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 The Remainder in Taylor's Formula*

 ESTEBAN I. POFFALD, Wabash College, Crawfordsville, IN

 ESTEBAN I. POFFALD completed his undergraduate studies at Universidad

 Catolica de Chile, Temuco, Chile. He received an M.S. in Mathematics from
 Universidad Tecnica de Chile for work done under the direction of G. Riera.

 His Ph.D. dissertation was done under the supervision of S. Reich at the

 University of Southern California. He has been at Wabash since 1985.

 We present here a mean-value theorem that generalizes the Taylor-Lagrange
 formula. The result arises in a natural way when one studies the asymptotic

 behavior of the remainder term of the formula. As an application of our result, we
 derive several numerical schemes to approximate the solution to initial-valued first

 order differential equations.

 To begin, let us recall the Taylor-Lagrange formula. For convenience, we work in
 intervals of the form [0, x].

 THEOREM. (Taylor-Lagrange formula). Iff is continuous in [0, x], f (n- 1)(O) exists
 and f (n)(t) exists in (0, x), then there exists a t in (0, x) such that

 f (x) = Pn-1 (X) + f (n) n! (1) n!

 where

 pI, _ J(X) = f (o) + f ?(O)x + f(?) - + ...+f(n-1)(0) p,11(x) =f(0) ?f'(0)x2! (n - 1)!

 is the Taylor polynomial of order n - 1 for f about 0.

 Our first result concerns the asymptotic behavior as x -- 0+ of the number t in
 the theorem above:

 THEOREM 1. With notation as in the previous theorem, if f (n+ 1)(t) exists in [0, x],
 is continuous from the right at t = 0 and if f (n +1)(O) # 0, then

 li1

 x o+ x n +1

 Remark. The assumptions in this theorem imply that the number t is uniquely
 determined for x small enough.

 *This work was supported in part by the Byron K. Trippet Research Stipend at Wabash College.
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 206 ESTEBAN I. POFFALD [March

 Proof of the theorem. In (1), we apply the Mean-Value theorem to f( )(f): there
 is a number T in (0, () such that

 xn

 f (x) =Pn_ 1(x) + f (n)() - )

 = Pn1(x) + [f'n)(o) + f(n1)(i-)t-X

 n!
 Xn~~~n

 = pn(X) + f (n, 1)(T7)t t
 n!

 On the other hand, by the Taylor-Lagrange formula

 xn +1

 f (x) = pn(x) + f (n)(a) (n + for some a in (0, x).

 Therefore,

 x

 f (n (T) f (na ) n + 1

 Since f(n?+1) is right-continuous and nonzero at t = 0, the conclusion follows.

 With notation as above, f(n)(4) n can be viewed as the error made in approxi-
 mating f(x) by p-1(x). In view of Theorem 1, one would expect that replacing t
 by x/(n + 1) and approximating f(x) by

 X xn

 AO(x) )Pn-l(X) + f (n) -
 n + ~n!

 would result in an approximation to f(x) of order at least that of pn(x). In fact, it
 turns out that this approximation is of the same order as Pn+l(x). We no longer
 require that f (n+)(0) # 0.

 THEOREM 2. If f(n+2)(t) exists and is continuous in [0, x], then there exists a { in
 (0, x) such that

 n xn+2

 f(x) A0(x) + 2(n + 1) f(n+2) (0) (n + 2)!

 =p1(X) + f (n)( 1f?n2(n
 n + 1 n! ?2(n + ) (n + 2)!

 Proof Using Taylor's formula with integral remainder, we can write

 x

 f (n + 1 f) = f()(0) + f(n+1)(0) n + n+lf l(n+2)(t) x - t dt.

 Therefore,

 xn
 x n+ ( F2 x 1 A0(X) = Pn+l(X) ? -yjfl?fn t ? tj dt
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 but

 1

 f (x) = Pn+ 1 (x) + ( + 1)! Jf (n+2)(t)(x-t) n+ ) dt.

 It follows that

 f(x) -Ao(x)= 1 j(n+2)(t)(X +1dt
 (n ?! f-

 x

 .f n+lf(n+2)(t)[(+t) - 1![n]]d]

 ( (x- )~ X t -n1 x

 n+ (n + 2)! lX(t) t dt-)nl

 g(t) n ? 1 -( + n 1 - t J
 Then g(O) = 0 and g'(t) > 0 in (0, x], so that g(t) > 0 in that interval. Therefore,
 we can apply the Mean-Value theorem for integrals to deduce that there are
 numbers 41 and 42 in (0, x) such that

 1
 f (X)-Ao(x) = ! x f (n 2(1+l 2g(t) ndt

 + +2)(t)I (x_ t) dt.

