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On a general class of trigonometric functions and Fourier seriesy
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We discuss a general class of trigonometric functions whose corresponding
Fourier series can be used to calculate several interesting numerical series.
Particular cases are presented.
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1. Introduction

In a recent paper [1], where we presented a note regarding a sum involving odd numbers,

we discussed a calculation by considering a general alternating numerical series;

as a by-product we recovered a result presented in the Trenčevski’s paper [2] and pointed

out a possible generalization of the results.
In a more recent paper [3], we presented a general formula for a triple product

involving four real numbers, and as a particular case, we got the sum of a triple product

with four odd numbers. A general formula for more than four odd numbers was also

derived. All those results are calculated using only concepts of standard analysis,

particularly numerical series and partial fractions. Some of the results were presented

in terms of the beta function [4].
Numerical series can also be obtained as special cases of convenient Fourier series

expansions, i.e. one may calculate the sum associated with a numerical series by means of

the corresponding Fourier series expansions. Using this argument we have shown the

advantage of a Fourier expansion over some other representations, particularly Frobenius

series, for example, and discuss how to calculate a Fourier series associated with a class of

trigonometric functions [5]. Thus, using Fourier series and the corresponding Parseval

identity we recover, in a different way, the same results presented in references [1,3].

Moreover, we derive several general results involving numerical series which cannot be

found, for instance, in reference [4].
In this article, we discuss the most general case involving a calculation of the Fourier

series associated with a convenient class of trigonometric functions. With our formulas one

can derive particular products involving odd numbers; recover the results presented in [5],

particularly the triple and fourth product involving odd integers; and derive several

interesting results associated with particular numerical series which cannot be found in

references [4,6].
The article is organized as follows: In Section 2, we present a convenient

class of trigonometric functions, we demonstrate two theorems associated with the

corresponding Fourier series and obtain our main result; in Section 3, we discuss particular

cases and we show some results involving sums associated with the numerical series, and
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the Parseval identity is used to obtain an interesting result. Finally, we present our

concluding remarks.

2. A class of trigonometric functions

In this section, we present a class of trigonometric functions which we shall discuss in

association with a convenient Fourier series expansion [7].
There are several trigonometric series that are not Fourier series. As an example, we

cite the function f(x)¼ cos2 x, with –�/2� x��/2, an even and periodic function whose

expansion in a Fourier series allows us to write f(x)¼ (1þ cos 2x)/2, i.e. in this case, a well-

known trigonometric identity involving the double arc. On the other hand, the same

function can be expressed on the same interval as a convergent trigonometric series that is

not a Fourier series [5].
We consider a class of trigonometric functions, the integer power of the cosine

function.1 The expansion of a power of cosine in terms of a multiple arc can be separated

in even power and odd power, respectively, as follows [6]:

cos2n x ¼
1

22n

Xn�1
k¼0

2
2n

k

� �
cos½2ðn� kÞx� þ

2n

n

� �( )
ð1Þ

and

cos2nþ1 x ¼
1

22n

Xn
k¼0

2nþ 1

k

� �
cos 2 n� kþ

1

2

� �
x

� 	( )
ð2Þ

with n¼ 1, 2, 3, . . . ,N.

Theorem 1: The periodic trigonometric function f(x)¼ cos2n x, n¼ 0, 1, 2, 3, . . . ,N, with

period p¼�, expanded in a Fourier series, on the interval –�/2� x��/2 reveals an identity

only.

Proof: To prove this theorem, we first have to calculate the corresponding Fourier

coefficients. We note that the function is even and thus the Fourier coefficients bm are

equal to zero for all m¼ 1, 2, 3, . . . Then we have to calculate only the coefficients

a0 ¼
2

�

Z �=2

��=2

f ðxÞdx and am ¼
2

�

Z �=2

��=2

f ðxÞ cosð2mxÞdx , ð3Þ

with m¼ 1, 2, 3, . . .
Introducing Equation (1) in Equation (3) we obtain, respectively,

a0 ¼
2

22n
2n

n

� �
ð4Þ

and2

am � an�k ¼
2

22n

Xn�1
k¼0

2n

k

� �
: ð5Þ
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Substituting Equations (4) and (5) in the Fourier expansion, we get3

f ðxÞ � cos2n x ¼
a0
2
þ
X1
m¼1

am cosð2mxÞ

¼
1

22n
2n

n

� �
þ

2

22n

Xn�1
k¼0

2n

k

� �
cos½2ðn� kÞx�

¼
1

22n
2n

n

� �
þ
Xn�1
k¼0

2
2n

k

� �
cos½2ðn� kÞx�

( )
, ð6Þ

which is the same as Equation (1), i.e. an identity œ

In such cases, in order to obtain a convenient Fourier expansion, i.e. an expression that

is not just a trigonometric identity, we must extend the trigonometric function on

a particular interval.

