f | f 〉.

For simplicity, we refer to 〈· | ·〉 determined by (12.13) as an inner product also
on R.

Remark 12.2.3. If ‖ f −g‖= 0, then

f̂ (k)− ĝ(k) =
ˆ 1

0
( f (x)−g(x))e−i2πkxdx = 〈 f −g,ek〉= 0,

the last equality is Exercise 12.2.2. Hence SN f = SNg for all N. Consequently,
Fourier series cannot distinguish between f and g.

Remark 12.2.4. One can eliminate nonzero functions with norm zero by considering
the equivalence classes

[ f ] := {g | ‖ f −g‖= 0}
of functions instead of working with the functions themselves.
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The Vector Space of Square Summable Sequences

For any integrable f , the Fourier coefficients f̂ (k) , k ∈ Z form a sequence. To
investigate these sequences we need an inner product on an appropriate vector space
of sequences.

Remark 12.2.5. Equation (12.10) holds for the inner product on Cd . In that case of
Cd it is customary to set e1 = (1,0,0, . . . ,0), e2 = (0,1,0,0, . . . ,0), · · · , and ed =
(0,0, . . . ,0,1).

We extend Remark 12.2.5 to d = ∞. In this extension we replace Cd by the set �2 of
all sequences xk ∈ C, k ∈ Z, such that

∞

∑
k=−∞

|xk|2 := lim
N→∞

N

∑
k=−N

|xk|2 < ∞.

In particular, ∑∞
k=−∞ x2

k is absolutely convergent and consequently convergent.
Sequences in �2 are called square summable.

Example 12.2.6. The sequence (xk) determined by x0 = 0, and xk = 1/ |k| , if k �= 0,
is in �2, but ∑∞

k=−∞ xk is divergent. The sequence (yk) determined by y0 = 0, and
yk = 1/

√
|k|, if k �= 0, is not in �2.

Lemma 12.2.7. If (xk) and (yk) are in �2, then ∑∞
k=−∞ xkyk is convergent.

Proof. Let ck := max{|xk| , |yk|} . Then

|xkyk| ≤ c2
k ≤ |xk|2 + |yk|2 ,

for all k. Consequently, ∑∞
k=−∞ xkyk is absolutely convergent by dominated

convergence. �
Analogous to (12.3) we define

〈(xk) | (yk)〉〉= 〈(xk) | (yk)〉〉�2 :=
∞

∑
k=−∞

xkyk. (12.14)

We will show this defines an inner product on �2. To verify the first property in
(12.9) we need to know that �2 is a vector space:

Lemma 12.2.8. If (xk) and (yk) are in �2, then (xk) + (yk) := (xk + yk) is in �2.
Hence, �2 is a vector space.
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Proof. As in the proof of the previous lemma let ck := max{|xk| , |yk|} be in �2.
Using a+a≤ 2 |a| and the definition of ckwe have

|xk + yk|2 = (xk + yk)(xk + yk)

= xkxk + xkyk + xkyk + ykyk

≤ |xk|2 +2 |xk| |yk|+ |yk|2

≤ |xk|2 +2c2
k + |yk|2 .

In the proof of the previous lemma we showed that (ck) is square summable. Hence,
summing the right-hand side gives a convergent series. Consequently, by dominated
convergence, summing the left-hand side also gives a convergent series. This yields
the desired conclusion. �

It is now easy to see that (12.9–12.12) hold. Hence (12.14) determines an inner
product. Similar to (12.8) we set

‖(xk)‖= ‖(xk)‖�2 := 〈(xk) | (xk)〉1/2
�2 =

(
∞

∑
k=−∞

|xk|2
)1/2

for (xk) in �2.
Analogously with the case of Cd , it is customary to let ek ∈ �2 be the sequence

that consist entirely of zeros, except there is a one in the kth place.

Some Properties of Inner Products

Properties of interest to us are the Projection Theorem, the Pythagorean Theorem,
Bessel’s Inequality, and the Riemann–Lebesgue Lemma.

For the case of R = V and ek(x) = ei2πx, k ∈ Z, we have

〈
e j | ek

〉
=

{
1 if j = k

0 if j �= k
. (12.15)

by (12.4). In the case of V = �2 equation (12.15) is obvious for the standard ek

sequence k ∈ Z, where the sequence ek consist entirely of zeros, except there is
a one in the kth place. When (12.15) holds for j,k in some set S, we say the set
{ek | k ∈ S} is orthonormal.

The rest of this section is based on (12.15), on the properties (12.9–12.11) of the
inner product, and on the definition ‖ f‖=

√
〈 f | f 〉. Hence, the following does not

depend on the way we defined the inner product or on the expressions for the ek. In
particular, the results below are true both for the set of integrable functions R and
for the set �2 of infinite sequences.
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In the following we assume V is a vector space equipped with an inner product
f ,g → 〈 f | g〉 satisfying (12.9–12.11), that S is a subset of Z and there are vectors
ek, k ∈ S such that (12.15) holds for all j,k ∈ S. When (12.15) holds for all j,k ∈ S
we say the set {ek | k ∈ S} is orthonormal. Let ‖ f‖ :=

√
〈 f | f 〉 for all f ∈ V .

The basic result is an equality:

Lemma 12.2.9. If the set {ek | k ∈ S} is orthonormal and the integers m,m+1, . . . ,n
are in S, then

∥
∥
∥
∥
∥

f −
n

∑
k=m

akek

∥
∥
∥
∥
∥

2

= 〈 f | f 〉−
n

∑
k=m

|〈 f | ek〉|2 +
n

∑
k=m

|〈 f | ek〉−ak|2 (12.16)

for all f in V and all complex numbers ak.

Proof. For scalars ak and integers m≤ n we have

∥
∥
∥
∥
∥

f −
n

∑
k=m

akek

∥
∥
∥
∥
∥

2

=

〈

f −
n

∑
k=m

akek

∣
∣
∣
∣ f −

n

∑
j=m

a je j

〉

= 〈 f | f 〉−
n

∑
k=m

ak 〈ek | f 〉−
n

∑
j=m

a j
〈

f | e j
〉
+

n

∑
k=m

n

∑
j=m

aka j
〈
ek | e j

〉

= 〈 f | f 〉−
n

∑
k=m

(ak 〈ek | f 〉+ak 〈 f | ek〉)+
n

∑
k=m

akak

and similarly

〈 f | f 〉−
n

∑
k=m

|〈 f | ek〉|2 +
n

∑
k=m

|〈 f | ek〉−ak|2

= 〈 f | f 〉−
n

∑
k=m

〈 f | ek〉〈ek | f 〉+
n

∑
k=m

(〈 f | ek〉−ak)(〈ek | f 〉−ak)

= 〈 f | f 〉−
n

∑
k=m

〈 f | ek〉〈ek | f 〉

+
n

∑
k=m

(〈 f | ek〉〈ek | f 〉−〈 f | ek〉ak−ak 〈ek | f 〉+akak)

= 〈 f | f 〉+
n

∑
k=m

(−〈 f | ek〉ak−ak 〈ek | f 〉+akak) .

Since the two sides of (12.16) are equal to the same thing they are equal. �
There are several interesting consequences of this calculation.

Theorem 12.2.10 (Projection Theorem). Let f be in V . If the set {ek | k ∈ S} is
orthonormal and the integer m,m+1, . . . ,n are in S, then the norm ‖ f −∑n

k=m akek‖
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is minimized by choosing ak = 〈 f | ek〉. More precisely,

∥
∥
∥
∥
∥

f −
n

∑
k=m

akek

∥
∥
∥
∥
∥

2

≥ ‖ f‖2−
n

∑
k=m

|〈 f | ek〉|2

for all complex numbers ak, with equality when ak = 〈 f | ek〉.

Proof. Since ∑n
k=m |〈 f | ek〉−ak|2 ≥ 0 for all ak, and we have equality when all

ak = 〈 f | ek〉 , this follows from (12.16). �
Theorem 12.2.11 (Pythagorean Theorem). If the set {ek | k ∈ S} is orthonormal
and the integer m,m+1, . . . ,n are in S, then

‖ f‖2 =
n

∑
k=m

|〈 f | ek〉|2 +
∥
∥
∥
∥
∥

f −
n

∑
k=m

〈 f | ek〉ek

∥
∥
∥
∥
∥

2

,

for all f ∈ V .

Proof. This is part of the Projection Theorem, it can also be seen by setting ak =
〈 f | ek〉 in (12.16) and rearranging the equality. �

Replacing the second term on the right-hand side of the equality in the Pytha-
gorean Theorem by zero leads us to

n

∑
k=m

|〈 f | ek〉|2 ≤ ‖ f‖2 (12.17)

for all m≤ n.
Everything above is true even if we only have a finite number of ek. The next

results require us to have an infinite number of ek, we assume they are indexed by
k ∈ Z. The following inequality is named after Friedrich Wilhelm Bessel (Born: 22
July 1784, Minden to 17 March 1846, Königsberg).

Theorem 12.2.12 (Bessel’s Inequality). If the set {ek | k ∈ Z} is orthonormal, then

∞

∑
k=−∞

|〈 f | ek〉|2 ≤ ‖ f‖2 ,

for all f ∈ V .

Proof. As a special case of (12.17) we have ∑N
k=−N |〈 f | ek〉|2 ≤ ‖ f‖2 for all N,

hence it follows from Monotone Convergence that limN→∞∑N
k=−N |〈 f | ek〉|2 exists

and is less than or equal to ‖ f‖2 . Consequently,

∞

∑
k=−∞

|〈 f | ek〉|2 = lim
N→∞

N

∑
k=−N

|〈 f | ek〉|2 ≤ ‖ f‖2 ,

as we needed to show. �
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Remark 12.2.13. Parseval’s identity states that for Fourier series we have equality in
Bessel’s inequality, this is Corollary 12.7.4.

Theorem 12.2.14 (Riemann–Lebesgue Lemma). If the set {ek | k ∈ Z} is orthonor-
mal, then for any f ∈ V , 〈 f | ek〉 → 0 as |k| → ∞.

Proof. Since the sum in Bessel’s Inequality is convergent, the terms |〈 f | ek〉|2 → 0
as |k| → ∞, by the Test For Divergence. �

Henri Léon Lebesgue (28 June 1875, Beauvais to 26 July 1941, Paris) made
other contributions to the theory of Fourier series, however his major contribution to
mathematics was a new method of integration, now known as the Lebesgue integral.
This integral is an essential part of modern analysis.

Some Properties of the Norm

We use Bessel’s inequality to establish the Cauchy–Schwarz Inequality and the tri-
angle inequality for ‖·‖ .
Theorem 12.2.15 (Cauchy–Schwarz Inequality). For all f and g in V,

|〈 f | g〉| ≤ ‖ f‖‖g‖ .

Proof. If ‖g‖= 0 both sides are zero. Suppose ‖g‖ �= 0, and let e0 := g/‖g‖ . Then
Bessel’s inequality (12.17) with m = n = 0 (and S = {0}) gives

|〈 f | e0〉| ≤ ‖ f‖ .

Using e0 := g/‖g‖ this is ∣
∣
∣
∣

〈
f

∣
∣
∣
∣

g
‖g‖

〉∣∣
∣
∣≤ ‖ f‖ .

Multiplying both sides by ‖g‖ yields the desired inequality. �
Theorem 12.2.16 (Triangle Inequality). For all f and g in V ,

‖ f +g‖ ≤ ‖ f‖+‖g‖ .

Proof. This is a simple consequence of Cauchy–Schwarz.

‖ f +g‖2 = 〈 f +g | f +g〉
= 〈 f | f 〉+ 〈 f | g〉+ 〈g | f 〉+ 〈g | g〉
≤ 〈 f | f 〉+ |〈 f | g〉|+ |〈g | f 〉|+ 〈g | g〉
≤ ‖ f‖2 +2‖ f‖‖g‖+‖g‖2

= (‖ f‖+‖g‖)2

Taking square roots completes the proof. �
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A map f ∈ V → ‖ f‖ ∈ R is a norm, if for all f and g in V and all complex
numbers a

‖a f‖= |a|‖ f‖ (12.18)

‖ f +g‖ ≤ ‖ f‖+‖g‖ (12.19)

‖ f‖ ≥ 0 (12.20)

‖ f‖= 0 =⇒ f = 0 (12.21)

We established (12.19) above. Observe (12.18) follows from 〈a f | a f 〉 = aa
〈 f | f 〉 . Setting a= 1, gives (12.20). And also shows (12.21) is equivalent to (12.12).

Hence, ‖(xk)‖=
(
∑k |xk|2

)1/2
is a norm on �2, ‖ f‖=

(´ 1
0 | f |

2
)1/2

is a norm on the

set of continuous functions and a norm on the set of Riemann integrable functions
R, expect on R there are nonzero functions f with ‖ f‖ = 0. For simplicity we
will also refer to ‖ f‖ as a norm on R. See Remark 12.2.4 for a way to eliminate
functions of norm zero.

In terms of integrable functions f and g on the interval [0,1] the Cauchy–Schwarz
and triangle inequalities state

∣
∣
∣
∣

ˆ 1

0
f g

∣
∣
∣
∣≤
(ˆ 1

0
| f |2
)1/2(ˆ 1

0
|g|2
)1/2

(ˆ 1

0
| f +g|2

)1/2

≤
(ˆ 1

0
| f |2
)1/2

+

(ˆ 1

0
|g|2
)1/2

.

For sequences (ak) and (bk) in �2 these inequalities take the form

∣
∣
∣
∣
∣

∞

∑
k=−∞

akbk

∣
∣
∣
∣
∣
≤
(

∞

∑
k=−∞

|ak|2
)1/2( ∞

∑
k=−∞

|bk|2
)1/2

(
∞

∑
k=−∞

|ak +bk|2
)1/2

≤
(

∞

∑
k=−∞

|ak|2
)1/2

+

(
∞

∑
k=−∞

|bk|2
)1/2

Similar inequalities are established in the problems for Sect. 6.8.

12.3 Partial Sums

We establish some properties of the Dirichlet kernel and use it to write the partial
sums SN f of the Fourier series of f as a convolution.

We now specialize to integrable functions. In this case the inner product is deter-
mined by

〈 f | g〉=
ˆ 1

0
f (x)g(x)dx
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and the corresponding norm is

‖ f‖=
ˆ 1

0
| f (x)|2 dx.

Recall also the Fourier coefficients are

f̂ (k) = 〈 f | ek〉=
ˆ 1

0
f (x)e−i2πkx dx

and the partial sums of the Fourier series is

SN f (x) =
N

∑
k=−N

f̂ (k)ek (x) =
N

∑
k=−N

f̂ (k)e−i2πkx.

Before beginning our investigation of convergence of SN f we restate Bessel’s In-
equality and the Riemann–Lebesgue Lemma in terms of the Fourier coefficients
f̂ (k) .

Theorem 12.3.1 (Bessel’s Inequality). If the set {ek | k ∈ Z} is orthonormal, then

∞

∑
k=−∞

∣
∣
∣ f̂ (k)

∣
∣
∣
2
≤ ‖ f‖2 ,

for all integrable f on [0,1] .

Theorem 12.3.2 (Riemann–Lebesgue Lemma). If f is integrable on [0,1] , then
∣
∣
∣ f̂ (k)

∣
∣
∣→ 0 as k → ∞ and as k →−∞.

The Dirichlet Kernel

In the remainder of this section we rewrite the sum SN f as a convolution of f and a
function DN called the Dirichlet kernel.

An integrable function f defined on the interval [0,1] can be extended to a pe-
riodic function on all of R by setting f (x + n) = f (x) for all 0 ≤ x < 1 and all
n ∈ Z. The so extended function has period one. Note this may change the value of
f at x = 1, but it does not change any integrals we may want to calculate. For the re-
mainder of this chapter we will assume that f has period one, that is f (x+1) = f (x)
for all real x, unless otherwise stated.

Exercise 12.3.3. For any real number a we have

ˆ a+1

a
f =
ˆ 1

0
f .
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Since both f and ek have period one Exercise 12.3.3 implies

f̂ (k) =
ˆ 1/2

−1/2
f (t)e−i2πkt dt.

The Dirichlet kernel is

DN(t) :=
N

∑
k=−N

ek (t) =
N

∑
k=−N

ei2πkt . (12.22)

This kernel appears naturally when we plug the definitions into SN f :

SN f (x) =
N

∑
k=−N

f̂ (k)ei2πkx

=
N

∑
k=−N

(ˆ 1/2

−1/2
f (t)e−i2πkt dt

)

ei2πkx

=

ˆ 1/2

−1/2
f (t)

(
N

∑
k=−N

ei2πk(x−t)

)

dt

=

ˆ 1/2

−1/2
f (t)DN(x− t)dt

=−
ˆ x−1/2

x+1/2
f (x−u)DN(u)du

=

ˆ 1/2

−1/2
f (x− t)DN(t)dt,

where we, interchanged the finite sum and the integral, used the change of variables
u = x− t, and applied Exercise 12.3.3. Hence, SN f = f �DN (Fig. 12.1).

Fig. 12.1 A few samples D1, D4, and D9 of the Dirichlet kernel
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We have written SN f as a convolution of f and DN . Unfortunately DN is not
positive, hence not an approximate identity. Consequently, we cannot apply the Ap-
proximate Identity Lemma. Nevertheless, the Dirichlet kernel is very useful when
investigating pointwise convergence of Fourier series. Hence, we establish some
properties of this kernel.

Exercise 12.3.4. Show that ˆ 1/2

−1/2
DN = 1

for all N ≥ 1.

Exercise 12.3.5. Show that

DN(t) =

{
2N +1 if t = 0
sin(π(2N+1)t)

sin(πt) if t �= 0
.

Usually we simply write

DN(t) =
sin(π(2N +1)t)

sin(πt)
,

since the limit as t → 0 equals 2N +1. Using DN (t) = DN (−t) ,

SN f (x) = f �DN (x) =
ˆ 1/2

−1/2
f (x− t)DN(t)dt =

ˆ 1/2

−1/2
f (x+ t)DN(t)dt,

where the last equality is an application of the change of variables u =−t.

