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Alternative proofs for inequalities of some trigonometric functions
Bai-Ni Guo® and Feng Qi°*

“School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City,
Henan Province 454010, China; b Research Institute of Mathemetical Inequality Theory,
Henan Polytechnic University, Jiaozuo City, Henan Province 454010, China

(Received 3 April 2007)

By using an identity relating to Bernoulli’s numbers and power series expansions
of cotangent function and logarithms of functions involving sine function, cosine
function and tangent function, four inequalities involving cotangent function,
sine function, secant function and tangent function are established.

Keywords: inequality; power series expansion; tangent function; secant function;
cosecant function; sine function; Bernoulli’s number

1. Introduction

The Bernoulli’s numbers B, and Euler’s numbers E, for nonnegative integers n are,
repectively, defined in [1,7] and [20, p. 1 and p. 6] by

2n
1+__1+Z( 1"~ 'B, i lt] <27 (h

and

2¢!/? N (=1)'E, 1\
=y L2 : 2
17 L 2m)! (2) > th<m &)
The following power series expansions are well known and can be found in [1] and
[7, pp. 227-229]:

2% B
cot x =— Z (2k):{ X*1 0 < x| < 7, (3)
sin > 22" "By o
ln7:—ZWx , O0<|x|<m, 4)
k=1 :
0 22/\'71(22k _ 1)Bk T
1 =y = = R x| <= 5
ncos x 2 KR! , < > &)
tanx o= 2KQ2%1 —1)By T
1 = *0 =. 6
T4 ke <=3 ©)
It is also well known [7, p. 231] that
x 1 7'[2”22”_1
Zm2n = (2n)! By. (7)

m=1
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The Becker—Stark’s inequality ([2], [13, p. 156] and [11]) states that for 0 < x < 1,
Y can T ®)
For x€(0,7/6), Djokvie’s inequality states [11] that
13 43
x—i—gx <tanx<x+§x. 9)

In [3], the following inequalities are proved: For x€(0, 7/2) and n € 1N,

22(11+1) 22(n+l) -1 B, 2 o
((2n ) VB X tanx < tanx — S,(x) < (;) x> tan x, (10)

where

n_ 922" =1)B; s

Su(x) = ;Wx =1 (11)

If taking n=11in (10), for 0 < x < (3/7)/5(w% — 8)/38, the left hand side inequality in
(10) is better than the left hand side inequality in (8). If taking =2 in (10), we obtain

1 2 1 2\*
x+§x3+Ex4tanx < tanx <x+§x3+ (;) x*tanx, xe (0, g) (12)

The constants 2/15 and (2/7)* in (12) are the best possible. Since

12\* 1 (2\'7 1 4
§+ (;) xtanx < §+ (;) Ejg < 3
the inequalities in (12) are better than those in (9).
Recently a number of articles have been published on inequalities involving
trigonometric functions [5,6,8-10,15,16,18], estimates of remainders of elementary
functions [12,14] and related questions [17,19].

The purpose of this article is to give the second proofs of the following four inequalities
involving some trigonometric functions, which were established in [4].

Theorem 1: For 0 < x <1,

2 X 1 T X

The constants 2/m and 7t/3 in (13) are the best possible.
For 0 < |x| <1, we have
X o x?
In{ —— —— 14
n(sin(rrx)) Te TN (14
X X’
ln(se07> < T T2 (15)
tanmx/2\ w7 X2
In| ———— —- . 1
n( )2 )<12 - (16)

The constants 7*/6, /8 and 7*/12 are the best possible.
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Remark 1: Notice that there are a large number of particular inequalities relating to
trigonometric functions in [11,13].

2. Proof of Theorem 1

The proof of inequality (13): Define for 0 < x < 1

1—x2/1
fix) = — =% <— - cot(nx)). (17
x \umx
Replacing x by mx in (3) yields

00 52k _2k+1
2% By 2k+1

20! X, 0< x| < 1. (18)

cot(mrx) =
k=1

Substituting (18) into (17) produces

2/22k1 2k+2 . 2k+1
Z(Z e +B] 1 2 +7T +Bk>x2k

S = 2k +2)! (2k)!

