Fundação Universidade Federal de Pelotas Disciplina de Álgebra Linear I Lista 06 de Exercícios - Mudança de base Prof. Dr. Maurício Zahn

- 1. Mostre que cada conjunto a seguir é uma base para o \mathbb{R}^2 . Em seguida, determine as coordenadas do vetor $\vec{u} = (6, 2)$ em relação a cada uma das bases dadas.
 - (a) $\alpha = \{(3,0); (0,3)\}$
- (b) $\beta = \{(1,2); (2,1)\}$
- (c) $\gamma = \{(1,0); (0,1)\}$
- (d) $\delta = \{(0,1); (1,0)\}$
- 2. Quais são as coordenadas de $\vec{u}=(1,0,0)$ em relação à base

$$\beta = \{(1,1,1); (-1,1,0); (1,0,-1)\}$$

do \mathbb{R}^3 ?

- 3. Determinar as coordenadas do vetor $u = (2, 1, 4) \in \mathbb{R}^3$ em relação às bases: (a) canônica; (b) $\beta = \{(1, 1, 1); (1, 0, 1); (1, 0, -1)\}.$
- 4. Mostre que os vetores $v_1 = (2,6,3)$, $v_2 = (1,5,4)$ e $v_3 = (-2,1,7)$ formam uma base do \mathbb{R}^3 . Expresse o vetor v = (3,7,1) como uma combinação linear de v_1, v_2 e v_3 . Quais são as coordenadas de v em relação à base $\{v_1, v_2, v_3\}$?
- 5. Determinar as coordenadas do vetor $\overrightarrow{u}=(x,y,z)$ em relação a cada base do \mathbb{R}^3 dada.
 - (a) $\beta = \{(1,1,-1); (1,-1,1); (-1,1,1)\}$
 - (b) $\beta = \{(1,0,0); (1,2,1); (0,5,2)\}$
- 6. (Sel. Mestrado UFSM 2013/2) Seja $\beta = \{v_1, v_2, v_3\} \subset \mathbb{C}^3$, onde $v_1 = (1, 0, -i)$, $v_2 = (1 + i, 1 i, 1)$ e $v_3 = (i, i, i)$. Mostre que β é uma \mathbb{C} -base de \mathbb{C}^3 . Encontre as coordenadas de um vetor $(a, b, c) \in \mathbb{C}^3$ em relação a esta base.
- 7. Considere as bases β e γ do espaço vetorial \mathbb{R}^2 :

$$\beta = \{(1,1); (0,-1)\}$$
 e $\gamma = \{(1,2); (-1,3)\}.$

Obtenha a matriz de mudança de base $[I]^{\gamma}_{\beta}$. Em seguida, dado o vetor \vec{u} tal que $[\vec{u}]_{\gamma} = \left[\begin{array}{c} 2 \\ -3 \end{array} \right]$, obtenha $[\vec{u}]_{\beta}$ usando a matriz da mudança.

- 8. Ache a matriz de mudança de base da base $\beta = \{(1,1,0); (0,1,0); (0,0,3)\}$ para a base canônica do \mathbb{R}^3 .
- 9. Ache a matriz de mudança de base da base $\beta = \{(1,1,0); (0,1,0); (0,0,3)\}$ para a base $\gamma = \{(1,1,1); (1,0,1); (1,0,-1)\}$ do \mathbb{R}^3 . Ache também a matriz de mudança da base γ para a base β .
- 10. No espaço \mathbb{R}^2 consideremos as bases $\beta=\{e_1,e_2,e_3\}$ (canônica) e $\gamma=\{g_1,g_2,g_3\}$ relacionadas da seguinte maneira:

$$g_1 = e_1 + e_3$$

$$q_2 = 2e_1 + e_2 + e_3$$

$$g_3 = e_1 + e_2 + e_3$$
.

Determinar as matrizes de mudança de base de β para γ e de γ para β .