12.4 Pointwise Convergence�

We establish Dini’s criterion for pointwise convergence of a Fourier series. We use
Dini’s criterion to establish Dirichlet’s Theorem on the pointwise convergence of
Fourier series of piecewise smooth functions. We also show that if f has an inte-
grable derivative, then the Fourier series converges uniformly.

Recall, if ‖ f −g‖= 0, then SN f = SNg for all N. For example, if

g(x) :=

{
f (x) if x �= 1

2

f
(

1
2

)
+1 if x = 1

2

then SN f = SNg for all N. In particular, if (SN f )
(

1
2

)
→ f

(
1
2

)
, then (SNg)

(
1
2

)
→

f
(

1
2

)
= g

(
1
2

)
−1, So, to get pointwise convergence we need to impose some con-

dition on f .
The following is a version of a Theorem due to Ulisse Dini (14 November 1845,

Pisa to 28 October 1918, Pisa).
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Theorem 12.4.1 (Dini’s Criterion). Let f be integrable on the closed interval
[0,1]. Fix a point x0 in [0,1]. Define a function g on the closed interval [−1/2,1/2]
by setting

g(t) :=

{
f (x0+t)− f (x0)

sin(πt) it t �= 0

0 if t = 0
. (12.23)

If g is integrable on [−1/2,1/2], then SN f (x0)→ f (x0) as N → ∞.

Proof. The first equality below uses SN f = f �DN and
´ 1/2
−1/2 DN = 1, the second

equality the definition of g and DN(t) = sin((2N+1)πt)/sin(πt), and the third uses
sin(y) =

(
eiy− e−iy

)
/2i and the definition of ĥ(k).

SN f (x0)− f (x0) =

ˆ 1/2

−1/2
( f (x0 + t)− f (x0))DN(t)dt

=

ˆ 1/2

−1/2
g(t)sin((2N +1)πt)dt

=
1
2i

ˆ 1/2

−1/2
g(t)

(
eiπ(2N+1)t − e−iπ(2N+1)t

)
dt

=
1
2i

ˆ 1/2

−1/2
g(t)e1/2 (t)ei2πNt −g(t)e−1/2 (t)e−i2πNt dt

=
1
2i

(
ĝe1/2(−N)− ĝe−1/2(N)

)

→ 0 as N → ∞.

The convergence is a consequence of the Riemann–Lebesgue Lemma. �
Exercise 12.4.2. Suppose f is integrable and g is determined by (12.23). If g is
bounded, then g is integrable.

Corollary 12.4.3. The Fourier series ∑∞
k=−∞ f̂ (k)ei2πkx0 converges to f (x0) at any

point where f is differentiable.

Proof. If f ′(x0) exists, then

f (x0 + t)− f (x0)

sin(πt)
=

f (x0 + t)− f (x0)

t
πt

sin(πt)
1
π
→ f ′(x0) ·1 ·

1
π

as t → 0. So g is bounded hence integrable by Exercise 12.4.2. Consequently,
SN f (x0)→ f (x0), by Dini’s criterion. �

In the following result we do not assume that f (0) = f (1). It allows us to calcu-
late the sum of the Fourier series of certain discontinuous functions. The following
result is due to Johann Peter Gustav Lejeune Dirichlet (13 February 1805, Düren to
5 May 1859, Gättingen).
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Theorem 12.4.4 (Dirichlet, 1829). Let f be defined on the closed interval [0,1].
Suppose there is a partition

0 = x0 < x1 < · · ·< xn = 1

such that f is differentiable on the open intervals ]xk−1,xk[, the limits

f (xk+) = lim
t↘xk

f (t) and f (xk−) = lim
t↗xk

f (t)

exists with the understandings f (0−) := f (1−) and f (1+) = f (0+) and the limits

f ′+(xk) = lim
h↘0

f (xk +h)− f (xk)

t

f ′−(xk) = lim
h↗0

f (xk +h)− f (xk)

t

all exists, with understandings similar to the ones above at the endpoints 0 and 1.
Then

SN f (x)→ 1
2
( f (x−)+ f (x+)) as N → ∞

for all x in [0,1].

Proof. This is a consequence of the Dini Criterion (Corollary 12.4.3), if x �= xk.
When x = xk, the proof is similar to the proof of Dini’s criterion.

SN f (x) =
ˆ 1/2

−1/2
f (x+ t)

sin((2N +1)πt)
sin(πt)

dt

=

ˆ 0

−1/2
· · ·+

ˆ 1/2

0
· · ·

= S−N f (x)+S+N f (x).

We will show S+N f (x)→ 1
2 f (x+). Similarly, S−N f (x)→ 1

2 f (x−). Let

g(t) =

{
f (x+t)− f (x+)

sin(πt) if 0 < t ≤ 1/2

0 if −1/2≤ t ≤ 0
.

Then g is bounded, by the proof of Corollary 12.4.3. Hence

S+N f (x)− 1
2

f (x+) =

ˆ 1/2

0
( f (x+ t)− f (x+))

sin((2N +1)πt)
sin(πt)

dt

=

ˆ 1/2

−1/2
g(t)sin((2N +1)πt)dt

→ 0 as N→ ∞,
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The first equality used
´ 1/2

0 DN = 1/2 and the convergence follows from the
Riemann–Lebesgue Lemma as in the proof of Dini’s Theorem. �

If we assume that the function in Dirichlet’s Theorem is continuous we get
uniform convergence of the Fourier series. This is a consequence of the follow-
ing result. To prove this result we need the Cauchy–Schwarz inequality for infinite
sums.

Theorem 12.4.5. If f is continuous, f (0) = f (1), and f ′ exists except at a finite
number of points and is integrable, then SN f converges uniformly to f on [0,1].

Proof. By Bessel’s inequality the series ∑∞
k=−∞

∣
∣
∣ f̂ (k)

∣
∣
∣
2

and ∑∞
k=−∞

∣
∣
∣ f̂ ′(k)

∣
∣
∣
2

are

convergent. By integration by parts

f̂ ′(k) =
ˆ 1

0
f ′(x)e2πi kx dx

= 2πi k
ˆ 1

0
f (x)e2πi kx dx

= 2πi k f̂ (k)

the boundary terms in the integration by parts vanish, since f (0) = f (1). Hence

∑∞
k=−∞ k2

∣
∣
∣ f̂ (k)

∣
∣
∣
2

is convergent, since ∑∞
k=−∞

∣
∣
∣ f̂ ′(k)

∣
∣
∣
2

is convergent. Ignoring the

k = 0 terms, it follow from the Cauchy–Schwarz inequality that,

∞

∑
k=−∞

∣
∣
∣ f̂ (k)

∣
∣
∣=

∞

∑
k=−∞

∣
∣
∣
(

1
k

)(
k f̂ (k)

)∣∣
∣

≤
(

∞

∑
k=−∞

1
k2

)1/2 ( ∞

∑
k=−∞

∣
∣
∣k f̂ (k)

∣
∣
∣
2
)1/2

.

Hence ∑∞
k=−∞

∣
∣
∣ f̂ (k)

∣
∣
∣ is convergent. So SN f converges uniformly by the Weierstrass

M-test, in particular, limSN f is continuous. . By Dini’s Criterion (Corollary 12.4.3)
the limit is f (x) at the points x where f ′(x) exists. Hence limSN f and f are two
continuous functions that are equal except possibly at a finite number of point, thus
there are equal everywhere. �

12.5 Cesàro Summability

Dirichlet proved a result, Theorem 12.4.4 is a version of this result, that implies
that if f has a bounded derivative, then SN f converges pointwise to f . He also
expressed the belief that, if f was integrable (and certainly, if f was continuous) then
SN f would converge pointwise. During the next 40+ years many mathematicians,
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including Riemann, Weierstrass, and Julius Wilhelm Richard Dedekind (6 October
1831, Braunschweig to 12 February 1916, Braunschweig), agreed with Dirichlet’s
belief. It came as a surprise when a counter example was produced by Paul du Bois-
Reymond in 1873 or 1876.

Theorem 12.5.1 (du Bois-Reymond). There exists a continuous function whose
Fourier series diverges to infinity at some point.

As a consequence of du Bois-Reymond example, there is a continuous f and a point
x0 such that SN f (x0) �→ f (x0). In response to this example a new question arose:

Suppose f is continuous. Can we recover f from its Fourier coefficients? Most

mathematicians thought the answer was no, but to everyones surprise Lipót Fejér
(or Leopold Fejér), (February 9, 1880, Pécs to October 15, 1959, Budapest), when
19 years old, showed that the answer is yes. In fact, he showed that

1
N +1

N

∑
n=0

Sn f → f uniformly

in particular, pointwise.
In this section we will assume that f : [0,1]→ C is continuous and f (0) = f (1).

We extend f to a continuous function on R by setting f (x+ n) = f (x) for all 0 ≤
x < 1 and all n ∈ Z.

Fejér made use of a method for summing possibly divergent series due to Ernesto
Cesàro (12 March 1859, Naples to 12 September 1906, Torre Annunziata). The
Cesàro sums are

σN f (x) = (σN f )(x) :=
1

N +1

N

∑
n=0

(Sn f )(x)

=
1

N +1

N

∑
n=0

ˆ 1/2

−1/2
f (x− t)Dn(t)dt

=

ˆ 1/2

−1/2
f (x− t)KN(t)dt

= f �KN (x) ,

where

KN(t) :=
1

N +1

N

∑
n=0

Dn(t)

is called the Fejér kernel.
We will show the Fejér kernel is an approximate identity. So we can use (the

proof of) the Approximate Identity Lemma to conclude σN f converges uniformly
to f .

To show that KN is an approximate identity we must verify (i) it has integral one,
(ii) is positive, and (iii) is concentrated near the origin. This is the next three results
(Fig. 12.2).
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Fig. 12.2 A few samples K1, K4, and K9 of the Fejér kernel

Exercise 12.5.2. For any N ≥ 1,

ˆ 1/2

−1/2
KN = 1.

Since the Dirichlet kernel Dn is not positive, it is surprising that Fejér kernel KN is
positive.

Lemma 12.5.3. For all N ≥ 1,

KN(t) =
1

N +1

(
sin(π(N +1)t)

sin(πt)

)2

≥ 0,

for all t.

Proof. One way to verify this formula is to use 2isin(x) = eix− e−ix to convert it to
a problems regarding exponentials and use that we know how to sum a geometric
series.

Recall

Dk(t) =
sin(π (2k+1) t)

sin(πt)
=

eiπ(2k+1)t − e−iπ(2k+1)t

eiπt − e−iπt .

Calculating, using the formula for the sum of a finite geometric series

(N +1)
(
eiπt − e−iπt)KN(t) =

N

∑
k=0

(
eiπ(2k+1)t − e−iπ(2k+1)t

)

= eiπt
N

∑
k=0

(
ei2πt)k− e−iπt

N

∑
k=0

(
e−i2πt)k

= eiπt ei2π(N+1)t −1
ei2πt −1

− e−iπt 1− e−i2π(N+1)t

1− e−i2πt
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= eiπt eiπ(N+1)t

eiπt

eiπ(N+1)t − e−iπ(N+1)t

eiπt − e−iπt

− e−iπt e−iπ(N+1)t

e−iπt

eiπ(N+1)t − e−iπ(N+1)t

eiπt − e−iπt

=
(

eiπ(N+1)t − e−iπ(N+1)t
) eiπ(N+1)t − e−iπ(N+1)t

eiπt − e−iπt .

Dividing by eiπt − e−iπt , we get

(N +1)KN(t) =

(
eiπ(N+1)t − e−iπ(N+1)t

eiπt − e−iπt

)2

=

(
sin(π (N +1) t)

sin(πt)

)2

as we needed to show.

Exercise 12.5.4. For any 0 < δ < 1/2
ˆ

δ≤|t|≤1/2
KN → 0 as N → ∞.

Where
´
δ≤|t|≤1/2 KN :=

´ −δ
−1/2 KN +

´ 1/2
δ KN .

Theorem 12.5.5 (Fejér). If f is continuous and has period 1, then σN f converges
uniformly to f .

Proof. Let ε > 0 be given. Since f is continuous and periodic, f is uniformly con-
tinuous, hence there exists δ > 0 such that for all x we have | f (x− t)− f (x)|< ε/2,
when |t| ≤ δ . Since f is continuous and periodic M = sup | f (x)| is finite. Pick N
such that

´
δ≤|t|≤1/2 Kn < ε/4M when n≥ N.

Exercise 12.5.6. Complete the proof of Fejér’s Theorem.

Remark 12.5.7. Fejér’s Theorem can be used to give a different proof of the Weier-
strass approximation theorem.

12.6 Uniform Distribution of Sequences�

The connection between Fourier series and the uniform distribution of sequences
in intervals is used to establish Weyl’s Criterion for uniform distribution. A direct
consequence of Weyl’s Criterion is the uniform distribution of the fractional parts
of the integer multiples of an irrational number in the unit interval.
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Let (xk) be a sequence of real numbers in the compact interval [0,1] . We say (xk)
is uniformly distributed in [0,1], if for all 0≤ a < b≤ 1

lim
N→∞

#{k ∈ N | k ≤ N and a < xk < b}
N

= b−a. (12.24)

Remark 12.6.1. Intuitively, uniform distribution means that the xk’s are uniformly
scattered over the interval. This is not just a property of the set {xk | k ∈ N} , the
ordering imposed by the subscript k is also important. For example, suppose (yk) is
uniformly distributed in [0,1] . Let ak := 1

2 yk and let bk := 1
2 +ak. Set x1 := 1

2 , x2 :=
a1, x3 := a2, x4 := b1, x5 := a3, x6 := a4, x7 := b2, x8 := a5, . . . . By construction,

lim
N→∞

#{k ∈ N | k ≤ N and 0 < xk <
1
2}

N
=

2
3
.

Hence, (xk) is not uniformly distributed in [0,1] . On the other hand, if z1 := 1
2 ,

z2 := a1, z3 := b1, z4 := a2, z5 := b2, z6 := a3, z7 := b3, z8 := a4, . . . , then (zk) is
uniformly distributed in [0,1] . Of course, the sets {xk | k ∈ N} and {zk | k ∈ N} are
equal.

For a set A the function

1A(x) =

{
1 if x ∈ A

0 if x /∈ A

1A is called the characteristic function of A. We can write (12.24) as

lim
N→∞

1
N

N

∑
k=1

1]a,b[(xk) =

ˆ 1

0
1]a,b[, (12.25)

for all 0≤ a < b≤ 1.

Exercise 12.6.2. If for some a, limN→∞
1
N ∑N

k=1 1[a,a](xk) > 0, then (xk) is not uni-
formly distributed. Here, [a,a] := {a} is the degenerate interval containing only the
point a.

Exercise 12.6.3. A sequence (xk) in [0,1] is uniformly distributed in [0,1] if and
only if

lim
N→∞

1
N

N

∑
k=1

f (xk) =

ˆ 1

0
f (12.26)

for all step functions f defined on [0,1].

This leads directly to related characterizations of uniform distribution in terms of
classes of functions we have encountered in other contexts.

Theorem 12.6.4. Fix a sequence (xk) in the closed interval [0,1]. Consider the
equation

lim
N→∞

1
N

N

∑
k=1

f (xk) =

ˆ 1

0
f . (12.27)
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The following are equivalent:

(i) (12.27) holds for all f = 1]a,b[ with 0≤ a < b≤ 1.
(ii) (12.27) holds for all step functions f on [0,1] .
(iii) (12.27) holds for all integrable functions f on [0,1] .
(iv) (12.27) holds for all continuous functions f on [0,1] .
(v) (12.27) holds for all continuous functions f on [0,1] with f (0) = f (1) .
(vi) (12.27) holds for all f = ek with k ∈ Z. Recall, ek(x) = ei2πkx.

By considering the real and complex parts separately we see that if (12.27) is true
for real valued f it is true for complex valued f . In particular, (iii) holds for real
valued functions iff it holds for complex valued functions. Similarly, for (iv) and (v).

Proof. We will show (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (vi), (vi) =⇒
(v), and (v) =⇒ (i).

(i) =⇒ (ii). This is the nontrivial part of Exercise 12.6.3.
(ii) =⇒ (iii). This is essentially the definition of the Riemann integral. As noted

above, it is sufficient to consider real valued f . Suppose (xk) in [0,1] is uniformly
distributed in [0,1]. Let f be some real values continuous function on [0,1]. Fix
ε > 0. Pick lower and upper step functions s and S for f such that

´ 1
0 S−

´ 1
0 s < ε .

Then 0≤
´ 1

0 f −
´ 1

0 s < ε and 0≤
´ 1

0 S−
´ 1

0 f < ε , hence

ˆ 1

0
f − ε ≤

ˆ 1

0
s = lim

N→∞

1
N

N

∑
k=1

s(xk)

≤ liminf
N→∞

1
N

N

∑
k=1

f (xk)≤ limsup
N→∞

1
N

N

∑
k=1

f (xk)

≤ lim
N→∞

1
N

N

∑
k=1

S(xk) =

ˆ 1

0
S

≤
ˆ 1

0
f + ε .

Hence, the liminf equals the limsup so the limit exists and (12.27) holds.
(iii) =⇒ (iv) =⇒ (v) =⇒ (vi) since the classes of functions are decreasing.
(v) =⇒ (i). Let 0≤ a < b≤ 1. Fix ε > 0. Let f and F be continuous functions

on [0,1] such that f ≤ 1]a,b[ ≤ F, f (0) = f (1) , F (0) = F (1) , and
´ 1

0 F−
´ 1

0 f < ε .
See Fig. 12.3 for the construction of f and F in the cases where 0 < a and b < 1.
Using 1]a,b[ ≤ F,

´ 1
0 F −

´ 1
0 f < ε , (v), f ≤ 1]a,b[, liminf ≤ limsup, 1]a,b[ ≤ F, (v),

´ 1
0 F−

´ 1
0 f < ε , and f ≤ 1]a,b[ we have

ˆ 1

0
1]a,b[− ε ≤

ˆ 1

0
F− ε ≤

ˆ 1

0
f = lim

N→∞

1
N

N

∑
k=1

f (xk)

≤ liminf
N→∞

1
N

N

∑
k=1

1]a,b[(xk)≤ limsup
N→∞

1
N

N

∑
k=1

1]a,b[(xk)
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Fig. 12.3 The functions f ≤ 1]a,b[ ≤ F. Making the dashed lines sufficiently steep, forces
´ 1

0 F −
´ 1

0 f < ε

≤ lim
N→∞

1
N

N

∑
k=1

F(xk) =

ˆ 1

0
F

≤
ˆ 1

0
f + ε ≤

ˆ 1

0
1]a,b[ + ε .