(19)

Using (7), (19) can be rewritten as

T > <n2k nzk+2> X

k=1 n=1

) =

w

It is easy to see that f(x) is strictly decreasing, then 2/m =lim,_, ; f{x) < flx) < lim,_,
f(x)=m/3. Inequality (13) follows. Ll

The proof of inequality (14): Define for 0 < x <1

2

—X X
X) =——5— . 2
&) 2 0 sin(mx) (20)
Replacing x by mx in (4) yields
o 2%k-12kp o
1. 21
sm(nx) ,; e @
Substituting (21) into (20) leads to
2 0 /a2k4l 2k42 2%—1_2k
g(x):n—— 27T T B 27 Bk o 22)
6 (k+ )2k + 2)! k(2k)!

Using (7), (22) can be rearranged to
7 &K1 1 I &K1 ok
s ="-2, (E’;W_—/wr i ;—nzwz)x

It is easy to see that g(x) is strictly decreasing, thus g(x) < lim._ o g(x) =7>/6 which is
equivalent to (14). ]
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The proof of inequality (15): Define for 0 < x < 1

— X2 X
h(x) = ———In (sec 7). 23)
Replacing x by 7x/2 in (5) yields
(221» _ l)ﬂzkkBk o
(sec—) Z won Y 0=k <1 (24)

Substituting (24) into (23) leads to

h(x) _ TLZ B i (22k _ l)ﬂsz B (22/<+2 _ 1)ﬂ2k+23k+1 xzk (25)
8 = 2k(2k)! 2k +2)(2k + 2)! '
Using (7), (25) can be rewritten as
7'[ o) 22k -1 1 22k+2 -1 & o
hx) =& - ; ( 22k 21: % (k4 12752 £ Z n2k+2) : (26)

It is clear that for k e N

Z Z ey
and

22k -1 22k+2 -1
K22k = (k + 1)22k+2'

(28)

From (26), (27) and (28), we readily obtain that h(x) is strictly decreasing.
Thus g(x) < lim,_, ¢ g(x) =7*/8, which is equivalent to (15). ]

The proof of inequality (16): Define for 0 < x < 1

" P
W)= n (“2;’;/ 2)- (29)

Replacing x by 7x/2 in (6) yields

=) 2k—1 __ 2k
1n(tan(ﬂxﬂ)) @ DB gy <1, (30)
k=1

x/2 e

Substituting (30) into (29) gives

(3D

B 7.[2 ) (22k—1 _ l)nZkBk B (22k+1 _ 1)7T2/(+2Bk+1 x2k
- . k(2k)! (k + D)2k +2)!
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Using (7), (31) can be rewritten as

7.[2 e 22k—1 11 22k+l —1 o) 1 o
o) =15~ kX—I: 02k ;nﬁ T (k + 122 Z;nzzprz A (32)
Combining (27) and (28) with (32), we see that ¢(x) is strictly decreasing. Hence
@(x) < lim,_,o ¢(x) =7*/12, which is equivalent to (16). O
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The implicit function theorem and non-existence of limit of functions of
several variables
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We use the Implicit Function Theorem to establish a result of non-existence of
limit to a certain class of functions of several variables. We consider functions
given by quotients such that both the numerator and denominator functions are
null at the limit point. We show that the non-existence of the limit of such
function is related with the gradient vectors of the numerator and denominator
functions. We prove the limit does not exist if the dimension of the vector
subspace spanned by the gradient vectors is >1.

Keywords: functions of several variables; implicit function theorem; limits

1. Introduction

We use the Implicit Function Theorem to establish a result of non-existence of limit to a
certain class of functions of several variables. To show that a function H of several
variables has no limit as we approach the origin, for example, we are using this to show
that there are two different paths towards the origin along which the function H has
different limits. Sometimes, it is a hard task finding these paths. Consider, for instance, the
following limit (given as an exercise in 3)

v

lim - -
X-+y

i H(x,y), where H(x,y)=
L (x,») (x,»)

Along all the paths given by y =ax or y=gx% for a, 8 € R, with B # —1, it is easy to see
that the function H(x, y) always tends to zero.

If we look to the zero level sets of the functions f(x,y) =x" and g(x,y) = x>+ y, we see
they intersect only at the origin, that is {(x,y) € R? flx,y) =0}N{(x,y) € R?
g(x,») =0} ={(0,0)}. Thus, clearly the previous limit does not exist since H(x, y) is not
bounded on any punctured neighbourhood of the origin.
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