Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Introdução à Álgebra Prof. Dr. Maurício Zahn Lista 07 - Homomorfismos de grupos

- 1. Seja $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ dada por f(x,y) = (x-y,0). Prove que f é um homomorfismo do grupo aditivo $\mathbb{Z} \times \mathbb{Z}$ em si mesmo e determine $\ker(f)$.
- 2. Prove que um grupo G é abeliano se, e somente se, $f: G \to G$ dada por $f(x) = x^{-1}$ é um homomorfismo.
- 3. Sejam $G = GL_n(\mathbb{R})$ o grupo das matrizes $n \times n$ invertíveis com entradas reais e $\varphi : G \to \mathbb{R}^*$ dada por $\varphi(A) = \det(A)$. Mostre que φ é um homomorfismo de grupos e calcule o seu núcleo.
- 4. Seja $f: G \to H$ um homomorfismo de grupos onde H é abeliano. Provar que todo subgrupo de G que contém $\ker(f)$ é normal em G.
- 5. Seja $\varphi : \mathbb{R} \to \mathbb{C}^*$ dada por $\varphi(x) = e^{ix}$, para todo $x \in \mathbb{R}$. Mostre que φ é um homomorfismo. φ é injetivo? Justifique.
- 6. Seja $f: \mathbb{Z}_3 \to \mathbb{Z}_6$ definida por $f(\overline{x}) = \overline{2x}$. Mostre que f é um homomorfismo e determine $\ker f \in \operatorname{Im}(f)$.
- 7. Prove que se $\varphi:G\to G'$ é um isomorfismo, então x e $\varphi(x)$ têm a mesma ordem, $\forall x\in G.$
- 8. Mostre que $G = \{2^m 3^n : m, n \in \mathbb{Z}\}$ e $G' = \{m + ni : m, n \in \mathbb{Z}\}$ são subgrupos, respectivamente, de (\mathbb{R}^*, \cdot) e $(\mathbb{C}, +)$. Mostre também que são isomorfos.
- 9. Sejam $G \in G'$ grupos multiplicativos e $f: G \to G'$ um homomorfismo. Considerando H um subgrupo de G', definimos $f^{-1}(H) = \{x \in G : f(x) \in H\}$. Mostre que $f^{-1}(H) < G$.
- 10. Prove que a relação "ser isomorfo" é uma relação de equivalência.
- 11. Seja a um elemento fixo em um grupo multiplicativo G. Prove que $f: G \to G$ dada por $f(x) = axa^{-1}$ é um isomorfismo.
- 12. Sejam G, H, I e J grupos. Se $f: G \to I$ e $g: H \to J$ são isomorfismos, mostre que $\varphi: G \times H \to I \times J$ dada por

$$\varphi(x,y) = (f(x), g(y)),$$

para todo $(x,y) \in G \times H$, é também um isomorfismo.