Since ε > 0 was arbitrary (i) holds.
(vi) =⇒ (v). Let f be a continuous function with f (0) = f (1). Fix ε > 0. By

Fejér’s Theorem there exists

p(x) :=
m

∑
j=−m

a je
i2π jx =

m

∑
j=−m

a je j (x)

such that | f (x)− p(x)|< ε/3 for all 0≤ x≤ 1. We have
∣
∣
∣
∣
∣

ˆ 1

0
f − 1

N

N

∑
k=1

f (xk)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣

ˆ 1

0
f −
ˆ 1

0
p

∣
∣
∣
∣

+

∣
∣
∣
∣
∣

ˆ 1

0
p− 1

N

N

∑
k=1

p(xk)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
N

N

∑
k=1

p(xk)−
1
N

N

∑
k=1

f (xk)

∣
∣
∣
∣
∣
.

The first and third terms are ≤ ε/3 for all N, since | f (x)− p(x)| < ε/3, for all x.

We must show the middle term
∣
∣
∣
´ 1

0 p− 1
N ∑N

k=1 p(xk)
∣
∣
∣ is < ε/3 for large N. Using

the formula for p, that the sum ∑m
j=−m is a finite sum, and (vi) we have

lim
N→∞

1
N

N

∑
k=1

p(xk) = lim
N→∞

m

∑
j=−m

a j
1
N

N

∑
k=1

e j (xk)



270 12 Fourier Series

=
m

∑
j=−m

a j

(

lim
N→∞

1
N

N

∑
k=1

e j (xk)

)

=
m

∑
j=−m

a j

(ˆ 1

0
e j

)

=

ˆ 1

0
p.

In particular,
∣
∣
∣
´ 1

0 p− 1
N ∑N

k=1 p(xk)
∣
∣
∣ is < ε/3 for sufficiently large N. �

Remark 12.6.5. (iii) leads to the idea of Monte-Carlo integration.
The following criterion for uniform distribution was discovered by Hermann Klaus
Hugo Weyl (9 November 1885, Elmshorn to 8 December 1955, Zurich).

Theorem 12.6.6 (Weyl’s Criterion). A sequence (xk) of points in the closed inter-
val [0,1] is uniformly distributed in [0,1] if and only if

lim
N→∞

1
N

N

∑
k=1

ei2π jxk = 0 for all integers j �= 0. (12.28)

Proof. By (vi) in Theorem 12.6.4 the sequence (xk) is uniformly distributed in [0,1],
iff

lim
N→∞

1
N

N

∑
k=1

ei2π jxk =

ˆ 1

0
ei2π jx dx,

for all integers j. Since
´ 1

0 e0 = 1 = 1
N ∑1

k=1 1 = ∑N
k=1 e0 (xk) and

´ 1
0 ek(x)dx =

´ 1
0 ei2πkxdx= 0 for all integers k �= 0 we see that (vi) in Theorem 12.6.4 is equivalent

to (12.28). �
Recall, {t} := t−�t� denotes the fractional part of the real number t.

Corollary 12.6.7. If α is irrational, then the sequence of fractional parts ({kα}) is
uniformly distributed in [0,1].

Proof. Let n be a nonzero integer, since α is irrational, 2nα is not an integer. Hence
sin(2πnα) �= 0. Using t → ei2πnt has period one, we compute

∣
∣
∣
∣
∣

1
N

N

∑
k=1

ei2πn{kα}
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1
N

N

∑
k=1

ei2πnkα

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
N

ei2πn(N+1)α − ei2πnα

ei2πnα −1

∣
∣
∣
∣
∣

≤ 2
N|sin(2πnα)| →−→

N→∞
0

The inequality used
∣
∣
∣ei2πn(N+1)α − ei2πnα

∣
∣
∣≤ 2 and |y| ≤ |x+ iy|with x= cos(2πnα)

−1 and y = sin(2πnα) . �
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12.7 Norm Convergence�

Norm convergence of Fourier series is established. Consequences of norm con-
vergence are Parseval’s Identity (equality in Bessel’s inequality) and Plancherel’s
Formula. These identities allow us to evaluate the sums of certain series by calcu-
lating integrals.

Norm convergence is not convergence in a simple pointwise sense, but in the
sense that the integrals

ˆ 1

0
| f (x)− (SN f )(x)|2 −→ 0

N→∞
(12.29)

for all integrable f . Using the norm (12.8), i.e., ‖ f‖2 =
(´ 1

0 | f |
2
)1/2

, we can write

(12.29) as
‖ f −SN f‖2 −→ 0

N→∞
.

We have mostly omitted the subscript in ‖·‖2 simple writing ‖·‖ .
Remark 12.7.1. We have already establish some results that can be regarded as con-
vergence with respect to a different norm. For a bounded function f on [0,1] let

‖ f‖∞ := sup{| f (x)| | x ∈ [0,1]} .

It is easy to see that ‖a f‖∞ = |a|‖ f‖∞ and ‖ f +g‖∞ ≤‖ f‖∞+‖g‖∞ . Hence, ‖·‖∞ is
a norm on the set of bounded functions. Let fk, k ∈ N, and f be bounded functions.
It is not difficult to see that fk converges uniformly to f on [0,1] iff ‖ f − fk‖∞→ 0 as
k → ∞. Since a continuous function on is bounded, in particular, ‖·‖∞ is a norm on
the set of continuous functions on [0,1] . In particular, Theorem 12.4.5 and Theorem
12.5.5 can be interpreted as stating that

‖ f −SN f‖∞ −→ 0
N→∞

and ‖ f −σN f‖∞ −→ 0
N→∞

for certain classes of functions f . Since we have no further use for ‖·‖∞ , we will
resume writing ‖·‖ in place of ‖·‖2.

In this section we do not assume f (0) = f (1). As a first step toward (12.29) we
establish a relationship between the partial sums SN f =∑N

k=−N f̂ (k)ek of the Fourier
series for f and f itself, we show if f and g are close, then so are the partial sums
of their Fourier series, more precisely:

Theorem 12.7.2. If f and g are integrable, then

‖SN f −SNg‖ ≤ ‖ f −g‖.

Proof. Since

‖SN f‖2 = 〈SN f | SN f 〉
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=

〈
N

∑
j=−N

f̂ ( j)e j

∣
∣
∣
∣

N

∑
k=−N

f̂ (k)ek

〉

=
N

∑
j=−N

N

∑
k=−N

f̂ ( j) f̂ (k)〈e j | ek〉

=
N

∑
k=−N

∣
∣
∣ f̂ (k)

∣
∣
∣
2

≤ ‖ f‖2,

the inequality is Bessel’s inequality.
Using (12.10) we see

SN f −SNg =
N

∑
k=−N

(〈 f | ek〉−〈g | ek〉)ek

=
N

∑
k=−N

〈 f −g | ek〉ek

= SN( f −g).

Hence, the previous calculation gives

‖SN f −SNg‖= ‖SN( f −g)‖ ≤ ‖ f −g‖

as we needed to show. �
We use Theorem 12.7.2 to establish that, if f is integrable on [0,1], then

‖ f −SN f‖ → 0 as N → ∞. The proof is in three steps. (i) Use Fejér’s Theorem
and the Projection Theorem to get convergence for continuous functions. (ii) A
given step function can be approximated by a continuous functions, hence Theo-
rem 12.7.2 and step (i) gives the result for step functions. (iii) Repeat step (ii), but
this time approximate a given integrable function by a step function.

Theorem 12.7.3. If f is integrable on [0,1], then

‖SN f − f‖=
(ˆ 1

0
| f −SN f |2

)1/2

→ 0

as N → ∞.

Proof. Since SN f = (SN Re f )+(SN Im f ) and

‖ f −SN f‖= ‖Re f − (SN Re f )‖+‖Im f − (SN Im f )‖

we will assume f is real valued.
Step (i): Suppose h is continuous and h(0) = h(1). By Fejér’s Theorem σNh

converges uniformly to h. The Projection Theorem, Theorem 12.2.10, states that
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Fig. 12.4 Approximating a step function g with a continuous function h such that ‖g−h‖ is arbi-
trarily small

∥
∥h−∑N

n akek
∥
∥ is minimized by choosing ak = ĥ(k). In particular,

‖h−SNh‖ ≤ ‖h−σNh‖ .

But

‖h−σNh‖2 =

ˆ 1

0
|h−σNh|2 → 0

because |h−σNh| converges uniformly to 0.
Step (ii): Suppose g is a step function on [0,1]. The idea is to approximate g by

a continuous h and then use Theorem 12.7.2 and Step (i). Let M satisfy |g(x)| ≤ M
for all x. Let ε > 0. Construct a continuous function h by narrowing each step in g
slightly and connecting the ends to the x−axis. By similarly modifying the right end
of the last step we can arrange h(1) = h(0) = 0. See Fig. 12.4. Note that |h(x)| ≤
|g(x)| ≤M for all x. Hence, by making the sum of the lengths of the intervals where
we modify the step function less than ε2/4M2 we obtain

‖g−h‖2 =

ˆ 1

0
|g−h|2 =

ˆ 1

0
|g−h| |g−h|

≤ 2M
ˆ 1

0
|g−h|

≤ 2M (2M)
(
ε2/4M2)= ε2.

The last inequality used that |g−h| ≤ 2M and that the sum of the lengths of the
intervals where g �= h is less than ε2/4M2. Hence ‖g−h‖ ≤ ε . Using Step (i) we
conclude ‖h− SNh‖ ≤ ε for N sufficiently large. Since ‖g− h‖ ≤ ε also ‖SNg−
SNh‖ ≤ ε , by Theorem 12.7.2. So

‖g−SNg‖ ≤ ‖g−h‖+‖h−SNh‖+‖SNh−SNg‖
≤ ε+ ε+ ε = 3ε
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for N sufficiently large. Since ε > 0 is arbitrary, this means ‖g−SNg‖→ 0 as N→∞.
Step (iii): Suppose f is integrable on [0,1]. This is similar to the previous part.

We approximate f by a step function g and use Theorem 12.7.2 and the second part
of this proof. Let M be such that | f (x)| ≤M for all x. Let g be an upper step function
for f such that

´ 1
0 g−

´ 1
0 f ≤ ε2/2M. Then

‖g− f‖2 =

ˆ 1

0
|g− f |2 =

ˆ 1

0
|g− f | |g− f |

≤ 2M
ˆ 1

0
|g− f |= 2M

ˆ 1

0
g− f

≤ 2M(ε2/2M) = ε2.

Thus ‖ f −g‖ ≤ ε , by Theorem 12.7.2 also ‖SNg−SN f‖ ≤ ε . By Step (ii) we have
‖g−SNg‖ ≤ ε for N sufficiently large. Hence

‖ f −SN f‖ ≤ ‖ f −g‖+‖g−SNg‖+‖SNg−SN f‖
≤ ε+ ε+ ε = 3ε

for N sufficiently large. �
As a consequence of this theorem and the Pythagorean Theorem we have equal-

ity in Bessel’s inequality, this is due to Marc-Antoine Parseval (27 April 1755,
Rosières-aux-Salines to 16 August 1836, Paris).

Corollary 12.7.4 (Parseval’s Identity). If f is integrable on [0,1], then

ˆ 1

0
| f |2 =

∞

∑
k=−∞

∣
∣
∣ f̂ (k)

∣
∣
∣
2
.

Hence, ‖ f‖=
∥
∥
∥
(

f̂ (k)
)∥∥
∥ , where the norm on the left-hand side is in the sense of the

integral and the norm on the right-hand side in the norm in the sequence space �2.

Exercise 12.7.5. Prove Parseval’s Identity.

Example 12.7.6. It follows from Parseval’s Indentity applied to f (x) = eα (x) =
ei2παx that

∞

∑
k=−∞

1

(k−α)2 =
π2

sin2 (πα)
(12.30)

for real non-integer α. Setting α = 1/2 gives

∞

∑
k=1

1
k2 =

π2

6
and

∞

∑
k=1

1

(2k−1)2 =
π2

8.
.
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Proof. With f = eα , the left-hand side of Parseval is ‖eα‖2 =
´ 1

0 |eα |
2 =
´ 1

0 1 = 1.
To calculate the right-hand side we begin by calculating êα . Fix an integer k, then

êα (k) =
ˆ 1

0
ei2παxe−i2πkxdx =

ˆ 1

0
ei2π(α−k)xdx

=
1

i2π (α− k)

(
e−i2π(α−k)−1

)

=
1

i2π (α− k)

(
e−i2πα −1

)

Hence,

|eα (k)|2 =
1− cos(2πα)
2π2 (α− k)2 =

sin2 (πα)
π2 (α− k)2 ,

since
∣
∣
∣e−i2π(α−k)−1

∣
∣
∣
2
= (cos(2π (α− k))−1)2 + (sin(2π (α− k)))2 . Using

Parseval we get

1 =
∞

∑
k=−∞

sin2 (πα)
π2 (α− k)2 ,

rearranging gives (12.30).
Setting α = 1/2 in (12.30) gives

2
∞

∑
k=1

1
(
k− 1

2

)2 =
∞

∑
k=−∞

1
(
k− 1

2

)2 = π2.

Hence,
∞

∑
k=1

1

(2k−1)2 =
1
4

∞

∑
k=1

1
(
k− 1

2

)2 =
π2

8.
.

Let a := ∑∞
k=1

1
k2 . Then

a− π2

8.
=

∞

∑
k=1

1
k2 −

∞

∑
k=1

1

(2k−1)2

=
∞

∑
k=1

1

(2k)2 =
1
4

∞

∑
k=1

1
k2

=
a
4
.

Solving for a, we get a = π2/6. �
Applying the Polarization Identity

4〈 f | g〉= ‖ f +g‖2−‖ f −g‖2 + i‖ f + ig‖2− i‖ f − ig‖2

to both sides of Parseval’s Identity leads to:
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Theorem 12.7.7 (Plancherel’s Formula). If f and g are integrable on [0,1], then

ˆ 1

0
f g =

∞

∑
−∞

f̂ (k)ĝ(k).

This is a special case of a result due to Michel Plancherel (16 January 1885, Bussy
to 4 March 1967, Zurich).

Exercise 12.7.8. Prove the Polarization Identity.

Exercise 12.7.9. Prove Plancherel’s Formula.

Problems

Problems for Sect. 12.1

1. Let f (x) := x on the interval [0,1]. Calculate f̂ (k).

2. Same as the previous problem, but for

f (x) :=

{
1 when 0 < x < 1/2

0 when 1/2 < x < 1
.

Problems for Sect. 12.2

1. State the triangle inequality and the Cauchy–Schwarz inequality in the case
of Cd .

2. If xk > 0 for all k and ∑∞
k=1 xk is convergent, then ∑∞

k=1 x2
k is convergent.

Problems for Sect. 12.3

1. Show that SN(a f +bg) = aSN f +bSNg for any integrable functions f ,g and any
constants a,b.

2. Calculate DN
(

1
2

)
and DN

(
1
4

)
.

Problems for Sect. 12.4

1. Suppose f is integrable and g is determined by (12.23). If f has a jump disconti-
nuity at x0, then g is not integrable.
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2. (Riemann Localization) If f is integrable on [0,1] and f (t) = 0 for all t in
(a,b), then SN f (t)→ 0 for all t ∈ (a,b).

3. If two continuous functions are equal except possibly at one point in an interval,
then they are equal everywhere on that interval.

4. Let f (x) :=

{
−1 for − 1

2 ≤ x < 0

1 for 0≤ x < 1
2

.

a. Find SN f (x).
b. Why does SN f not converge uniformly to f .
c. For which − 1

2 ≤ x < 1
2 does SN f (x) converge to f (x)?

Problems for Sect. 12.5

1. If ak → a as n→ ∞, then 1
N ∑N

k=1 ak → a as N → ∞.

2. If ak = (−1)k, then (ak) is divergent and the sequence
(

1
N ∑N

k=1 ak
)

is convergent.

3. Find aN,k such that σN f (x) = ∑N
k=−N aN,kei2πkx.

4. Show, if f is continuous and periodic, then f is uniformly continuous on R.

5. Show, if f is continuous and periodic, then f is bounded.

Problems for Sect. 12.6

1. Prove ({sin(k)}) is dense in [0,1], but not uniformly distributed in [0,1].

2.
({√

2
k
})

is not uniformly distributed in [0,1]. [Hint: Since
{√

2
k
}
= 0 when k

is even, this follows from the definition of uniform distribution.]

3. If α = 1+
√

5
2 , then

({
αk
})

is not uniformly distributed. [Hint: If β := 1−
√

5
2 and

fk := αk +β k, then f0 = 2, f1 = 1, and fk+2 = fk+1 + fk. In particular, fk is an
integer ≥ 2 for all k ≥ 2. Hence, α2k+1 = f2k+1 + |β |2k+1 implies

{
α2k+1

}
=

|β |2k+1 → 0 as k → ∞. And α2k = f2k−|β |2k implies
{
α2k
}
= 1−|β |2k → 1 as

k → ∞. Consequently, limN→∞
#{k∈N|k≤N and 1

3<{αk}< 2
3 }

N = 0.]

4. Replacing the closed intervals in the definition of uniformly distributed by open
intervals gives an equivalent concept.

5.
({√

k
})

is uniformly distributed in [0,1].
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6. Let γk :=
{√

k
}
. By uniform distribution there is a subsequence

(
γnk

)
of the

sequence (γk) such that γnk → 1. Construct such a subsequence.