Theorem 2: The periodic trigonometric function f(x)¼ cos2nþ1 x, n¼ 0, 1, 2, 3, . . . ,N, with

period p¼�, expanded in a Fourier series on the interval –�/2� x��/2 has Fourier

coefficients

a0 ¼
4

� 22n

Xn
k¼0

2nþ 1

k

� �
ð�1Þn�k

2n� 2kþ 1

and4

am ¼
4

� 22n

Xn
k¼0

2nþ 1

k

� �
ð�1Þn�kþm

2k� 2n� 1

4m2 � ð2k� 2n� 1Þ2
,

with m¼ 1, 2, 3, . . .

Proof: In this case, the trigonometric function f(x)¼ cos2nþ1 x, n¼ 0, 1, 2, . . . ,N is also an

even function, so that bm¼ 0 for all m¼ 1, 2, 3, . . . Here we show only the first result,

i.e. the explicit calculation of a0. To this end we must calculate the integral

a0 ¼
4

�

Z �=2

0

1

22n

Xn
k¼0

2nþ 1

k

� �
cos½ð2n� 2kþ 1Þx�dx

and after a simple integration, we get

a0 ¼
4

� 22n

Xn
k¼0

2nþ 1

k

� �
ð�1Þn�k

2n� 2kþ 1

which is the Fourier coefficient for m¼ 0.
To obtain am, m¼ 1, 2, 3, . . . , we must calculate a similar integral, i.e.

am ¼
4

�

Z �=2

0

1

22n

Xn
k¼0

2nþ 1

k

� �
cos½ð2n� 2kþ 1Þx� cosð2mxÞdx:

Using a trigonometric identity involving a product of two cosines and simple integration,

we obtain the equations for the Fourier coefficients am, with m¼ 1, 2, 3, . . . See

Equation (7) below. œ
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We conclude this section pointing out that the Fourier series associated with the

trigonometric function f(x)¼ cos2n x on the interval –�/2� x��/2, periodic with period �,
produces only a well-known trigonometric identity, while for the same interval the Fourier

expansion for the trigonometric function f(x)¼ cos2nþ1 x yields

cos2nþ1 x ¼
2

� 22n

Xn
k¼0

2nþ 1

k

0
@

1
A ð�1Þn�k

2n� 2kþ 1

þ
X1
m¼1

4

� 22n

Xn
k¼0

2nþ 1

k

0
@

1
A ð�1Þn�kþm ð2k� 2n� 1Þ

4m2 � ð2k� 2n� 1Þ2

8<
:

9=
;cosð2mxÞ ð7Þ

with n¼ 0, 1, 2, . . . ,N and –�/2� x��/2.
We also mention that, if we change the order of the sums in the right-hand side of

Equation (7) and perform the infinite sum, using the result [4]

X1
k¼1

ð�1Þk

k2 � a2
cos kx ¼

�

2a
cos ax csc�a�

1

2a2
,

with –�� x��, we can recover Equation (2). Nevertheless, we do not take this way, as will

seen below.

3. Particular cases

As mentioned in the last section, we will not change the order of sums in order to perform

the infinite one. For our purposes, it is better to work with Equation (7).
First, taking n¼ 1 in Equation (7), we recover all results obtained in [5]. Also, using

Equation (7), for a fixed value of n, we can produce a large class of numerical series whose

sums are known. Here we present some new sums obtained by considering particular

values of the independent variable, for the case n¼ 2 only.
Thus, putting n¼ 2 into Equation (7) we get an expansion of the trigonometric

function f(x)¼ cos5 x, with –�/2� x��/2 in a Fourier series, periodic with period �,
as follows:

cos5 x ¼
16

15�
�
480

�

X1
m¼1

ð�1Þm

ð4m2 � 25Þð4m2 � 9Þð4m2 � 1Þ
cosð2mxÞ: ð8Þ

Using this expression with x¼ 0, x¼�/4 and x¼�/2, we obtain sums for the

corresponding numerical series.

