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 CLASSROOM NOTES

 EDITED BY C. B. ALLENDOERFER, Haverford College

 All material for this department should be sent to C. B. Allendoerfer, Haverford College,
 Haverford, Pennsylvania.

 MEAN AND ORDINARY CONVERGENCE OF A SEQUENCE OF FUNCTIONS

 D. L. THOMSEN, Haverford College

 In presenting the idea of mean convergence to undergraduates who are not
 acquainted with the Lebesgue integral the following procedure has been found
 to be helpful. We point out that mean convergence may apply to cases where
 ordinary convergence fails, and we also prove that under appropriate conditions
 ordinary convergence implies mean convergence.

 A sequence of functions fn(x), defined in the finite closed interval (a, b), con-
 verges to f(x) in the ordinary sense if

 (1) limfn(x) = f(x).
 n+0

 A sequence of functionsfn(x) converges in the mean with index p > 0 tof(x) if

 b

 (2) lim f fn(x) -f(x) IPdx = 0.

 Throughout the discussion we assume the integration to be taken in the Rie-
 mann sense.

 Convergence in the mean does not imply ordinary convergence. A familiar
 example* is the following. Consider the closed intervals (0, 1/2), (1/2, 1), (0,

 1/3), (1/3, 2/3), (2/3, 1), (0, 1/4), * . .. Letfn(x) = 1 in the nth interval and zero
 elsewhere. Here limn_,fn(x) does not exist. But the limit in the mean does exist

 since we have limn,.o fo' |fn(x) -f(x) J P dx = limnO Ln = 0 where Ln is the length
 of the nth interval and f(x) = 0.

 However ordinary convergence, uniform or non-uniform, does imply mean
 convergence under the conditions as stated in the following theorem.

 THEOREM. If in the finite closed interval (a, b) fn(x) is bounded in both n and x,
 if fn(x) and f(x) are Riemann integrable, if Ifn+1 -f(x) I I fn(x) -f(x) , and if
 limn--w fn(x) =f(x), then lim_fO ,f jfn(x) -f(x) J P dx = 0 (p > 0).

 Proof. Let Fn(x)=fn(x)-f(x), and let Jfn(x)I <M/2 so that jf(x)I <M/2.
 Then we have I F,I(x) I ? M for all x and n, and the limn0,0 Fn(x) =0. Let In
 = f- I Fn&(x) I P dx. We must show limn_-O In,= O. For a fixed e> 0 and an n we have
 either I F(x) I <e or e< Fn(x) I K M. These two inequalities divide (a, b) into
 two sets of intervals. We may ignore the isolated singularities of Fn(x) in mak-
 ing this subdivision since they do not affect the value of the integral. Thus we

 * Titchmarsh: The Theory of Functions, Art. 12.53
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 470 CLASSROOM NOTES [September,

 have In < (b - a) ez + MvBn where B. is the sum of the lengths of all intervals
 in which I Fn(x) I _. But the lim,.,. Bn = 0 as may be seen by considering the se-
 quence, B1, B2, B3, ... * B, . * * . We necessarily have B1,B2>B3?> ... * B
 > *.. in view of the fact that j Fn+l(x) |< I F,(x) j. Such a positive sequence
 must necessarily approach a unique limit since it is monotonic, is bounded
 above by (b -a), and is bounded below by zero. Let this limit be equal to B1 #0.
 Then we have j Fn(x) j _ e for all n in intervals whose sum is B. This means there

 are points where limn--. I Fn(x) j # 0, which is contrary to hypothesis. Thus B = 0.
 Hence In may be made as small as desired, and the theorem is proved. The
 theorem may be extended to sequences which are not monotonic provided the
 intervals over which the sequences are not monotonic can be made as small as

 desired. This is actually the case in the first example below.

 Example 1. The function fn(x) =n? X1/2 exp (-n2x2/4) in (0, 1) with f(x) =0
 illustrates the behavior of the two types of convergence. The lim ofn(x) is zero

 everywhere for all c. The maximum value of fn(x) occurs at x = 1/n where we
 have fn(1/n) = nc-12 exp (- 1/4). The convergence of the sequence f.(x) is uni-
 form for c < 1/2. Our theorem now tells us we have mean convergence when
 c <1/2 providing we note the comment at the end of the proof above; for we

 havefn(x) ?fn+l(x) _fn+2(x) >? ... except in an interval of length less than 1/n.
 Now by direct integration we may verify mean square convergence (p = 2), for

 we have f njf.(x) -f(x) 1 2 dx = n2c-2 (1 -exp(-n2/2)). The table below shows the
 various possibilities for maxf"(x) and mean square convergence as c increases.

 lim fn(l/n) lim I fn(x) -f (x) | 2dx

 c<1/2 0 0
 c= 1/2 exp(-1/4) 0
 1/2 <c<1 00 0
 c=1 00 1

 c>1 00

 Example 2. Let fn(x) =exp(nx2)/(I +exp(nx2)) in (-1, 1) where f(O) = 1/2
 andf(x) = 1 when x $ 0. Bothfn(x) andf(x) satisfy the hypothesis of the theorem
 above, and hence we have mean convergence. Here the "lim" cannot pass under

 the integral sign because the integrand does not converge uniformly; also, it is
 impossible to perform the integration by elementary methods.

 We may still have mean convergence whenfn(x) is unbounded or when (a, b)
 is an infinite interval. If we consider mean square convergence, always we must

 have the area bounded by [Fn(x) ] 2 and the x-axis arbitrarily small. For example,
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 the function f"(x) may be unbounded in n as in Ex. 1 above when 1> c> 1/2,
 unbounded in x (as in the sequence (nx)-113 in (-1, 1) where f(O) = ?? and
 f(x) =0 for x $0), or unbounded in both x and n (as in a suitable combination
 of the two preceding cases). On the other hand consider fn(x) = (nx)-815. This
 sequence has the same limit function as (nx)-113 above; the integral f-1fn(x) dx
 converges absolutely as an improper integral; but fn(x) does not converge to
 f(x) in the mean square sense in (-1, 1).

 PROOFS OF THE ADDITION FORMULAE FOR SINES AND COSINES

 A condensation by the editor of independent papers by

 L. J. BURTON, Bryn Mawr College, and E. A. HEDBERG, University of South Carolina

 The standard proof of the addition formulae for sines and cosines is certainly
 one of the least satisfactory sections of the usual trigonometry text. Its chief fail-
 ings are its complexity, the artificiality of the construction required, and the
 limitation of the magnitudes of the angles involved. Two alternative proofs of
 these formulae are published below. The first, submitted by L. J. Burton, as-
 sumes a very elementary knowledge of analytic geometry. This proof has been

 taught in several universities for somie time and probably has a long history; but

 y

 y

 x

 x

 FIG. 1

 since it does not appear in the popular textbooks and is unknown to most teach-
 ers, it seems desirable to make it more generally available. It has the advantage
 of placing no restriction on the size of the angles in addition to greater simplicity.
 The second, submitted by E. A. Hedberg, is based upon the laws of sines and
 cosines and assumes no analytic geometry. Since it makes use of triangles, it is
 valid only in case all of the angles involved are less than 180 degrees.
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