7. Is γk :=
{

3
√

k
}

uniformly distributed?

8. For which x ∈ R is γk :=
{

x
√

k
}

uniformly distributed?

Problems for Sect. 12.7

1. Let f (x) := x on [0,1]. Calculate both sides of Parseval’s Identity.

2. Same as the previous problem, but with f replaced by

g(x) :=

{
0 when − 1

2 < x < 0

1 when 0 < x < 1
2

.

3. Calculate both sides of Plancherel’s Formula, if f (x) := x on [0,1] and

g(x) :=

{
0 when − 1

2 < x < 0

1 when 0 < x < 1
2

.

4. Let a be a complex number and let f ,g be bounded functions on [0,1] . Prove that
‖a f‖∞ = |a|‖ f‖∞ and ‖ f +g‖∞ ≤ ‖ f‖∞+‖g‖∞ .

5. Let fk, k ∈N, and f be bounded functions. Prove fk converges uniformly to f on
[0,1] iff ‖ f − fk‖∞ → 0 as k → ∞.

6. Let f be integrable.

a. Why is f̂ (k) = 1 for k ≥ 1 not possible?
b. Why is f̂ (k) = 1√

k
for k ≥ 1 not possible?

Solutions and Hints for the Exercises

Exercise 12.2.2.
´ 1

0 | f | = 0 implies
´ 1

0 | f g| = 0, since g is bounded. But
´ 1

0 | f | > 0

implies
´ 1

0 | f |
2 > 0. One way to see this is to use that, if ∑n

k=1 mkχ]xk−1,xk[
is a lower

step function for | f |, then ∑n
k=1 m2

kχ]xk−1,xk[ is a lower step function for | f |2.
Exercise 12.3.3 Since f has period one we may assume 0 ≤ a < 1. Since f has

period one, it follows by substitution that
´ a+1

1 f =
´ a

0 f .

Exercise 12.3.5 Evaluate the geometric series used to define DN .
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Exercise 12.4.2 Let ε > 0 be given. Let M be an upper bound for |g|. Pick 0< δ <
1/2 such that 4Mδ < ε/2. Then g is integrable on the interval I+ := [δ ,1/2] because
it is a product of two integrable functions this interval. Hence we can find upper and

lower step functions s+,S+ for g restricted to I+ such that
´ 1/2
δ S+−

´ 1/2
δ s+ < ε/4.

Similarly, we can find upper and lower step functions s−,S− for g restricted to I− :=

[−1/2,−δ ] such that
´ 1/2
δ S− −

´ 1/2
δ s− < ε/4. Let S0(t) = M and s0(t) = −M for

t in the interval I0 := [−δ ,δ ]. Combining S−, S0, and S+ we get an upper step
function S for g on [−1/2,1/2]. Similarly, combining s−, s0, and s+ we get a lower

step function s for g on [−1/2,1/2]. By construction
´ 1/2
−1/2 S−

´ 1/2
−1/2 s < ε .

Exercise 12.5.2 Since
´ 1/2
−1/2 Dn = 1 for all n≥ 1, this follows from the definition

of KN .

Exercise 12.5.4 Since t → sin(πt) is increasing on the interval [0,1], we have

KN(t)≤
1

N +1

(
1

sin(πt)

)2

≤ 1
N +1

(
1

sin(πδ )

)2

for δ ≤ |t| ≤ 1/2.

Exercise 12.5.6 Imitating the proof of the Approximate Identity Lemma.

Exercise 12.6.3 (12.26) implies (12.25) because any characteristic function is a
step function.

Since any step function is a linear combination of characteristic functions the
converse follows from theorems about linear combinations of limits.

Exercise 12.7.5 A consequence of the Pythagorean Theorem and Theorem 12.7.3.

Exercise 12.7.8 Expand the right-hand side of the Polarization Identity using
‖ f‖2 = 〈 f | f 〉 and equation (12.10).

Exercise 12.7.9 Apply the Polarization Identity and Parseval’s Identity.



Chapter 13
Topology

This chapter contains a brief introduction to point set topology. The main aim is
to extend some of the important results about continuous functions on a compact
intervals to continuous functions on a larger class of sets, the compact sets.

Let K := R or K = C = R2. In either case

|xy|= |x||y| for all x,y ∈ K

and the triangle inequality

|a+b| ≤ |a|+ |b| for all a,b ∈ K

holds. That is | · | is a norm on K. By the triangle inequality |(x− y)+ (y− z)| ≤
|x− y|+ |y− z|, equivalently,

|x− z| ≤ |x− y|+ |y− z| for all x,y,z ∈ K.

13.1 Open Sets

A subset D of K is open, if any point in D is the center of a ball contained in D,
that is

∀x ∈ D,∃r > 0,Br(x)⊆ D. (13.1)

Recall, Br(x) = {y ∈ K | |y− x| < r} and if K = R, then Br(x) =]x− r,x+ r[ is an
open interval. The use of the term “open” is consistent with our previous use of this
terminology in the sense that:

Example 13.1.1. An open ball is an open set.

Proof. (This is Exercise E.2.2.) An open ball is a set of the form D := Bs(y) for some
s > 0 and some y ∈ K. Let x ∈ Bs(y), then |x−y)< r, hence r := s−|x−y|> 0. We
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will show Br(x)⊆ Bs(y). Let z ∈ Br(x). Then

|z− y| ≤ |z− x|+ |x− y|
< r+ |x− y|
= s

hence z ∈ Bs(y). Thus Bs(y) is an open set. �
Theorem 13.1.2. The empty set is an open set, the whole space K is an open set,
any union of open sets is an open set, and any finite intersection of open sets is an
open set.

Proof. The first two claims are trivial. If Ai is a collection of open sets and x∈⋃i Ai,
then for some i0 we have x ∈ Ai0 . Since Ai0 is open, there is a ball B with center x,
such that B⊆ Ai0. But then

B⊆ Ai0 ⊆
⋃

i

Ai,

hence
⋃

i Ai is an open set.
Finally, if Ai, i = 1,2, . . . ,n are open sets and x ∈ ⋂n

i=1 Ai, then x ∈ Ai for all
i = 1,2, . . . ,n. Since each Ai is open, there are ri > 0, such that Bri(x) ⊆ Ai. Let
r := min{r1,r2, . . .rn} , then r = rk0 ≤ ri for some k0 and all i = 1,2, . . . ,n. Hence

Br(x) =
n⋂

i=1

Bri(x)⊆
n⋂

i=1

Ai.

Consequently, Br(x) is the required ball. �

Interior

The interior of A is ◦
A := {x ∈ A | ∃r > 0,Br(x)⊆ A}.

Clearly,
◦
A⊆ A. The reverse inclusion is the definition of an open set.

Proposition 13.1.3. If A is open, then
◦
A = A.

Proof. If A is open and x ∈ A, then Br(x) ⊆ A for some r > 0, by the definition of

an open set. Hence x ∈
◦
A. �

Exercise 13.1.4. The interior of an close ball Br(x) is the corresponding open ball
Br(r).

Exercise 13.1.5. The interior of a set is an open set. In symbols, for any subset A of

K,
◦
A is an open set.
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Open Sets and Continuity

Example 13.1.6. The open interval ]a,b[ is an open subset of R. The open interval
]a,b[ is not an open subset of C, because the set ]a,b[×{0}= {(x,0) | a < x < b} is
not an open subset of R2.

Example 13.1.7. If U is an open subset of R, then U×]−1,1[ is open in R2. Conse-
quently, O := {x+ iy | x ∈U,y ∈]−1,1[} is open in C and U = R∩O.

Definition 13.1.8. Let D be a subset of K. A subset A of D is open in D, if A= D∩O
for some open subset O of K, i.e., for some set O satisfying (13.1).

This definition makes the following theorem possible. Recall, f : D→C is continuous
at a ∈ D, means

∀ε > 0,∃δ > 0, f (D∩Bδ (x))⊆ Bε( f (a)),

and that f is continuous on D, if f is continuous at each point a in D.

Theorem 13.1.9. Let D be a subset of K and let f : D→ C. Then f is continuous on
D iff the pre-image f−1(U) is open in D, for any open subset U of C.

Proof. Suppose f is continuous on D. Let U be an open subset of C. Let a∈ f−1(U),
then f (a) is in U. Since U is open, there is a ε > 0, such that Bε( f (a)) ⊆ U.
Since f is continuous there is a δ = δ (a)> 0, such that f (D∩Bδ (a))⊆ Bε( f (a)).
Consequently, D∩ Bδ (a)(a) ⊆ f−1 (Bε( f (a))) ⊆ f−1 (U) . Taking the union over
a∈ f−1(U) leads to,

⋃
a∈ f−1(U)

(
D∩Bδ (a)(a)

)
⊆ f−1(U). The reverse inclusion fol-

lows from a ∈ D∩Bδ (a)(a). Thus

f−1(U) =
⋃

a∈ f−1(U)

(
D∩Bδ (a)(a)

)
= D∩

⋃

a∈ f−1(U)

Bδ (a)(a).

Since
⋃

a∈ f−1(U) Bδ (a)(a) is a union of open sets, it is an open set. Thus f−1(U) is
open in D.

Conversely, suppose the pre-image of any open set in C is open in D. Let x ∈ D.
We must show f is continuous at x. Let ε > 0. Then Bε( f (x)) is an open sub-
set of C, hence f−1 (Bε( f (x))) is open in D. Let V be an open set in K such that
f−1 (Bε( f (x))) = D∩V. Since x ∈ f−1 (Bε( f (x))) ⊆ V and V is open, there is a
δ > 0, such that Bδ (x)⊆V. Hence,

f (D∩Bδ (x))⊆ f (D∩V ) = f
(

f−1 (Bε( f (x)))
)
⊆ Bε( f (x)).

Thus f is continuous at x. �
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13.2 Closed Sets

Recall, a ∈ C is an accumulation point of D⊆ C, if

∀r > 0,∃x ∈ D,0 < |x−a|< r

that is, if
∀r > 0,(D∩Br(a))\{a} �= /0.

Let D′ be the set of accumulation points of D. We say D is a closed set, if D contain
all its accumulation points, that is, if D′ ⊆ D.

Example 13.2.1. Some simple examples of sets of accumulation points are :

1. If D = B1(0), then D′ = B1(0).
2. If D = N, then D′ = /0.
3. If D =

{
1
n | n ∈ N

}
, then D′ = {0}.

The following result establishes a correspondence between the open and the closed
subsets of K.

Theorem 13.2.2. D is closed iff C\D is open.

Proof. We must show D′ ⊆ D iff C \D is open. Suppose C \D is open. Let a ∈
C\D. We must show a is not an accumulation point of D. Since C\D is open and
a∈C\D there is an r > 0, such that Br(a)⊆C\D. For such an r > 0, D∩Br(a) = /0.
Consequently, a is not an accumulation point of D.

Conversely, suppose D′ ⊆D. Let a∈C\D. We must show Br(a)⊆C\D for some
r > 0. Since D contain all its accumulation points, the point a is not an accumulation
point of D. Consequently, for some r > 0,

(D∩Br(a))\{a}= /0.

For such an r, D∩Br(a) = /0, since a /∈ D. Thus Br(a)⊆ C\D. �
Theorem 13.2.3. The whole space K is a closed set, the empty set /0 is a closed set,
any intersection of closed sets is a closed set, and any finite union of closed sets is a
closed set.

Proof. Take complements in the corresponding theorem for open sets. �
Definition 13.2.4. A subset A of D is closed in D, if there is a closed subset K of K,
such that A = D∩K.

Exercise 13.2.5. Let A be a subset of D. Then A is closed in D iff D \A is open in
D.

Exercise 13.2.6. Let f : D → C. Then f is continuous on D iff f−1(K) is closed in
D for any closed subset K of C.
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Closure

The closure of a set is the union of the set and its accumulation points. Hence if D
is a set, then the closure of D is the set D := D∪D′.

Exercise 13.2.7. The closure of an open ball Br(x) is the corresponding closed ball
Br(x). So the notation used for the closed ball agrees with the notation used for the
closure of the open ball.

Exercise 13.2.8. If K is closed, then K = K.

Let D be a subset of C. A point a is a contact point of D, if ∀r > 0,D∩Br(a) �= /0.

Exercise 13.2.9. Let D be a subset of C. The closure of D is the set of contact points
of D.

Theorem 13.2.10. The closure of a set is a closed set.

Proof. Let a be a contact point of D. We must show a ∈ D, that is, we must show a
is a contact point of D. Let r > 0. Since r/2 > 0, and a is a contact point of D, there
is a b ∈D, such that |a−b|< r/2. Since r/2 > 0 and b is a contact point of D, there
is a c ∈ D, such that |b− c|< r/2. Hence,

|a− c| ≤ |a−b|+ |b− c|< r.

Consequently, a is a contact point of D, as we needed to show. �
Lemma 13.2.11. Let A be a closed set. The distance DA(x) from A to x is zero iff
x ∈ A.

Proof. If x ∈ A, then DA(x) = inf{|x− a| | a ∈ A} ≤ |x− x| = 0. Conversely, if
DA(x) = 0, then inf{|x−a| | a ∈ A}= 0, so x is an contact point of A. Hence, x ∈ A,
since A is closed. �
Proposition 13.2.12. If A is a closed and [a,b]∩A = /0, then there is a r > 0, such
that DA(x)≥ r for all x ∈ [a,b].

Proof. By Example 5.4.4, the function DA : [a,b]→R is continuous. By the Extreme
Value Theorem it has a smallest value DA(xmin). By the lemma DA(x) > 0 for all
x ∈ [a,b]. So r := DA(xmin)> 0, since xmin /∈ A and A is closed. �

13.3 Compact Sets

We established some useful results, for example, the Extreme Value Theorem, for
continuous functions defined on compact (i.e, closed and bounded) intervals. In this
section, we extend these results to all closed and bounded subsets of K.
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Covering Compactness

The notion of covering compactness is useful because it allows for simple proofs of
important properties of continuous functions.

Definition 13.3.1. Let F be a subset of K.

• A collection of sets (Ab)b∈B , is a cover of F, if F ⊆⋃b∈B Ab.
• A cover (Ab)b∈B is an open cover, if each Ab is an open set.
• If (Ab)b∈B is a cover of F, C ⊆ B, and (Ab)b∈C is a cover of F, then (Ab)b∈C , is a

subcover of (Ab)b∈B .
• The subcover (Ab)b∈C is a finite subcover, if C is finite.

Definition 13.3.2. A subset K of C is covering compact, if any open cover of a K
has a finite subcover.

It is customary to say compact in place of covering compact. We say covering com-
pact to distinguish the covering definition from some of the alternative definitions
of compactness, see Corollary 13.3.21.

Example 13.3.3. R is not covering compact.

Proof. (]−n,n[)n∈N is an open cover of R. We will show this cover does not have
a finite subcover. If C ⊂ N is finite, then C has a largest member max(C). Hence,⋃

n∈C]− n,n[=]−max(C),max(C)[. In particular, max(C) /∈ ⋃n∈C]− n,n[, hence⋃
n∈C]−n,n[ is not a cover of R. Consequently, R is not compact. �
A subset K of C is bounded, if there is an M, such that |k| ≤M, for all k ∈ K.

Exercise 13.3.4. If K is a covering compact subset of C, then K is bounded.

Example 13.3.5. ]0,1] is not covering compact.

Proof.
(]

1
n ,2
[)

n∈N
is an open cover of ]0,1]. We will show this cover does not have

a finite subcover. If C ⊂ N is finite, then C has a largest member max(C). Hence
⋃

n∈C

]
1
n ,2
[
=
]

1
max(C) ,2

[
. So 1

max(C) /∈⋃n∈C

]
1
n ,2
[ �

Exercise 13.3.6. If K is covering compact subset
of C, then K is a closed subset of C.

Proposition 13.3.7. A closed subset of a covering compact set is covering compact.

Proof. Let K be covering compact. Suppose F is a closed subset of K. Let (Uα)α∈A

be an open cover of F. Since F is closed, Ũ := R2 \F is open. Hence, the collection
Ũ ,Uα , α ∈ A is an open cover of K. Since K is covering compact, there is a finite set
B, such that Ũ , (Uα)α∈B is a subcover of K. The collection (Uα)α∈B is the sought
for finite subcover of F. �
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Compact Sets and Continuity

Covering compactness is a topological property in the sense that any continuous
image of a covering compact set is covering compact. Since covering compact sets
are bounded the following is a generalization of Theorem 5.3.3.

Theorem 13.3.8. If K is covering compact and f : K → C is continuous, then f (K)
is covering compact.

Proof. Let (Uα)α∈A be an open cover of f (K). Since f is continuous each f−1(Uα)
is open. Hence,

K ⊆ f−1 ( f (K))⊆ f−1

(
⋃

α∈A

Uα

)

=
⋃

α∈A

f−1 (Uα)

shows
(

f−1 (Uα)
)
α∈A is an open cover of K. Since K is covering compact, there is

a finite subcover
(

f−1 (Uα)
)
α∈B of K. Since

f (K)⊆ f

(
⋃

α∈B

f−1(Uα)

)

=
⋃

α∈B

f
(

f−1(Uα)
)
⊆
⋃

α∈B

Uα

(Uα)α∈B is a finite subcover of f (K) . Thus f (K) is compact. �
The following is a generalization of Theorem 5.3.5.

Corollary 13.3.9 (Extreme Value Theorem). If K is covering compact and f : K→
R is continuous, then there are xmin and xmax in K, such that

f (xmin)≤ f (x)≤ f (xmax) for all x ∈ K.

Proof. By the theorem f (K) is a covering compact subset of R. Since any covering
compact set is closed and bounded, f (K) is a closed and bounded subset of R. Since
f (K) is bounded, inf( f (K)) and sup( f (K)) are real numbers. Since f (K) is closed,
inf( f (K)),sup( f (K)) are in f (K), consequently,

inf( f (K)) = f (xmin) and inf( f (K)) = f (xmax)

for some xmin,xmax ∈ K. �
The following is a generalization of Corollary 5.1.10.