 (n ? 1)! j
 n+1 ~ n?

 Finally, an application of the Intermediate Value Theorem concludes the proof.
 In view of the way in which the statement of Theorem 2 follows naturally from

 Theorem 1, it should be clear at this point that we should try to determine the
 asymptotic behavior as x O+ 0 of the number ( in Theorem 2 and then establish a

 result similar to the one just presented. We are thus led to consider approximations
 to f (X) of the form

 gn xn?2

 ?kx = . ?"lx)+M2 f(n?2)(c2kx)!+ 2(+(cx +2 (n+?2k)

 where for a given n, the coefficients M21 and c2t depend only on i. Clearly, we have

 M= 1 and c0 = ?1

 In the spirit of Theorem 2, we want Ak(x) to be an approximation to f(x) of
 order n ? 2k ? 2. By expanding f (2u)(c2 tx) in Taylor polynomials about 0 and
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 collecting terms, we see that the sequences { M2j } and { C2j} can be obtained
 recursively from

 MO0 Ck M2 c2k2 M2k _21
 n! (2k)! (n + 2)! (2k - 2)! (n + 2k)! (n + 2k)! (

 M0 cok?1 M2 c2k1 M2k C2k 1

 n! (2k + 1)! (n + 2)! (2k-1)! (n + 2k)! 1! (n + 2k + 1)!

 (3)

 Then, one verifies readily that if f(n+2k+2) exists and is continuous at 0,

 f(x) - Ak(X) M2k _ 2 (n+_2k_+_2)()
 X-r xl+2k+2 (n + 2k + 2)!

 and, therefore, Ak(x) is indeed an approximation to f(x) of order n + 2k + 2. In
 fact, the following mean-value theorem holds.

 THEOREM 3. If f (n+2k)(t) exists and is continuous in [0, x], then there exists a

 number t in (0, x) such that

 x n+2k

 f (x) = Akl(x) + M2kf (n+2k)(~) (n + 2k)! (4)

 Moreover, 0 < M2J < 1 forj > 1 and 0 < C2j < 1 forj > 0.

 Proof By induction on k. For k = 1, this is just Theorem 2. Let us assume that

 the result holds for k > 1. Assume also that 0 < M2j < 1 for j = 1,..., k and
 0 < c2j < 1 for j = 0,..., k - 1. Finally, as part of the induction hypothesis,
 assume that gkl1(X) > 0 for 0 < A < 1, where

 (1 - X) n2k+1 M( - x)2k+1 M2k(c2k -

 gt(X) - (n + 2k + 1)! n!(2k + 1)! (n + 2k)!1!

 As usual, z + denotes the largest of 0 and z, for any real number z. (That go(X) > 0
 for 0 < X < 1 follows from Bernoulli's inequality.) First of all, observe that if f has

 n + 2k + 1 continuous derivatives and f(n+2k+1)(o) + 0, then limx0?+((/x)=
 C2k, where f in (0, x) satisfies

 f (x) = Ak-l(X) + M2k f (n+2k)(()
 (n+2k)!

 Therefore, 0 s< C2k < 1. This, together with the induction hypotheses, implies that

 gk(O) = gk(l) = 0. Notice also that g"(X) exists for X + C2k and g9k(X) = gk-l(X)*
 This implies that gk is convex in [0, C2k] and in [C2k, 11.

 If C2k + 0,1, then gk'(X) > 0 for X + 0, C2k, 1 implies that g' is increasing in
 [0, C2k] and in [C2k, 1]. We also have that g'(0) = g'(1) = 0, which implies that gk is
 convex and increasing in [0, C2k] and it is convex and decreasing in [c2k, 1]. The
 conclusion is that gk(X) > 0 in [0,11 with equality only for A = 0 and 1.

