Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática Segunda Prova de Sequências e Séries Prof. Dr. Maurício Zahn

Nome: Data: 16/08/2017

Questão 01. Mostre que a sequência de funções $f_n : \mathbb{R} \to \mathbb{R}$ definida por

$$f_n(x) = \frac{x^2 + nx}{n}$$

converge simplesmente para a função identidade f(x) = x. A convergência é uniforme? Justifique mediante um desenho.

Questão 02. Seja $f_n:[1,2]\to\mathbb{R}$ definida por $f_n(x)=e^{-nx^2}$.

- (a) Obtenha a função limite $f:[1,2]\to\mathbb{R}, f(x)=\lim_{n\to\infty}f_n(x)$ e mostre que (f_n) converge uniformemente para f em [1,2].
- (b) Calcule $\lim_{n\to\infty} \int_1^2 f_n(x) dx$.

Questão 03. Sejam (f_n) uma sequência de funções definida em X tal que $f_n \to f$ uniformemente e g uma função limitada em X. Mostre que $f_n \cdot g \to f \cdot g$ uniformemente em X.

Questão 04. Seja $\sum_{n=1}^{\infty} f_n(x)$ uma série de funções definida em [a,b] tal que existe $r \in (0,1)$ de modo que

$$\left| \frac{f_n(x)}{f_{n-1}(x)} \right| \le r, \ \forall x \in [a, b], \ \forall n \in \mathbb{N}.$$

Suponha que $f_1(x)$ seja limitada. Prove que a série $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente em [a,b].

Questão 05. Obtenha o raio de convergência da série de potências

$$\sum_{n=1}^{\infty} \frac{(n-1)!}{n^n} (x-\pi)^n.$$

Questão 06. Obtenha as séries de potências das funções $\ln(1+x)$ e $\ln(1-x)$. A partir delas, mostre que

$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots\right), \ \forall x \in (-1,1).$$

Usando os 3 primeiros termos e dando um valor conveniente para x, encontre um valor aproximado para $\ln 5$.