Corollary 13.3.10. Suppose A,B are covering compact sets and f : A→ B is a con-
tinuous bijection, then the inverse function f−1 : B→ A is continuous.

Proof. Let F be a closed subset of A. We must show ( f −1)−1 (F) is closed. But F is
compact, since F is a closed subset of a compact set. Hence, continuity of f implies
( f −1)−1 (F) = f (F) is compact, hence closed. �
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The following is a generalization of Theorem 5.4.6.

Theorem 13.3.11. If K is covering compact and f : K → C is continuous, then f is
uniformly continuous on K.

Proof. Let ε > 0 be given. Since f is continuous on K, and ε/2 > 0

∀x ∈ K,∃δx > 0,∀y ∈ K, f
(
Bδ (x)(x)

)
⊆ Bε/2( f (x)). (13.2)

Now
(
Bδ (x)/2(x)

)
x∈K

is an open cover of K. Since K is covering compact, there is

a finite subset A = {a1,a2, . . . ,an} of K such that
(
Bδ (ai)/2(ai)

)n
i=1

is a cover of K.
Let

δ := min

{
δ (a1)

2
,
δ (a2)

2
, . . . ,

δ (an)

2

}
.

It remains to show that δ works. Suppose x,y∈K and |x−y|< δ . Since the open
balls

(
Bδ (ai)/2(ai)

)n
i=1

form a cover of K, there is an i, such that x ∈ Bδ (ai)/2(ai). By
the triangle inequality

|y−ai| ≤ |y− x|+ |x−ai|< δ +
δ (ai)

2
≤ δ (ai).

Since both x and y are in Bδ (ai)(ai), we have

| f (x)− f (y)| ≤ | f (x)− f (ai)|+ | f (ai)− f (y)|< ε
2
+

ε
2
= ε .

by Eq. (13.2). Thus f is uniformly continuous. �

Heine–Borel Theorem

Since covering compactness allows us to prove important theorems as illustrated
above, we would like to have a simple description of this class of sets. Providing a
simple characterization of covering compact sets is the purpose of this subsection.

Lemma 13.3.12. A closed and bounded interval is covering compact.

Proof. Let (Uα)α∈A be some open cover of [a,b]. Let

S := {t ∈ [a,b] | [a, t] has a finite subcover}.

Since a is in [a,b], a is in some Uα , so a∈ S. Hence, S �= /0. Let c := sup(S). Since b is
an upper bound for S, c≤ b. Suppose c< b. Let Uα0 contain c. Let r > 0 be such that
Br(c) ⊆Uα0 . Let (Uα)α∈D be a finite subcover of

[
a,c− r

2

]
. Then (Uα)α∈D∪{α0}

is a finite subcover of
[
a,c+ r

2

]
. Contradicting the definition of c. Consequently,

c = b. The argument also shows c ∈ S. Hence, [a,b] has a finite subcover. �
The same argument shows that [a,b]×{y} is covering compact.
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Lemma 13.3.13. Any closed rectangle [a,b]× [c,d] is covering compact.

Proof. To simplify the notation we will show [0,1]2 is covering compact. Let
(Uα)α∈A be some open cover of [0,1]2. Let

S := {t ∈ [0,1] | [0,1]× [0, t] has a finite subcover}.

Then (Uα)α∈A is an open cover of [0,1]×{0}. By the previous lemma, there is a
finite subcover (Uα)α∈B of [0,1]×{0}. Hence, 0 ∈ S, so S �= /0. Let c := sup(S).
Since 1 is an upper bound for S, c ≤ 1. Suppose c < 1. By the previous lemma,
there is a finite subcover (Uα)α∈C of [0,1]×{c}.

Let Φ := R2 \⋃α∈C Uα . Recall, DΦ (y) := inf{|x− y| | x ∈Φ} is the distance
from the point y to the set Φ . The function f : [0,1]→ R determined by f (t) :=
DΦ ((t,c)) is continuous, by Example 5.4.4. Hence, f has a minimal value r by the
Extreme Value Theorem. Since Φ is closed and Φ ∩ ([0,1]×{c}) = /0, the minimal
value satisfies r > 0. If x ∈ Φ and y ∈ [0,1]×{c} , then |x− y| ≥ DΦ (y) ≥ r. In
particular, [0,1]× ]c− r,c+ r[⊆⋃α∈C Uα .

Let (Uα)α∈D be a finite subcover of [0,1]×
[
0,c− r

2

]
. Then (Uα)α∈D∪C is a

finite subcover of [0,1]×
[
0,c+ r

2

]
. Contradicting the definition of c. Consequently,

c = 1. The argument also shows c ∈ S. Hence, [0,1]× [0,1] has a finite subcover
(Fig. 13.1). �

Fig. 13.1 Illustrating proof of Lemma 13.3.13, by showing the square [0,1]2, the (thin) line Lc :=
[0,1]×{c}, the finite subcover Uα , α ∈ A of Lc (in the case where the open sets Uα are balls) the
inclusion [0,1]× ]c− r,c+ r[⊆⋃α∈C Uα , and the (thick) line Lc− r

2
= [0,1]×

{
c− r

2

}

We can now establish a useful characterization of covering compactness named
after Félix Édouard Justin Émile Borel (7 January 1871, Saint-Affrique to 3 Febru-
ary 1956, Paris) and Heinrich Eduard Heine (16 March 1821, Berlin to 21 October
1881, Halle).
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Theorem 13.3.14 (Heine–Borel). A subset of C is covering compact iff it is closed
and bounded.

Proof. We have already seen that, if K is covering compact, then K is closed and
bounded. So suppose K is closed and bounded. Since K is bounded, there is a square
[a,b]2 containing K. Since K is a closed subset of a covering compact set, K is
covering compact. �

Sequential Compactness

A subset K of C is sequentially compact, if any sequence of points in K has a sub-
sequence converging to a point in K.

Example 13.3.15. The set of reals R is not sequentially compact. For example, the
sequence an := n does not have a convergent subsequence. In fact, since an →∞, so
does any subsequence.

Exercise 13.3.16. Any sequentially compact set is bounded.

Example 13.3.17. The set ]0,1] is not sequentially compact. For example, the se-
quence an := 1

n does not have a subsequence converging to a point in ]0,1], because
the sequence converges to 0, any subsequence converges to 0. And 0 /∈]0,1].

Exercise 13.3.18. Any sequentially compact set contains all its accumulation points,
hence is closed.

Exercise 13.3.19. Let (xn) be a sequence of points in A. If xn → x0, then x0 is in the
closure of A.

Recall, we proved in Sect. 9.1 that any bounded sequence of complex numbers has
a convergent subsequence. We called this sequential compactness, or the Bolzano–
Weierstrass Theorem.

Theorem 13.3.20 (Bolzano–Weierstrass). Let K be a subset of C. The set K is
sequentially compact iff it is closed and bounded.

Proof. We saw above that a sequentially compact set is closed and bounded. So
suppose K is closed and bounded. Let (xn,yn) be a sequence of points in K. Since
K is bounded, the sequence (xn,yn) is bounded. Hence, it has a convergent subse-
quence (xin ,yin) by the result from Sect. 9.1 mentioned above. Let (x0,y0) be the
limit of this subsequence. Since K is closed, (x0,y0) is in K. Thus K is sequentially
compact. �
Corollary 13.3.21. A subset of the complex plane is covering compact iff it is se-
quentially compact iff it is closed and bounded.

In particular, an interval is a compact set iff it is closed and bounded. This explains
the terminology “compact interval”.
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13.4 Connected Sets

We will discuss pathwise connected sets. This allows us to show a space filling
curve cannot be one-toone. We will not discuss the related, but different notion of
connectedness, of topologically connected sets (Fig. 13.2) .

A subset D⊆ C is pathwise connected, if given any two points a,b ∈D there is a
continuous function φ : [0,1]→ D, such that φ(0) = a and φ(1) = b. The function
φ is a path in D connecting a and b.

Fig. 13.2 A region D and two points in the region connected by a path in the region

Exercise 13.4.1. Let D be a subset of R. The set D is pathwise connected iff D is
an interval.

Exercise 13.4.2. The square [0,1]2 is pathwise connected.

Theorem 13.4.3 (Netto’s Theorem). No function f : [0,1]→ [0,1]2 is 1-1, onto,
and continuous.

Proof. Suppose f : [0,1]→ [0,1]2 is 1-1, onto and continuous. Since f is continuous
and [0,1] is compact, the inverse function g = f−1 is continuous. Let x0 = f (1/2).
Then g([0,1]2 \{x0}) is pathwise connected, since g is continuous and [0,1]2 \{x0}
is pathwise connected. But g([0,1]2 \{x0}) = [0,1/2)∪(1/2,1] is not pathwise con-
nected. �
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Problems

Problems for Sect. 13.1

Infinite intersections of open sets need not be open sets:

1. Suppose K = R. Prove that
⋂∞

n=1

]
0,1+ 1

n

[
is an intersection of open sets that

is not an open set.

2. Construct a sequence An of open sets in R2, such that
⋂∞

n=1 An is not an open
subset of R2.

3. The triangle {(x,y) ∈ R2 | x > 0,y > 0,x+ y < 1} is an open set in R2.

4. Show that
⋂∞

n=1 B1+ 1
n
(x) = B1(x).

5. The set R\
{

1
n | n ∈ N

}
is not an open subset of R, because any interval of the

form Br(0) =]− r,r[ will contain all 1
n with n > 1

r .

6. Show the set R\
({

1
n | n ∈ N

}
∪{0}

)
is an open subset of R.

7. If C is the Cantor set, then [0,1]\C is an open subset of R.

8. If C is the Cantor set, then
◦
C = /0.

9. If A and B are open subsets of the real line R, then A×B is an open subset of
the plane R2.

Problems for Sect. 13.2

1. If A and B are closed subsets of the real line R, then A×B is an closed subset
of the plane R2.

2. The Cantor set is a closed subset of R.

3. Find a sequence of closed sets Kn, such that
⋃∞

n=1 Kn is not a closed set.

4. Find a sequence of closed sets Kn, such that
⋃∞

n=1 Kn is an open set.

5. Establish the following:
(i) Q = R
(ii) Q×Q = R×R.

6. The closure of the open ball Br(x) is the closed ball Br(x).

7. If C is the Cantor set, then R\C = R.

8. For any sets A,B we have A∪B = A∪B.

9. For any sets A,B we have A∩B⊆ A∩B.
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10. If A := Q and B := R\Q, then A∩B = /0 and A∩B = R.

The boundary of the set D is the set ∂D := D\
◦
D.

11. ∂ [a,b] = {a,b}.
12. ∂Br(a) = {x | |x−a|= r}.
13. If C is the Cantor set, then ∂C =C.

14. If C is the Cantor set, then ∂ (R\C) =C.

Problems for Sect. 13.3

1. Find an open cover of [0,1]∩Q that does not have a finite subcover.

2. Give an example of an increasing sequence (an) such that the set {an | n ∈ N}
is compact.

3. If an < an+1 for all n, then the set {an | n ∈ N} is not compact.

4. Let (zn) be a convergent sequence with limit z̃. The set {zn | n ∈ N} is compact
iff zn = z̃ for some n.

5. Use the definition of covering compactness to show that if A and B are covering
compact, then the union of A and B is also covering compact.

Problems for Sect. 13.4

1. Suppose f : A → B is continuous. If D is a pathwise connected subset of A,
then f (D) is a pathwise connected subset of B.

2. Suppose f : A → R is continuous and A is pathwise connected. Let a,b be
points in A, such that f (a)< f (b) . If f (a)< k < f (b) , show there is a c in A, such
that f (c) = k.

3. Let I be an interval and suppose f : I → R is differentiable. Let

D :=
{

f ′(x) | x ∈ I
}

and

C :=

{
f (b)− f (a)

b−a
| a,b ∈ I,a < b

}
.

(a) Prove C ⊆ D⊆C.
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(b) Prove C is an interval. [Hint: One way is to prove C is pathwise connected.
To this end, note for x,y in I, the function ϕx,y(t) := (1− t)x+ ty determines a path
in I beginning at ϕx,y(0) = x and ending at ϕx,y(1) = y. Show

ψ(t) :=
f
(
ϕb,d(t)

)
− f (ϕa,c(t))

ϕb,d(t)−ϕa,c(t)
,0≤ t ≤ 1

is a path in C connecting f (b)− f (a)
b−a to f (d)− f (c)

d−c for all a < b and all c < d in I.]

Solutions and Hints for the Exercises

Exercise 13.1.4. By Example 13.1.1 Br(x) is in the interior of the closed ball Br(x).
If |x− y|= r and s > 0, then Bs(y) is not a subset of Br(x).

Exercise 13.1.5. Let x ∈
◦
A. Pick r > 0 such that Br(x) ⊆ A. Let y ∈ Br(x). For

some s > 0, Bs(y)⊆ Br(x). Hence, y ∈
◦
A.

Exercise 13.2.5. If A is closed in D, then A=D∩K for some closed set K. Hence,
D\A = D\ (D∩K) = D∩ (C\K). The converse is similar.

Exercise 13.2.6. By Exercise 13.2.5 f−1(K) is closed in D iff C \ f−1(K) =
f−1(C\K) is open in D.

Exercise 13.2.7. If |x−y|= r then Bs(y)∩Br(x) �= /0. Hence, y is an accumulation
point of Br(x).

Exercise 13.2.8. If K is closed, then K′ ⊆ K. Hence K∪K′ = K.

Exercise 13.2.9. Let K̂ be the set of contact points of K. Any point in K is a
contact point of K and any accumulation point of K is a contact point of K, hence
K ⊆ K̂. Conversely, if x /∈ K is a contact point of K, then x is an accumulation point
of K. Consequently, K̂ ⊆ K.

Exercise 13.3.4. If K is not bounded, then (B1(k))k∈K is an open cover without a
finite subcover.

Exercise 13.3.6. If K is not closed, then K has an accumulation point a that is not
in K. Let A0 be the complement of the closed ball B1/2 (a) and let An = B1/n(a) for
n ∈ N. Then (An)n∈N0

is an open cover of K without a finite subcover.

Exercise 13.3.16. Let x1 ∈ K, x2 ∈ K with |x2| > 1+ |x1|, x3 ∈ K with |x3| >
1+ |x2|, and so on. Then |xk| → ∞. Hence (xk) is not convergent.

Exercise 13.3.18. Suppose K is sequentially compact and a is an accumulation
point of K. For each n, let xn ∈ B1/n(a)∩ (K \{a}) . Then xn → a. Hence, any sub-
sequence of (xn) converges to a. Thus a ∈ K.

Exercise 13.3.19. By definition of convergence, x0 is a contact point of A.
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Exercise 13.4.1. =⇒ is a consequence of the Intermediate Value Theorem and
the Interval Theorem.⇐= Suppose D is an interval and a < b are in D. Then f (t) :=
a+ t(b−a) is the required path.

Exercise 13.4.2. If (a,b) and (α,β ) are in [0,1]2, then f (t) := (a,b) + t(α −
a,β −b) is the required path.



Appendix A
Logic and Set Theory

This chapter serves to introduce notation and notions from logic and set theory.
Many of the details are left as exercises for the reader. Hopefully, the reader is
already familiar with most of this material. We will use this material in the body of
the text, usually without calling attention to the details.

A.1 Logic

In the following P,Q,R are statements, that is, sentences that either are true or false.

A.1.1 The Connective “or”

P∨Q means at least one of P and Q is true. We say P or Q.

A.1.2 The Connective “and”

P∧Q means both P and Q are true. We say P and Q.

A.1.3 Implication

P =⇒ Q means “if P is true, then Q is true” or “given P is true, we can conclude
Q is true”. Often this is abbreviated “if P, then Q”. We say P implies Q. Clearly, the
only way P =⇒ Q can be false, is when P is true and Q is false.

Implication is the fundamental form of a mathematical claim.
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A.1.4 Bi-implication

P ⇐⇒ Q means P =⇒ Q and Q =⇒ P. When P ⇐⇒ Q we say P and Q are
equivalent and will sometimes write P if and only if Q, or more briefly P iff Q.

A.1.5 Quantifiers

Most “interesting” statements depend on one or more variables, e.g., P(x),P(x,y), . . .
They may be true for some values of the variables and false for others, usually this
state of affairs is dealt with using quantifiers. There are two quantifiers, the universal
quantifier ∀ and the existential quantifier ∃.

A.1.5.1 All

∀ is shorthand for statements like “for all” and “for each”.

∀x,P(x) means: for all x,P(x) is true

A.1.5.2 Some

∃ is shorthand for statements like “there is”, “for some”, and “there exists”.

∃x,P(x) means: P(x) is true for at least one x

A typical statement in this book is of the form: “ f is continuous at x”, which in the
notation introduced above is written as

∀ε > 0,∃δ > 0,∀y, |x− y|< δ =⇒ | f (x)− f (y)|< ε .

A.1.6 Negation

¬P is shorthand for P is false. This may take the form of crossing out a binary
operator, for example, x �= y means ¬(x = y).

Some useful formulas involving negation are:

[¬(P∨Q)] ⇐⇒ [(¬P)∧ (¬Q)]

[¬(∀x,P(x))] ⇐⇒ [∃x,¬P(x)]

[P =⇒ Q] ⇐⇒ [(¬Q) =⇒ (¬P)]

[¬(P =⇒ Q)] ⇐⇒ [(¬P)∧Q]
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[P =⇒ Q] ⇐⇒ [P∨ (¬Q)]

The third formula is the foundation for “proof by contraposition” and the fourth for
“proof by contradiction”. In a proof by contraction we assume that P is false and Q is
true and then deduces some contradiction, i.e, we show [(¬P)∧Q] =⇒ [R∧ (¬R)] ,
where R is some statement. Since R is false, the only way [(¬P)∧Q] =⇒ [R∧ (¬R)]
can hold is if [(¬P)∧Q] is false, hence by the fourth formula P =⇒ Q is true.