 If C2k were 0 or 1, then we could carry out the same analysis as above, using

 one-sided derivatives',instead. But c2k = 0 or 1 would imply that gk 0 in [0,1],
 which would force gk -1 0 in [0,1], contradicting the induction hypotheses.
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 Now we are ready to complete the proof:

 If f has n + 2k + 2 continuous derivatives in [0, x], we have

 k x n+2j k

 f (x) - Ak(x) = f(x)- E M2jf (n+2j)(C2jX) ( + 2])!
 j=O n+2)

 Now, expand each term in the right-hand side into its Taylor polynomial of degree

 2k - 2j + 1 about 0, with integral remainder, and collect terms. One gets
 n+2k+l

 f(x) - Ak(X) = f(n+2k+2)(t) (X - t)2k?1 dt

 - JC2j XA4 (n+2k+2)(t) (C2jX - t)2k-2j?l x +j t
 j= olo 2( (2k-2j + 1)! (n + 2j)!

 In each of the integrals above, substitute t = Xx. After rearranging, this gives

 f(x) - Ak(X) = xn+2k+2 ff(n+2k+2)(Xx) gk(X) dA.

 Since gk(X) > 0 in [0,1], we can apply the Mean-Value theorem for integrals to
 conclude the proof.

 Remarks.

 1. From the point of view of applications, it would be interesting to have a closed

 formula for the sequences {c2j} and {M2j} given by (2) and (3). Numerical
 computations suggest that for fixed n the sequence { c2j } is monotonically increas-
 ing while { M2 j } decreases to 0.

 2. If f is analytic in a disk with center at the origin and radius R > 0, then one
 can use the Cauchy-Hadamard estimates to deduce that the expansion

 0O x n+2j

 1(x) = Pn-l(X) + M2f(n+2j)(c2jx) (n ? 2j)!

 is valid in the disk jxl < R/2. In practice, however, the region of convergence of
 this expansion appears to be at least as large as that of the power series expansion of
 f. (Cf. Remark 4 below.) The validity of this statement may depend on the behavior

 of the sequences M2, and C2j as i -- x.
 3. For n = 1, both the statement and proof of our main result are simpler:

 elementary combinatorial identities reveal that in this case C2j = 1/2 and M2j=
 1/4j satisfy (2) and (3). This suggests the following proof for n = 1: In the
 Taylor-Lagrange formula

 f (b) = 1(a) f '(a)(b -a) ? * +f (m)(a) (b -a)m f (m+1)() (m ?)

 take m = 2k. Put a = x/2 and b = x; then, put a = x/2 and b = 0, subtract and
 appeal to the Intermediate Value Theorem, to deduce that there is a t in (0, x) such
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 that
 2k 2 X X 2j+1

 f =0 (2j + 1)(! 2 2
 2 (X] 2k1

 + f (2k+1) ( ) +(2k ? 1)!2
 It follows that if

 lim f (2k)( ) x 12k+1 0
 k - oo (2k?+1)!L- 2 -0

 then

 00 x)[X]2j1?

 f(x) =f(0) + 2 E f (2j4?1) i ) (5)
 j=O (2j + 1)! 2 2

 4. We are grateful to W. Swift for calling our attention to the fact that if f is
 analytic at 0, then (5) is valid for all x in the interior of the Borel polygon of
 summability of f. Recall that the Borel polygon of f is constructed as follows: Let
 P be a point in the complex plane where f has a singularity and let 0 denote the
 origin. Draw the line A/p perpendicular to OP at P. Then, a point x is in the Borel
 polygon of summability if and only if x is in the half plane determined by A p and 0,
 for all the singular points P of f. It then follows that x is in the interior of the Borel

 polygon if and only if f is analytic at every point of the closed disk with diameter Ox.
 Therefore, if x belongs to the Borel polygon of f, then

 001 IX\ X1n
 f(z) = E z_ x]

 n=O n

 holds for all z such that Iz - (x/2)1 < Ix/21. As above, putting z = x and then
 z = 0 and subtracting gives the result.

 Example. If f(x) = ln(l + x), then

 f (2k+1)(x) (2k)!