3.1. The case x¼ 0

Putting x¼ 0 into Equation (8) and after a few simple manipulations, we get

X1
m¼1

ð�1Þm

ð4m2 � 25Þð4m2 � 9Þð4m2 � 1Þ
¼

16� 15�

7200
:
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After a simple rearrangement we obtain an interesting alternating numerical series

involving a product of six odd numbers, as follows:

1

1 � 3 � 5 � 7 � 9 � 11
�

1

3 � 5 � 7 � 9 � 11 � 13
þ

1

5 � 7 � 9 � 11 � 13 � 15
� � � � ¼

315�� 976

151200
:

3.2. The case x^ p/4

In this case putting x¼�/4 into Equation (8), we obtain

X1
m¼1

ð�1Þm

ð16m2 � 25Þð16m2 � 9Þð16m2 � 1Þ
¼

128� 15�
ffiffiffi
2
p

57600
:

3.3. The case x^ p/2

Putting x¼�/2 into Equation (8), we have

X1
m¼1

1

ð4m2 � 25Þð4m2 � 9Þð4m2 � 1Þ
¼

1

450
:

4. Parseval identity

As we already know, the Parseval identity, which relates the Fourier coefficients, is

useful also to calculate several definite integrals or sums [5]. Here we use the Parseval

identity, always associated with the case n¼ 2, to calculate the sum of another numerical

series.
Using Equation (8) and the Parseval identity, we obtain the following expression

X1
m¼1

1

ð4m2 � 25Þ2ð4m2 � 9Þ2ð4m2 � 1Þ2
¼

14175�2 � 65536

6635520000
:

In order to get this expression, we have also used the definition of gamma function [6].
Finally, as a by-product we can rearrange this expression to obtain the following

interesting infinity sum

1

ð1 � 3 � 5 � 7 � 9 � 11Þ2
þ

1

ð3 � 5 � 7 � 9 � 11 � 13Þ2
þ

1

ð5 � 7 � 9 � 11 � 13 � 15Þ2
þ � � �

¼
6251175�2 � 61669376

2926264320000
:

5. Concluding remarks

We have considered a convenient class of trigonometric functions f(x)¼ cosk x, for k

a positive integer, which are even functions for any value of k. One can put itself the

question, why not the function g(x)¼ sink x in lieu of f(x)? The simple anwser is: if k is an
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even number, g(x) is always an even function but in the case where k is an odd number,

we have an odd function, conversely, to the function f(x), which is always an even

function. For this end, the function g(x) as given above cannot represent a convenient class

of trigonometric function, in this case, i.e. on the considered interval.
We discussed the calculation of the Fourier series associated to a class of even

trigonometric functions f(x)¼ cosk x, where k is a positive integer. With the resulting

expressions we derived, for the case n¼ 2, particular series of products of odd numbers,

recovered some recent results involving triple and quadruple products of odd integers and

evaluated several interesting sums associated with particular numerical series.
Finally, we conjecture that the Fourier expansion for our convenient function, f(x),

can be related to the Riemann zeta function, �(z), in the sense that we have �(�2m)¼ 0

and �(1� 2m) 6¼ 0 for m¼ 1, 2, 3, . . . [8,9]. We will discuss this problem in a forthcoming

paper [10].
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Notes

1. We also note that another possible class of functions is g(x)¼ sin‘ x with ‘¼ 1, 2, 3, . . . expanded
on the interval a� x� b where a and b must be chosen in a convenient way. Here, we do not
discuss this case.

2. In the calculation of the Fourier coefficient am, we have two possibilities. One of them produces
the value m¼ k� n; as n4 k and m is a positive integer, this case must be omitted. The other
one produces m¼ n� k and then we have am� an�k.

3. Note that we do not have an infinite series. The unique term contributing to the sum is
m¼ n� k.

4. Note that the equation for am gives the same a0 for m¼ 0.
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Using the Hill cipher to teach cryptographic principles
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The Hill cipher is the simplest example of a block cipher, which takes a block of
plaintext as input, and returns a block of ciphertext as output. Although it is
insecure by modern standards, its simplicity means that it is well suited for the
teaching of such concepts as encryption modes, and properties of cryptographic
hash functions. Although these topics are central to modern cryptography, it
is hard to find good simple examples of their use. The conceptual and
computational simplicity of the Hill cipher means that students can experiment
with these topics, see them in action, and obtain a better understanding that
would be possible from a theoretical discussion alone. In this article, we define the
Hill cipher and demonstrate its use with different modes of encryption, and also
show how cryptographic hash functions can be both designed and broken.
Finally, we look at some pedagogical considerations.

Keywords: cryptography; teaching; Hill cipher

1. Basic cryptography

For this article, cryptography will be taken to mean the algorithms, software and hardware

necessary to transform a message or data, with a key, into data which is unreadable or

unrecoverable without using the key. We assume the following definitions:

Plaintext: This is the message or original data.
Key: A piece of information or data which are used as part of the encryption

process.
Encryption: This is transformation of the message, with the key, so that the result

is unreadable without the key.
Ciphertext: This is the result when the encryption routine is applied to the

plaintext.
Decryption: This is the process of undoing the encryption to turn the ciphertext

back into the original plaintext.
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