A.2 Sets of Numbers

The symbol “a := b” is used to indicate that b has already been constructed and that
we introduce the notation a to equal b.

Set notation Name

N := {1,2,3, . . .} Natural numbers
N0 := {0,1,2, . . .} Natural numbers
Z := {. . . ,−2,−1,0,1,2, . . .} Integers

Q :=
{

p
q | p ∈ Z,q ∈ N

}
Rational numbers

R := {all infinite decimals} Real numbers
C := {x+ iy | x,y ∈ R} Complex numbers

A closed interval is a set of the form

[a,b] := {x ∈ R | a≤ x≤ b},
[a,∞[ := {x ∈ R | a≤ x}= {x ∈ R | a≤ x < ∞},

]−∞,b] := {x ∈ R | x≤ b}= {x ∈ R | −∞< x≤ b}, or

]−∞,∞[ := {x ∈ R | −∞< x < ∞}= R.

Where a ≤ b are real numbers. Intervals of the form [a,b] are important enough to
have their own terminology, such an interval is called a compact interval. An open
interval is a set of the form

]a,b[ := {x ∈ R | a < x < b},
]a,∞[ := {x ∈ R | a < x}= {x ∈ R | a < x < ∞},

]−∞,b[ := {x ∈ R | x < b}= {x ∈ R | −∞< x < b}, or

]−∞,∞[ := {x ∈ R | −∞< x < ∞}= R.

Where a < b are real numbers. A half-open interval is a set of the form

]a,b] := {x ∈ R | a < x≤ b} or

[a,b[ := {x ∈ R | a≤ x < b}.
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Where a < b are real numbers. An interval is a subset of R that is either an open, a
closed, or a half-open interval.

A.3 Set Theory

A set is a collection of object, usually called elements. We will write x ∈ A, if the
object x is in the set A. and x /∈ A, if the object x is not in the set A. The set without
any elements is the empty set /0, mostly we do our best to ignore this set.

A.3.1 Subset

A ⊆ B means x ∈ A =⇒ x ∈ B, that is any element in A is an element of B. A = B
means A ⊆ B and B ⊆ A, that is A and B have the same elements. A ⊂ B, means
A⊆ B and A �= B. Finally, A⊇ B means B⊆ A.

A.3.2 Union

A∪B is the union of A and B.

A∪B := {x | x ∈ A∨ x ∈ B}

A.3.3 Intersection

A∩B is the intersection of A and B.

A∩B := {x | x ∈ A∨ x ∈ B}

A.3.4 Set Difference

A\B is the difference of A and B.

A\B := {a ∈ A | a /∈ B}.

A\B is also called the complement of B in A.
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A.3.5 General Unions and Intersections

Let I be a set and suppose for each i ∈ I, Ai is some set.

⋃

i∈I

Ai := {x | ∃i ∈ I,x ∈ Ai} and
⋂

i∈I

Ai := {x | ∀i ∈ I,x ∈ Ai}.

Some frequently occurring special cases have their own notation, for example,

∞⋃

n=1

An :=
⋃

n∈N

An and
∞⋂

n=1

An :=
⋂

n∈N

An.

By De Morgan’s Laws

B\
(
⋃

i∈I

Ai

)

=
⋂

i∈I

(B\Ai) and B\
(
⋂

i∈I

Ai

)

=
⋃

i∈I

(B\Ai) .

A.4 Functions

The notation f : A → B means that f is a function defined on the set A with values
in the set B, that is a unique element of B is assigned to each element of A by f . If
b is the element of B assigned to a ∈ A we write f (a) = b, and we say that b is the
image of a under f .

A.4.1

If f : A→ B, we say f is onto or surjective, if each element of B is assigned to some
element of A, that is

∀b ∈ B,∃a ∈ A, f (a) = b.

A.4.2

If f : A → B, we say f is one-to-one or 1− 1, or injective, if each element in B is
assigned to at most one element of A, that is

∀a1,a2 ∈ A, f (a1) = f (a2) =⇒ a1 = a2.
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A.4.3

If f : A→ B, we say f is a one-to-one correspondence or bijective if f is both onto
and 1− 1. If f is bijective that any b ∈ B is assigned to exactly one a ∈ A by f ,
given b the a that is assigned to b by f is denoted by f−1(b) := a, this determines a
function f−1 : B→ A. f−1 is called the inverse function of f .

A.4.4 Set Functions

A.4.4.1 Image

If C ⊆ A, then
f (C) := { f (c) | c ∈C}

is called the image of C under f . The range of f is f (A). If f (A) = B, then f is onto.
If f is one-to-one, we can consider the inverse function f −1 : f (A)→ A.

A.4.4.2 Pre-image

If D⊆ B, then
f−1(D) := {a ∈ A | f (a) ∈ D}

is called the pre-image of D under f . Note, this does not require f−1 to be a function.
If for each b ∈ B, the set f−1({b}) contains at most one element, then f is one-to-
one.

The use of the f−1 for inverse function and for pre-image are distinguished by
the argument in the first case being an element and in the second case a subset.

The text assumes the reader knows the following results.

Exercise A.4.1. Prove

f−1

(
⋂

i

Bi

)

=
⋂

i

f−1 (Bi)

for any sets A,B, any f : A→ B, and any subsets Bi of B.

Exercise A.4.2. Prove

f−1

(
⋃

i

Bi

)

=
⋃

i

f−1 (Bi)

for any sets A,B, any f : A→ B, and any subsets Bi of B.

Exercise A.4.3. Let f : A→ B. Prove

f (A1∪A2) = f (A1)∪ f (A2)

for any A1,A2 ⊆ A.
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Exercise A.4.4. Let f : A→ B. Prove

f (A1∩A2)⊆ f (A1)∩ f (A2)

for any subsets A1,A2 of A.

Exercise A.4.5. Let f : A→ B. Prove f is one-to-one iff

f (A1∩A2)⊇ f (A1)∩ f (A2)

for any subsets A1,A2 of A?

Exercise A.4.6. If f : A→ B and C ⊆ A, then C ⊆ f−1 ( f (C)) .

Exercise A.4.7. Let f : A→ B. Prove f is 1−1 iff

∀C ⊆ A, f−1 ( f (C))⊆C.

Exercise A.4.8. If f : A→ B and D⊆ B, then f
(

f−1 (D)
)
⊆ D.

Exercise A.4.9. Let f : A→ B. Prove f is onto iff

D⊆ f
(

f−1 (D)
)

for all D⊆ B.



Appendix B
The Principle of Induction

We assume the reader is familiar with proofs by induction. As applications of induc-
tion we establish the Fundamental Theorem of Arithmetic, that there are infinitely
many primes, and the Binomial Theorem.

B.1 Formulations of Induction

Induction is a fundamental property of the set of natural numbers. There are three
standard formulations. Let A⊆ N.

• Weak induction: If (i) 1 ∈ A and (ii) ∀n ∈ N,n ∈ A =⇒ n+1 ∈ A, then A = N.
• Strong induction: If ∀n ∈ N0,{1,2, . . . ,n} ⊆ A =⇒ n+1 ∈ A, then A = N. [If

n = 0, then [1,2, . . . ,n}= /0.]
• Well ordering: If A �= /0, then A has a smallest element.

It is well known that these formulations are in some sense equivalent.
The following provides examples of proofs by induction.
A number p ∈ N is prime, if p > 1 and for all k,m ∈ N, p = km =⇒ k = 1 or

m = 1.

Theorem B.1.1 (Fundamental Theorem of Arithmetic). Any positive integer is a
product of primes. That is given any n ∈ N there exists m j ∈ N0, such that

n = pm1
1 pm2

2 pm3
3 · · ·

where p1 < p2 < · · · is the primes.

Proof. Suppose the claim is false. Let n be the smallest positive integer that is not
a product of primes. The product is = 1 if all m j = 0 and any prime is obtained by
setting one m j = 1 and all other m j = 0. So n is not 1 and n is not a prime. Hence,
n = n1n2, where n1 > 1 and n2 > 1. If both n1 and n2 are products of primes, then n
is a product of primes, so at least one of n1 and n2 is not a products of primes. Since,
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n1 < n and n2 < n this contradicts that n is the smallest positive integer that is not a
product of primes. �
Exercise B.1.2. The exponents m j are unique.

As an application of the Fundamental Theorem of Arithmetic let me prove:

Theorem B.1.3. The are infinitely many primes.

Proof. The number p= 2 is prime, so the set of primes is not empty. Let q1,q2, . . . ,qn

be some finite list of primes. Let a := q1q2 · · ·qn be the product of the primes
q1,q2, . . . ,qn. Let b := a+ 1. By the Fundamental Theorem of Arithmetic, b is a
product of primes. Let p̃ be one of these primes. Then b = p̃m for some integer
m≥ 1. Suppose p̃ = qk for some k ∈ {1,2, . . . ,n} . Then

1 = b−a = p̃

(
m− a

qk

)
.

Since p̃ > 1 and m− a
qk

is an integer, this is a contradiction. Hence p̃ �= qk for all
k = 1,2, . . . ,n. Thus, no finite list contains all the primes. �

This proof is essentially due to Euclid. Euclid worked in Alexandria during the
reign of Ptolemy I (323–283 BC).

B.2 Binomial Theorem

The factorial function is defined inductively by the basis clause: 0! = 1 and the
inductive clause for n ∈N0 let (n+1)! = (n!)(n+1). Hence, n! = 1 ·2 · · ·(n−1) ·n.
For n,k ∈ N0 with n≥ k let

(
n
k

)
=

n!
k!(n− k)!

.

These numbers are called the binomial coefficients.

Exercise B.2.1. Let n≥ k ∈ N with n≥ k. Prove
(

n
k−1

)(
n
k

)
=

(
n+1

k

)
.

[Hint: This is a simple consequence of the inductive clause: ( j+ 1)! = ( j!)( j+ 1)
in the definition of factorials and algebra.]

Theorem B.2.2 (Binomial Theorem). For any complex numbers x,y and any n ∈
N0 we have

(x+ y)n =
n

∑
k=0

(
n
k

)
xkyn−k.
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Exercise B.2.3. Use induction to prove the Binomial Theorem. [Hint: The previous
exercise is one step in this proof.]

Exercise B.2.4. Why are the binomial coefficient integers?



Appendix C
The Field Axioms

C.1 Statement of the Axioms

A field is a set F together with two functions a : F×F → Fand m : F×F → F,
usually called addition and multiplication and written as

x+ y = a(x,y)

xy = x · y = m(x,y)

satisfying the following axioms:
Axioms for addition:

∀x,y,z ∈ F,x+(y+ z) = (x+ y)+ z associativity

∀x,y ∈ F,x+ y = y+ x commutativity

∃0 ∈ F,∀x ∈ F,x+0 = x existence of identity

∀x ∈ F,∃− x ∈ F,x+(−x) = 0 existence of inverse

Remark C.1.1. An ordered pair (F,+) consisting of a set F and a function (x,y)→
x+y mapping F×F→ F satisfying the axioms for addition is called a commutative
group. Such a pair is also called an abelian group after Niels Henrik Abel (5 August
1802 Finnoy to 6 April 1829 Froland).

Axioms for multiplication:

∀x,y,z ∈ F,x · (y · z) = (x · y) · z associativity

∀x,y ∈ F,x · y = y · x commutativity

∃1 ∈ F,∀x ∈ F,x ·1 = x existence of identity

∀x ∈ F\{0} ,∃x−1 ∈ F,x ·
(
x−1)= 1 existence of inverse
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Axioms for the interaction of addition and multiplication:

1 �= 0 nontriviality

∀x,y,z ∈ F,x · (y+ z) = (x · y)+(x · z) distributivity

The set of rational numbers, the set of real numbers, and the set of complex num-
bers are examples of fields when equipped with the usual notions of addition and
multiplication. But there are other examples of fields. For example, if p is a prime,
then

Zp := {0,1, . . . , p−1}
equipped with addition and multiplication modulo p is a field. We will not prove
this. For small values of p it can be verified by checking all cases. For p = 3,5 the
addition and multiplication tables for Zp are given in Tables C.1 and C.2.

+ 0 1 2
0
1
2

0 1 2
1 2 0
2 0 1

· 0 1 2
0
1
2

0 0 0
0 1 2
0 2 1

Table C.1 The addition table and the multiplication table in Z3

+ 0 1 2 3 4
0
1
2
3
4

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

· 0 1 2 3 4
0
1
2
3
4

0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

Table C.2 The addition table and the multiplication table in Z5

C.2 Some Consequences of the Axioms

It is usual to define subtraction as x− y := x+(−y) and division as x
y := x

(
y−1
)
.

The point of the field axioms is that arithmetic works in any field. To verify this
requires some work. How one can do this is indicated below.

Theorem C.2.1 (Uniqueness of Identity). (a) If x+ y = x and x+ z = x for all x,
then y = z. (b) If x · y = x and x · z = x for all x, then y = z.

Proof. For (a):
z = z+ y = y+ z = y.
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Where we used x+ y = x with x = z, commutativity of addition, and x+ z = x with
x = y.

Case (b) is similar. �
Theorem C.2.2 (Uniqueness of Inverse). (a) If x+y = 0 and x+ z = 0, then y = z.
(b) If for some x �= 0, x · y = x and x · z = x, then y = z.

Proof. For (a):

y = 0+ y = (x+ z)+ y = x+(z+ y) = (z+ y)+ x = z+(y+ x) = z+0 = z.

Case (b) is similar. �
Theorem C.2.3. For all x we have x ·0 = 0.

Proof. As for the previous theorems, this is a simple calculation:

x ·0 = x · (0+0) = (x ·0)+(x ·0) .

Adding −(x ·0) to both sides and simplifying gives 0 = x ·0. �
Theorem C.2.4. The equality (−x)y =−(xy) holds for all x,y.

Proof. Again a simple calculation suffices:

x · y+(−x) · y = (x+(−x)) · y = 0 · y = 0.

Since x · y has a unique additive inverse, the proof is complete. �
Exercise C.2.5. Show −(x+ y) = (−x)+(−y) for all x,y.

Exercise C.2.6. Show −0 = 0 and 1−1 = 1.

Exercise C.2.7. (a) For any x, −(−x) = x. (b) If x �= 0, then
(
x−1
)−1

= x.

Exercise C.2.8. If x · y = 0, then x = 0 or y = 0.

Corollary C.2.9. If x �= 0 and y �= 0, then x · y �= 0. In particular, (F\{0F} , ·) is an
abelian group.

Recall, x
y := x ·

(
y−1
)
, if y �= 0. Setting x = 1 gives 1

y = y−1.

Exercise C.2.10. Show x
1 = x, for all x.

Exercise C.2.11. Show 1
x ·

1
y = 1

x·y for all x,y �= 0.

Exercise C.2.12. Show xy
xz =

y
z for all x,y,z such that xz �= 0.

Exercise C.2.13. Show 1
x +

1
y = x+y

xy for all x,y �= 0.
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Below, we will write 0F for the additive identity in F and 1F for the multiplicative
identity in F to distinguish them from the natural numbers 0 and 1.

For x∈ F inductively define a map n→ xn mapping N0 →F by setting by x0 = 1F

and xn+1 = xn · x.
Exercise C.2.14. Prove that xm · xn = xm+n for all m,n ∈ N0.

Define a map n→ nF mapping N0 → F inductively by

0→ 0F

n+1→ nF+1F.

For example, 3F = 1F+1F+1F.

Exercise C.2.15 (Binomial Theorem). If a,b ∈ F, then

(a+b)n =
n

∑
k=0

(
n
k

)

F

akbn−k

for any n ∈N0. Here

(
n
k

)
= n!

k!(n−k)! is the usual binomial coefficient, in particular,
(

n
k

)
is in N.

If ak ∈ F for k = 0,1, . . . ,n we can consider the polynomial (called a polynomial
over F)

p(x) :=
n

∑
k=0

akxk.

The collection of these polynomials is usually denoted by F [x] .

Exercise C.2.16. Let p∈ F [x] and r ∈ F. Show p(r) = 0F iff there is a q∈ F [x] such
that p(x)= (x− r)q(x) . [Hint: See the proofs of Lemma 1.4.12 and Lemma 1.4.13.]

One cannot construct square roots using a finite number of arithmetic operations.
Hence, we cannot expect every member of a field to have a square root. For exam-
ple,

√
2 is not rational, hence 2 does not have a square root in the field of rational

numbers.

Example C.2.17. In Z3 the squares are 02 = 0, 12 = 1, and 22 = 1. Hence, both 1
and 2 =−1 are square roots of 1 and 2 does not have a square root.

In Z5 the squares are 02 = 0, 12 = 1, 22 = 4, 32 = 4, and 42 = 1. Hence, both
1 and 4 = −1 are square roots of 1, both 2 and 3 = −2 are square roots of 4, and
neither 2 nor 3 have a square root.

In Z7 the squares are 02 = 0, 12 = 1, 22 = 4, 32 = 2, 42 = 2, 52 = 4, and 62 = 1.
Hence, both 1 and 6 =−1 are square roots of 1, both 2 and 5 =−2 are square roots
of 4, both 3 and 4 =−3 are square roots of 2, and none of 3, 5, and 6 have a square
root.

Hence,
√

2 exists in Zp for some primes p and not for other primes p.



Appendix D
Working with Inequalities

The field axioms allow us to manipulate equalities in the usual ways, for example, to
“complete the square”. Some notable exceptions are, they do not allow us to extract
roots, or calculate values of the transcendental functions sin, cos, log, etc. We do
not use these operations/functions until we have established their existence. For our
development of roots see Sect. 3.5, for logarithms and exponentials see Chap.8, and
for trigonometric functions see Sect. 11.2.

Inequalities form the basis for most proofs in analysis. Thus, it is important to
know how to work correctly with inequalities. In this chapter, we will develop the
basic properties of inequalities based on two axioms: (i) trichotomy and (ii) positive
closure.

D.1 Inequalities

The universe in this section is a set satisfying the field axioms. In particular, this
could be the set of all real numbers or the set of all rational numbers. We will also
assume that there is an order, that is a notion of positivity, on this set satisfying the
axioms of trichotomy and positive closure. Hence we are studying ordered fields.
Not all fields admit an order that turn them into an ordered field. We will see below
that the complex numbers do not admit such an order and neither does the finite
fields Zp.

Axioms forInequality:

Trichotomy For any a exactly one of 0 < a, 0 <−a, or 0 = a is true.
Positive Closure If 0 < a and 0 < b, then 0 < a+b and 0 < ab.
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Trichotomy provided a way to compare any number to zero. The following defini-
tion extends this to a comparison between any two numbers.

Definition D.1.1. Given numbers a and b

1. a < b means 0 < b−a
2. a≤ b means a < b or a = b
3. b > a means a < b
4. b≥ a means a≤ b

Every property of inequality must be proven using the above axioms for inequality
and this definition.

Theorem D.1.2. a < 0 iff 0 <−a

Proof. If a < 0, then 0 < 0− a. But 0− a = −a, so 0 < −a. Conversely, suppose
0 <−a. Using −a = 0−a, this means 0 < 0−a. Hence a < 0. �
Exercise D.1.3. Prove 0 < 1 and −1 < 0.

Let N := {1,2,3, . . .} be the set of natural numbers, N0 := {0,1,2, . . .} be the set
of natural numbers including zero, and let Z := {. . . ,−1,0,1, . . .} be the set of all
integers.

Theorem D.1.4. If n ∈ N, then 0 < n.

Proof. Since 2 = 1+ 1 and 0 < 1, then 0 < 2 by positive closure. Since 3 = 2+ 1
and 0 < 1 and 0 < 2, then 0 < 3 by positive closure. It follows by induction and
positive closure that for any n ∈ N, 0 < n. In fact, suppose 0 < n. Since 0 < 1 and
0 < n, then 0 < n+1 by positive closure. �
Exercise D.1.5 (Extended Trichotomy). For any a and b exactly one of

a < b,b < a, or a = b

is true.

Exercise D.1.6. a < b iff −b <−a.

Exercise D.1.7 (Transitivity). If a < b and b < c, then a < c.

It is customary to interpret a < b to mean that a is to the left of b, or equivalently, b
is to the right of a. Transitivity makes this reasonable, see Fig. D.1.

Fig. D.1 If a is to the left of b and b is to the left of c, then a is to the left of c

Definition D.1.8. a < b < c means that a < b and b < c.

So transitivity can be written as a < b < c =⇒ a < c.
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Inequalities Involving Addition

Exercise D.1.9. For any a,b, and c. If a < b, then a+ c < b+ c.

Exercise D.1.10. If a < b and c < d, then a+ c < b+d.

Inequalities Involving Multiplication

Exercise D.1.11. If 0 < a and n ∈ N, then 0 < an.

Exercise D.1.12. If a < b and 0 < c, then ac < bc.

A converse of Exercise D.1.12 is:

Exercise D.1.13. If a < b and ac < bc, then 0 < c.

Exercise D.1.14. If a �= 0, then a > 0 iff 1
a > 0.

Exercise D.1.15. For any a �= 0, 0 < a2.

Since the imaginary unit i, satisfies i2 = −1 < 0, this shows it is not possible to
define 0 < a on C, in such a way that both trichotomy and positive closure holds.

Exercise D.1.16. 0 < a < b ⇒ a2 < b2.

Exercise D.1.17. a < b � a2 < b2.

Exercise D.1.18. If 0 < a, 0 < b, and a2 < b2, then a < b.

The field axioms do not imply the existence of square roots. In fact, the field axioms
are satisfied by the set of all rational numbers, but some roots are not rational, see
Sect. 3.5. Hence statements involving, for example, a1/n, make the implicit assump-
tion that a1/n does exist.

If 0 < x, then
√

x denotes a number > 0, such that (
√

x)2
= x. Similarly, if n is

a positive integer, then a1/n denotes a number such that
(
a1/n

)n
= a. If a > 0 we

assume a1/n > 0 and if n is odd and a < 0, then a1/n < 0.

Exercise D.1.19. If 0 < a < b, then
√

a <
√

b.

Exercise D.1.20. If n ∈ N, and 0 < a < b, then an < bn.

Exercise D.1.21. If 0 < a < b, then a1/n < b1/n.

If n > 0 is an integer, then it follows from the Binomial Theorem and Exercise
D.1.10 that

(1+ x)n = 1+nx+

(
n
2

)
x2 + · · ·+ xn ≥ 1+nx+0+0+ · · ·+0 = 1+nx

when x≥ 0. This argument does not work when x < 0. However, when −1 < x, the
inequality can be established by induction:
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Exercise D.1.22 (Bernoulli’s Inequality). If n ∈ N, then

1+nx≤ (1+ x)n,

for all −1 < x.

Bernoulli’s inequality is named after Jacob Bernoulli (6 January 1655 Basel to 16
August 1705 Basel).

D.2 Absolute Value

Consider a number system with a relation < satisfying the Axioms for Inequality.

Definition D.2.1. The absolute value |a| of a number a is determined by

|a| :=

{
a if 0≤ a

−a if a < 0

Exercise D.2.2. Prove that −|a| ≤ a≤ |a| for all a.

Exercise D.2.3. Prove that 0≤ |a| for all a.

The following group of exercises explore how the absolute value interact with mul-
tiplication.

Exercise D.2.4. Prove that |a|2 = a2 for all a.

Exercise D.2.5. Prove that |−a|= |a| for all a.

Exercise D.2.6. Prove that |ab|= |a| |b| for all a and b.

Exercise D.2.7. Prove that
∣
∣ a

b

∣
∣= |a|

|b| for all a and b with b �= 0.

A very useful way to understand inequalities involving absolute value is:

Exercise D.2.8. For all a and b, prove that |a| ≤ b ⇐⇒ −b≤ a≤ b.

The two exercises below relate absolute value and addition.

Exercise D.2.9 (Triangle Inequality). Prove that |a+b| ≤ |a|+ |b| for all a and b.

There are no triangles in the set of real numbers, so the name “Triangle Inequality”
may seem strange. See Sect. E for the reason this inequality is called the triangle
inequality.

Exercise D.2.10 (Reverse Triangle Inequality). Prove that ||a|− |b|| ≤ |a−b| for
all a and b.
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Problems

Problems for Sect. D.1

1. If a < b, then there is a number c, such that a < c < b. [In other words, given
a number a, there is no number b, that is the “next” number.]

2. If a < 0 and 0 < b, then ab < 0.

3. If a < b and c < 0, then ac > bc.

Problems for Sect. D.2

1. If x,y are points in the closed interval [a,b] , then |x− y| ≤ b−a.

Solutions and Hints for the Exercises

Exercise D.1.3. If 0 <−1, then 0 < (−1)(−1) by positive closure. But 0 <−1
and 0 < 1 contradicts trichotomy.

Exercise D.1.5. Apply trichotomy to c := b−a.

Exercise D.1.6. You cannot multiply by −1, because we only know positive
closure.

Exercise D.1.7. Use positive closure.

Exercise D.1.22. This follows from a proof by induction using 0≤ x2.

Exercise D.2.9. Prove −(|a|+ |b|)≤ a+b≤ |a|+ |b|.
Exercise D.2.10. Prove |a|− |b| ≤ |a−b| and |b|− |a| ≤ |a−b|.
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Complex Numbers

The set of complex numbers C is the set of ordered pairs of real numbers

C := R2 = {(a,b) | a,b ∈ R} .

Abbreviating a = (a,0) identifies R with the subset R×{0} of C. In particular,
1 = (1,0) . The imaginary unit is i := (0,1) . With this notation we have

(a,b) = a(1,0)+b(0,1) = a+ ib.

The first equality being a standard property of R2. With this notation, in particular,
0 = 0+ i0.

The real part of a complex number is Re(a+ ib) := a and the imaginary part is
Im(a+ ib) := b. Hence for a complex number z, z = Re(z)+ i Im(z).

Arithmetic in C is determined by

(a1 + ib1)+(a2 + ib2) := (a1 +a2)+ i(b1 +b2) and

(a1 + ib1)(a2 + ib2) := (a1a2−b1b2)+ i(a1b2 +b1a2).

In particular,

i2 = i · i = (0,1)(0,1) = (0−1)+(0+0) i =−1.

Division of complex numbers is determined by

a1 + ib1

a2 + ib2
:=

(a1 + ib1)(a2− ib2)

(a2 + ib2)(a2− ib2)
=

a1a2 +b1b2

a2
2 +b2

2

+ i
b1a2−a1b2

a2
2 +b2

2

,

when a2 + ib2 �= 0. If b1 = b2 = 0 this agrees with arithmetic in R.

Exercise E.0.1. If z = a+ ib �= 0, then z/z = 1.
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E.1 Basic Properties of Complex Numbers

Manipulations with complex numbers is often most efficiently done without consid-
ering the real and imaginary parts.

Exercise E.1.1. If z,z1, and z2 are complex numbers, then

1. z1 + z2 = z2 + z1

2. z1z2 = z2z1

3. z(z1 + z2) = zz1 + zz2

The complex conjugate of a+ ib is a+ ib := a− ib.

Exercise E.1.2. If z and w are complex numbers, then

1. z+w = z+w
2. zw = zw
3. z = z

The length or modulus of a complex number a+ ib is

|a+ ib| :=
√

a2 +b2.

This agrees with the way one normally defines the length |(a,b)| =
√

a2 +b2 in
R2. Also, |a+ i0|=

√
a2 is the absolute value of a. Hence, results proven about the

modulus of a complex number are also true for the absolute value of a real number.

Exercise E.1.3. Let z and w be complex numbers, then

1. zz = |z|2
2. |z|= |z|
3. |zw|= |z| |w|
4. z

w = zw
|w|2 , if w �= 0

Proposition E.1.4. For any complex number z, |Re(z)| ≤ |z| and | Im(z)| ≤ |z|.

Proof. If z = a+ ib, then |a|=
√

a2 +0≤
√

a2 +b2. Similarly, |b| ≤
√

a2 +b2. �
Exercise E.1.5. Re(z+w) = Re(z)+Re(w) and Im(z+w) = Im(z)+ Im(w) for any
complex numbers z and w.

Exercise E.1.6. z+ z = 2Re(z) and z− z = i2Im(z) for any complex number z.

Using some of the properties listed above we now establish how the modulus interact
with addition.

Theorem E.1.7 (Triangle Inequality). The modulus | · | satisfies the triangle in-
equality

|z1 + z2| ≤ |z1|+ |z2|
for all z1 and z2 in C.
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Proof. Calculating we have

z1z2 + z1z2 = z1z2 + z1z2

= 2Re(z1z2).

Hence

|z1 + z2|2 = (z1 + z2)(z1 + z2)

= z1z1 + z2z2 + z1z2 + z1z2

= |z1|2 + |z2|2 +2Re(z1z2)

≤ |z1|2 + |z2|2 +2|z1z2|
= |z1|2 + |z2|2 +2|z1| |z2|
= (|z1|+ |z2|)2

for any complex numbers z1 and z2. Taking the square root gives the desired in-
equality. �

For any three points a,b,c in the complex plane

a− c = (a−b)+(b− c)

so the triangle inequality with z1 := a−b and z2 := b− c says

|a− c| ≤ |a−b|+ |b− c|.

The triangle inequality, written in this way, is the most important inequality in anal-
ysis. We will use it hundreds of times in this text. We will often use it when we want
to estimate |a− c|. The “trick” is to “guess” b so that we can estimate |a− b| and
|b− c|.

Geometrically it says that the length of any side of the triangle is ≤ the sum
of the lengths of the other two sides. See Fig. E.1. This is the reason it is called

Fig. E.1 Triangle Inequality. Label the vertices a,b,c in any manner

the triangle inequality. Thinking of the triangle inequality this way may helps us
understand, pictorially, when we may need to us the triangle inequality.

Restating the triangle inequality using z1 = a1 + ia2 and z2 = b1 + ib2 gives
√

(a1 +b1)2 +(a2 +b2)2 ≤
√

a2
1 +a2

2 +
√

b2
1 +b2

2
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for all real numbers a1, a2, b1, and b2. This is the triangle inequality in R2, since
|(a,b)|=

√
a2 +b2 is the distance function, i.e., norm, in R2.

Exercise E.1.8. Show that the reverse triangle inequality

||z1|− |z2|| ≤ |z1− z2|

holds for z1,z2 in C.

E.2 Balls

The open ball with center c and radius r > 0 is the set of points whose distance from
c is smaller than r. A closed ball is defined similarly, with the distance being at most
r. The sphere with center c and radius r is the set of points whose distance from c
equals r.

Balls in C

Let c ∈ C and let r > 0. The set

Br(c) := {z ∈ C | |z− c|< r}

is an open ball with center c and radius r. The set

Br(c) := {z ∈ C | |z− c| ≤ r}

is a closed ball with center c and radius r. The set

Sr (c) := {z ∈ C | |z− c|= r}

is a sphere. Clearly, the sphere is the difference between the closed and the open
ball: Br(c)\Br(c) = Sr (c) . Geometrically, balls in C are disks and spheres in C are
circles.

Balls in R

Let c ∈ R and let r > 0. The set

Br(c) := {z ∈ R | |z− c|< r}

is an open ball with center c and radius r. The set

Br(c) := {z ∈ R | |z− c| ≤ r}



E.2 Balls 323

is a closed ball with center c and radius r. The set

Sr (c) := {z ∈ R | |z− c|= r}

is a sphere. Geometrically, balls in R are intervals and spheres are the endpoints of
intervals.

Exercise E.2.1. Suppose we are in R. If c ∈ R, then Br(c) =]c− r,c+ r[.

Fig. E.2 Illustration for Exercise E.2.2. The large circle has radius r and the small circle has radius
s

Exercise E.2.2. If z0 ∈ Br(c), then there exists s > 0, such that Bs(z0)⊆ Br(c). Give
a proof based on the triangle inequality that works both in R and in C. See, Fig. E.2.

Problems

Problems for Chap. E

1. Verify the triangle inequality in R2 without using complex numbers.

2. If z is a complex number, then

|1+nz| ≤ (1+ |z|)n

for all n ∈ N.

3. Clearly, Br(c)⊂ Br(c). Prove Br/2(c)⊂ Br(c).

A linear order on a set A is a relation on A satisfying extended trichotomy and
transitivity. You can think of a linear order on A as a way of alphabetizing the set A.
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On the set of complex number C define a+ ib < c+ id to mean either

a < c or both

a = c and b < d.

4. Draw the region {1+ i2 < x+ iy | x+ iy ∈ C} .
5. Show that a+ ib < c+ id is a linear order on C.

The next two problems investigate positive closure of this linear order on C.

6. Show that if 0 < a+ ib and 0 < c+ id, then 0 < (a+ ib)+(c+ id) .

7. Give an example of numbers 0 < a+ ib and 0 < c+ id, such that (a+ ib)
(c+ id)< 0.

Solutions and Hints for the Exercises

Exercise E.1.8. Look at the corresponding result in Sect. D.2.

Exercise E.2.2. Drawing a picture, see Fig. E.2, shows that any 0< s≤ r−|c−z0|
should work. Suppose z satisfies |z− z0| < s, then an application of the triangle
inequality shows that |z− c|< r.
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Greek Alphabet

Some of the greek letters are written in more than one form. For the upper case
letters the variations are small. In some cases one of the forms looks like a symbol
used in another context, notably ∈ and ε .

Upper case Lower case Name

A α alpha
B β beta

Γ ,Γ γ gamma
Δ ,Δ δ delta

E ε,ε epsilon
Z ζ zeta
H η eta
Θ θ ,ϑ theta
I ι iota
K κ ,κ kappa

Λ ,Λ λ lambda
M μ mu
N ν nu
Ξ ξ ksi
O o omicron

Π ,Π π,ϖ pi
P ρ ,ρ rho

Σ ,Σ σ ,ς sigma
T τ tau

ϒ ,ϒ υ upsilon
Φ ,Φ φ ,ϕ phi

X χ chi
Ψ ,Ψ ψ psi
Ω ,Ω ω omega

Table F.1 Greek alphabet
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Appendix G
Credits

The author has taught, parts of, the material included in this text using several dif-
ferent textbooks. For example, he has taught from (various editions of) Bartle and
Sherbert (1999), Burn (2000), Belding (2008), Lay (2004), and Strichartz (2000).
The present text is clearly influenced by the works cited above. The list below con-
tains the cases where the author consciously adapted material from other sources to
fit into this text.

• Arranging the theory of inequalities as a sequence of inequalities is adapted from
Burn (2000).

• A table similar to Table 1.1 can be found in Boester (2010), the use of the word
“tolerance” is also taken from Boester (2010).

• The proof of Steinhaus’ Three Distance Conjecture, Theorem 1.8.1, is from
Slater (1967).

• The proof of Theorem 3.4.1 is from Dunham (1990), where it is credited to
Volterra.

• The proof of Theorem 3.5.4 is a modification of the proof in Ferreño (2009).
• The notion “increasing at a point” is from Strichartz (2000).
• The proof of Theorem 6.5.3 is adapted from Körner (1989), where it is credited

to Liouville.
• The proof that e is transcendental is adapted from Gelfond (1960).
• The problems for Sect. 8.3 showing that nonzero rational powers of e are irra-

tional are adapted from Aigner and Ziegler (2004).
• The proof of Theorem 9.2.12 is an interpretation of (part of) Remark 2 in Aksoy

and Martelli (2002)
• The proof of Theorem 9.4.1 is essentially from Scheinerman and Schep (2009).
• The construction of the space filling curve in Sect. 10.3 is adapted from Sagan

(1994).
• The proof of Theorem 10.5.1 is adapted from Körner (1989), who credits it to

Weierstrass.
• The construction of π in Sect. 11.2 is adapted from Bartle and Sherbert (1999).
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• The proof in Sect. 11.4 is adapted from a paper Weierstrass presented to the
Königliche Akademie der Wissenschaften on 18 July 1872, Weierstrass (1895).

• The proof of Theorem 11.5.2 is adapted from Zhou and Markov (2010).
• The problems for Sect. 11.5 outline Niven’s proof that π is irrational, see Niven

(1947).
• Problem 2 for Sect. 13.4 is adapted from the proof of Darboux’s Intermediate

Value Theorem in Nadler (2010).
• The proof that the number of primes is infinite is adapted from Proposition 20,

Book IX of Euclid’s Elements.



Appendix H
Names

The list below contains refences to (some of) the pages where a mathematician is
mentioned by name. The page number in bold refers to the page containing a small
amount of biographical information.

Abel, Niels Henrik 309
Archimedes 129
Baire, René-Louis 240
Banach, Stefan 74
Bernoulli, Jacob 316
Bernoulli, Johann 109
Bernstein, Felix 73
Bessel, Friedrich 255
Bois-Reymond, Paul du 193, 264
Bolzano, Bernhard 80, 179, 237, 290
Borel, Émile 289
Bunyakovsky, Viktor 125
Cantor, George 57, 64 , 70, 73, 69, 103
Cauchy, Augustin-Louis 107, 125, 180, 207, 210, 219, 256
Cesàro, Ernesto 264
Cohen, Paul 73
Darboux, Jean-Gaston 100
Dedekind, Richard 264
Dini, Ulisse 201, 260
Dirichlet, Lejeune 24, 209, 259, 261
Euclid 306
Euler, Leonhard 162, 208
Fejér, Lipót 264, 266
Fermat, Pierre de 151
Fibonacci 181
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Fourier, Joseph 64, 249
Fraenkel, Abraham 73
Fubini, Guido 193
Gauss, Carl Friedrich 237
Gödel, Kurt 73
Hadamard, Jacques 219
Hardy, G. H. 159,
Heine, Eduard 289
Hermite, Charles 162
Hilbert, David 74, 159
Hölder, Otto 114, 125
l’Hôpital, Guillaume de 109
Jensen, Johan 117
Lagrange, Joseph-Louis 105
Lambert, Johann Heinrich 240
Lebesgue, Henri 256
Leibniz, Gottfried 192, 209
Lindemann, Ferdinand von 240
Liouville, Joseph 103
Lipschitz, Rudolf 114
Mādhava of Sañgamāgrama 105
Minkowski, Hermann 125
Napier, John 162
Netto, Eugen 218, 291
Newton, Isaac 141
Niven, Ivan 243
Parseval, Antoine 274
Plancherel, Michel 276
Riemann, Bernhard 47, 129, 208, 213, 256, 277
Rolle, Michel 101
Schoenberg, Isaac 216
Schröder, Ernst 73
Schwarz, Hermann 125, 256
Steinhaus, Hugo 31
Tarski, Alfred 74
Taylor, Brook 105
Thomae, Johannes 47
Volterra, Vito 47, 58
Weierstrass, Karl 10, 179, 215, 221, 237, 290
Weyl, Hermann 270
Young, William Henry 124
Zermelo, Ernst 73



Nomenclature

1A characteristic function of the set A, page 24
(xn) sequence x1,x2, . . ., page 28
(ain) subsequence of (an), page 182
�x� smalles integer n such that x≤ n, page 29
�t� the largest integer ≤ t, page 30
|x| absolute value of the real number x, page 322
|z| modulus of the complex number z, page 326
{x} fractional part of the real number x, page 32
an → a (an) converges to a, page 182
fn ⇒ f fn converges uniformly to f , page 191
fn → f fn converges pointwise to f , page 191
ax exponential function base a, page 164
B′r(c) punctured ball radius r and center c, page 7(n

k

)
binomial coefficients, page 312

Br(c) open ball with radius r and center c, page 328
Br(c) closed ball with radius r and center c, page 328
C set of all complex numbers, page 325
C 1(D) f ′ exists and is continuous on D, page 112
C Cantor set, page 66
C ∞ the derivative f (n) exist for all n, page 161
C n(D) f is n times differentiable and the nth derivative f (n) is continuous on D,

page 107
cos(x) the cosine function, page 236
d0.d1d2 · · · infinite decimal (base 10), page 3
1.672345 repeating decimal, page 4
d0 .

b
d1d2 · · · infinite decimal (base b), page 65

DA(x) distance from the point x to the set D, page 86
e base of the natural exponential, page 164
ex exponential function, page 164
exp(x) exponential function, page 163
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f ∗g convolution of f and g, page 198
f : A→ B f is a function defined on A with values in B, page 9
f̂ (k) Fourier coefficients, page 255
f−(x) negative part of f , page 142
f+(x) positive part of f , page 142
f ′(a) derivative of the function f at the point a, page 93
f
∣
∣
E restriction of f to the set E, page 23

fx partial derivative of f with respect to x, page 196
γ Euler constant, page 162
i imaginary unit, page 325
Im(z) imaginary part of z, page 325
inf(A) greatest lower bound of A, page 56
´ b

a f integral of f , page 133
[a,b] closed interval, page 57
]a,b[ open interval, page 57
limx→a f (x) limit of f (x) as x→ a, page 10
f (x)−→

x→a
L limit of f (x) as x→ a, page 10

liminfan limit inferior of an, page 190
liman limit superior of an, page 189
limsupan limit superior of an, page 189
liman limit inferior of an, page 190
log(x) logarithm, page 161
max(A) largest number in A, if any, page 53
min(A) smallest number in A, if any, page 56
N set of all natural numbers {1,2,3, . . .}, page 320
N0 the set {0,1,2, . . .}, page 320
o(φ(x)) little oh notation, page 121
∂x f partial derivative of f with respect to x, page 196
π pi, page 238
Q set of all rational numbers, page 4
R2 set of all ordered pairs of real numbers, page 325
Re(z) real part of z, page 325
σ(x) pseudo-sine function, page 14
sin(x) the sine function, page 236
Sr(c) sphere with radius r and center c, page 328
∑n

k=1 xk the finite sum x1 + x2 + · · ·+ xn, page 30
∑∞

k=0 xk infinite series, page 31
∑s sum of a step function, page 132
sup(A) least upper bound of A, page 53
xmax point where a function assumes its largest value, page 84
xmin point where a function assumes its smallest value, page 84
Z set of all integers {. . . ,−2,−1,0,1,2, . . .}, page 320
z complex conjugate of z, page 326
f is 1−1 f is one-to-one, page 307
f (C) image of the set C under f , page 308
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f−1(D) pre-image of the set D under f , page 308
∃x for some x, page 304
∀x for all x, page 304
¬P negation of P, page 304
P ⇐⇒ Q P is true if and only if Q is true, page 304
P =⇒ Q if P is true, then Q is true, page 303⋂

i∈I Ai intersection of Ai, i ∈ I, page 307⋃
i∈I Ai union of Ai, i ∈ I, page 307

A∩B intersection of A and B, page 306
A∪B union of A and B, page 306
A\B set difference of A and B, page 306
A⊂ B A is a proper subset of B, page 306
A⊆ B A is a subset of B, page 306
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e, 160
irrational, 162
transcendental, 163

abelian group, 311
absolute

value, 318
absolutely convergent, 207
accumulation point, 7
algebraic

number, 74, 103
alternating series test, 209
approximate identity, 194

lemma, 194
arc length, 236

unit circle, 239
area, 129

unit circle, 235
arithmetic

mean, 118
progression, 30

axioms for inequality, 315

ball
closed, 324
open, 324
punctured, 7

Banach-Tarski Paradox, 74
base b, 63
Bernoulli’s inequality, 122, 318
Bessel’s inequality, 257, 260
bijective function, 304
binary number, 63
binomial

coefficients, 308
theorem, 308

Bolzano, 239

Bolzano’s Theorem, 80
Bolzano-Weierstrass Theorem, 179
bound

lower, 54
upper, 51

boundary of a set, 295
bounded

function, 82
sequence, 28
set, 288

bump function, 166

Cantor
function, 64
Principle, 57
set, 64

Cantor-Bernstein-Schroeder Theorem, 72
Cauchy

complete, 180
product, 210
sequence, 180

Cauchy-Schwarz inequality, 258
ceiling of x, 29
center of a ball, 324
Cesàro sums, 266
Change of Variables Theorem, 144
characteristic function, 24
closed

ball, 324
interval, 55, 301
set, 286
subset, 286

closure, 287
commutative group, 311
compact

covering, 288
interval, 81, 301
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limit point, 180
sequential, 179
sequentially, 292
set, 288

comparison test, 207
complete

Cauchy, 180
order, 53

complex
conjugate, 322
number, 301, 321

Composition Rule for Limits, 21
concave function, 111
condition

Hölder, 88, 121
Lipschitz, 114

conditionally convergent, 210
connected set, 293
contact point of a set, 287
continuity

one-sided, 48
continuous

at a point, 45
from the left, 48
from the right, 48
function, 46
on a set, 46
sequentially, 182

continuum hypothesis, 73
convergence

in mean, 252
pointwise, 187
radius of, 221
uniform, 187

convergent
absolutely, 207
sequence, 178
series, 205

convex function, 111
convolution, 194
cosine, 232
countable set, 69
countably infinite set, 69
cover of a set, 288
covering compact, 288
critical point, 94
curve, 216

decimal
finite, 4
infinite, 3
number, 63
repeating, 3

decreasing
at a point, 94
function, 77
sequence, 183

degree of a polynomial, 19
dense set, 5
density of

irrationals, 6
rationals, 6

derivative, 91
partial, 192

Devil’s Staircase, 86
differentiable

at a point, 91
on a set, 92

Dini’s
Criterion, 263
Theorem, 201

Dirichlet
function, 24
kernel, 261
Theorem, 264

discontinuity
jump, 78
removable, 47

discontinuous, 46
distance from a set, 84
divergent

sequence, 178
series, 205

Dominated Convergence Theorem, 207

enumeration, 71
Evaluation Theorem for Integrals, 134
Existence Theorem for Integrals, 133
exponential function, 159, 231
Extreme Value Theorem, 82, 289

factorial, 308
Fejér

kernel, 266
Theorem, 268

field, 311
finite

decimal, 4
subcover, 288

first derivative test, 121
fixed point, 87
floor of x, 30
Fourier series, 252
Fubini’s Theorem, 193
function

bounded, 82
bump, 166
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Cantor, 64
characteristic, 24
concave, 111
continuous, 46
convex, 111
decreasing, 77
Devil’s Staircase, 86
Dirichlet, 24
exponential, 159
increasing, 77
integrable, 129
logarithmic, 157
lower step, 128
monotone, 77
nowhere differentiable, 239
polynomial, 19
pseudo-sine, 14
rational, 20
restriction, 23
Riemann, 47
Riemann zeta, 208
Schoenberg, 217
step, 128
transcendental, 231
uniformly continuous, 83
upper step, 129
Weierstrass, 239

Fundamental Theorem of
Algebra, 196
Arithmetic, 307
Calculus, 141, 142

geometric
mean, 118
progression, 30
sequence, 30
series, 31, 206

global
Lipschitz condition, 121
maximum, 82
minimum, 82

Global Boundedness Theorem, 82
greatest lower bound, 54

Hölder
condition, 88, 121
inequality, 125

half-open interval, 55, 301
Heine-Borel Theorem, 292

image of a set, 10
image of a subset, 304
imaginary part, 321
improper integral, 146

increasing
at a point, 94
function, 77
sequence, 183

induction, 307
proof by, 307

inequality
arithmetic-geometric, 118
Bernoulli, 122, 318
Bessel, 257, 260
Cauchy-Schwarz, 258
Hölder, 125
Jensen, 117
Minkowski, 125
reverse triangle, 318, 324
triangle, 118, 258, 318, 322
Young, 124

infimum, 54
infinite

decimal, 3
limit, 26
series, 31
sum, 205

injective function, 303
inner product, 252
integer, 301
integrable function, 129
integral

improper, 146
iterated, 193
lower, 129
Riemann, 129
test, 208
upper, 129

integration
by parts, 143
by substitution, 144
change of variables, 144

interior of a set, 284
intermediate value property, 55
Intermediate Value Theorem, 80, 81, 100
interval, 55, 302

closed, 301
compact, 81, 301
half-open, 301
open, 301
Theorem, 55

Inverse Function Rule, 98
irrational number, 5
isolated point, 45
iterated integral, 193

Jensen’s inequality, 117
jump discontinuity, 78
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kernel
Dirichlet, 261
Fejér, 266

least upper bound, 51
Leibniz Integral Rule, 192
Leibniz’ Rule, 95
length, 322
limit

at infinity, 25
from above, 25
from below, 25
from the left, 25
from the right, 25
inferior, 185
of a function, 10
of a sequence, 178
one-sided, 24
superior, 185

limit point
compact, 180
of a sequence, 184
of a set, 7

line
tangent, 91

linear order, 325
linear transformation, 95
linearization of a function, 119
Liouville’s Theorem, 103
Lipschitz condition, 114
little oh notation, 119
local

extremum, 94
maximum, 94
minimum, 94

logarithm, 157
lower

bound, 54
integral, 129
step function, 128
sum, 128

maximum, 51
of a function, 82

Mean Value Theorem, 102
minimum, 54

of a function, 82
Minkowski’s inequality, 125
modulus, 322
monotone

function, 77
sequence, 183

Napier constant, 162
natural number, 301
neighborhood, 7
Nested Interval Theorem, 57
nested intervals, 56
Nested Rectangle Theorem, 58
Netto’s Theorem, 218, 293
norm, 259
null sequence, 29
number

algebraic, 103
binary, 63
decimal, 63
irrational, 5
prime, 307
rational, 4
ternary, 63
transcendental, 103

one-sided
continuity, 48
derivative, 93
limit, 24

one-to-one
correspondence, 304
function, 303

onto function, 303
open

ball, 324
interval, 55, 301
set, 283
subset, 285

open cover, 288
order

complete, 53
orthonormal set, 255
other bases, 63

Parseval’s identity, 276
partial

derivative, 192
sum, 205

partition, 127
path, 293
pathwise connected, 293
π , 234

irrational, 243
Plancherel’s Formula, 278
point

accumulation, 7
fixed, 87
isolated, 45
limit, 7
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pointwise convergence, 187
polarization identity, 277
polynomial

degree, 19
function, 19

positive
closure, 315

power series, 220
pre-image of a subset, 304
prime number, 307
Projection Theorem, 256
proof by induction, 307
pseudo-sine function, 14
punctured ball, 7
punctured neighborhood, 7
Pythagorean Theorem, 257

radius
of a ball, 324
of convergence, 221

ratio test, 207
rational

function, 20
number, 4, 301

real number, 301
real part, 321
rearrangement of a series, 212
refinement, 130
removable discontinuity, 47
repeating

decimal, 3
part, 3

restriction of a function, 23
reverse triangle inequality, 318, 324
Riemann

function, 47
localization, 279
zeta function, 208

Riemann-Lebesgue Lemma, 258, 260
Rolle’s Theorem, 101
root

of a polynomial, 20
test, 207

second derivative test, 121
sequence, 177

Cauchy, 180
geometric, 30
null, 29
of functions, 187
of numbers, 28

sequential
compact, 179, 292
continuity, 182

series, 31
convergent, 205
divergent, 205
Fourier, 252
geometric, 31, 206
infinite, 31
power, 220
rearrangement, 212

set
boundary, 295
Cantor, 64
closed, 286
closure, 287
compact, 288
connected, 293
countable, 69
countably infinite, 69
dense, 5
distance to, 84
interior, 284
open, 283
uncountable, 71

sine function, 232
space filling, 216
sphere, 324
Steinhaus conjecture, 32
step function, 128

lower, 128
upper, 129

strictly decreasing
function, 77

strictly increasing
function, 77

strictly increasing at a point, 94
sub-derivative, 124
subcover, 288
subsequence, 178
sum

infinite, 205
partial, 205

supremum, 51
surjective function, 303

tangent
line, 91
to a function, 119

Taylor polynomial, 106
Taylor’s

Formula, 105
Theorem, 153

ternary number, 63
test

alternating series, 209
comparison, 207
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integral, 208
ratio, 207
root, 207

Theorem
[0,1] is uncountable, 70
e is irrational, 162
e is transcendental, 163
Approximate Identity Lemma, 194
Baby Liouville, 34
Banach-Tarski, 74
Bessel’s inequality, 257, 260
binomial, 308
Bolzano-Weierstrass, 179
Cauchy Completeness, 180
Cauchy Mean Value, 107
Cauchy-Hadamard, 220
Change of Variables, 144
Darboux Intermediate Value, 100
density of irrationals, 6
density of rationals, 6
Dini’s Criterion, 263
Dirichlet, 264
Evaluation of Integral, 134
Existence of Integral, 133
Existence of Roots, 61
Extreme Value, 82
Fejér, 268
FTC-Derivative, 141
FTC-Evaluation, 142
Fubini, 193
Fundamental of Algebra, 196
Fundamental of Arithmetic, 307
Fundamental of Calculus, 141, 142
Global Boundedness, 82
Hermite, 163
Intermediate Value, 80
Interval, 55
Jensen’s inequality, 117
l’Hôpital’s Rule, 109, 110
Leibniz Integral Rule, 192
Local Boundedness, 15
Local Positivity, 16
Mean Value, 102

Monotone Convergence, 77, 183
Nested Interval, 57
Netto, 293
Order Completeness of R, 53
π is irrational, 243
Projection, 256
Pythagorean, 257
Riemann-Lebesgue, 258, 260√

2 irrational, 62
Steinhaus Three Distance, 32
Taylor, 105, 153
Uniform Continuity, 85
Volterra, 58
Weierstrass Approximation, 223
Weyl, 272

Theorem Liouville, 103
transcendental

function, 231
number, 74, 103

triangle inequality, 258, 318, 322
trichotomy, 315

uncountable set, 71
uniform

convergence, 187
distribution, 269

Uniform Continuity Theorem, 85
uniformly continuous function, 83
upper

bound, 51
integral, 129
step function, 129
sum, 129

vector space, 252

Weierstrass
Approximation Theorem, 223
M-test, 215
nowhere differentiable function, 239

Weyl Criterion, 272

Young’s inequality, 124
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