 Applying (5), we obtain

 00 1 x 2n+1

 ln(l + x) = 2 O 2n + 1 2 + x

 The Borel polygon of f is the half plane Re(x) > -1. Therefore, this expansion is
 valid for all x with Re(x) > -1. This should be contrasted with the circle of
 convergence of the Taylor series expansion for f(x) about x = 0. Even in the
 common region of convergence, this expansion converges faster. Since

 1
 arctan x = [ln(I + ix) - ln(l - ix)],

 2i

 we also obtain

 arctan x 2-i E [(x + 2i )2n+- (x -2ix l]
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 which is valid for -1 < lm(x) < 1. In particular, for all x real, arctan x may be
 computed using

 oo1

 arctanx= A 2 + 1An(x)
 n=02n+

 where

 4x r x 3

 Ao() 4 + X2' Al(x) = 4K + 2 (3X2 -
 and

 An=+2(x) K ?x+ 1[2(x - 4)An+l(x) -x2An(x)].

 For example,

 arctan2= k(l[kl + 8

 and

 16 00 1 f2n+1 (4)j
 5 n=0 =O 2n + 1 2j +1 52n

 An Application. We will now use Theorem 3 to derive several numerical methods
 of approximating the solution of the initial-valued differential equation

 y' = f (x, y) y(xo) = Yo,

 where f (and, therefore, y) is a sufficiently smooth function.
 Fix h > 0. For each nonnegative integer j, we are seeking an approximation Yj+i

 to the exact value of the solution y at xj+1 = xo + (j + 1)h. Let fj = f(xj, yj) and
 denote by E the error y(xj+1) - Yj+1, assuming that y(xi) = yi for 0 < i < j (E is
 the local discretization error). We will omit the derivation of the error term. Note,
 however, that in each case the error term can be derived using the main ideas in this
 note, namely expansion in Taylor polynomials with integral remainder followed by
 an application of the Mean-Value Theorem for integrals.

 (i). The Modified Euler's Method: for n = 1 and k= 1, we apply (4) (in the

 interval [xi1, xi+]) to obtain the approximation Yj1? = Yj-i + 2hfj with E =
 Y " (t )(h 3/3).

 (ii). For n = 2 and k = 1 and the interval [xj-2, xj+11, we get

 9h2

 y(Xj+l) -y(Xj-2) + 3hy'(xj-2) + 2Y"(Xi_l).

 Now, using the approximation y"(xj-1) [y'(xj) - y'(xj2)]/2h and rearrang-
 ing, we get Yj+1 = Yj-2 + (3h/4)[fj-2 + 3fj1 with the error term E =

 This approximation does not appear to be one of the standard multistep methods

 of elementary numerical analysis. However, applying it to approximate fbg(t) dt,
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 we obtain

 f"g(t) dt 1 -(b-a) g(a) + 3g(

 This is clearly asymmetric with respect to a and b, which suggests also considering
 the approximation

 g(t) dt = - (b -a) [g(b) + 3g )

 and then averaging these to obtain

 fbg(t) dt 1 8(b-a) g(a) + 3gg + g 3 g gb] a ~~8 1 31k3)
 which is the well-known Simpson's 3/8 Rule, with error - (1/6480)(b -a)5g(4) ).
 (iii). In (ii) above, we could equally well use the approximation y"(xj_1)

 [y(xj) - 2y(xj 1) + y(xj-2)]/h2, which gives
 I

 Yi+1 = 2 1Yj-2 - 18yj-l + 9yj] + 3hfj2,

 with E = (3/4)y(4)(t)h4.

 (iv). Now, we use (4) with n = 1, k = 2 and the interval [xj_3, xj+11 to get

 (4h)3
 Y(Xi+J) zY(Xj-3) + y'(xj-1)4h + y (xj_(xi-J

 Approximating y .'.(xj_0) as we approximated y"(xj_0) in (iii) above, we derive
 the multistep method

 YJ+1?-Y_3 + 4 h [2fj2 - + 2fj],

 with the error E = (14/45)y(5)(t)h5.

 (v). Again, we take n = 1 and k = 2, but we use the interval [xj>1, xj+11. This
 gives y(x1+l) y(xj1l) + y'(xJ)2h + y "`(xj)(2h)3/24. Using y tt'(xj)
 [y'(xj+ 1) - 2y'(xj) + y'(xj-1)]/h2, we obtain

 Yj+1 = Yj-i + (hl/3)[fj+l + 4fj + f-_],
 with E = (-1/90)y(5)(()h5. Observe that this last formula, when interpreted as a
 numerical integration method, gives the well known Simpson's Rule. Also, notice
 that the formula is implicit, since Yj+? appears also in the right-hand side. However,
 using this formula in conjunction with the one derived in (iv), we obtain a
 well-known predictor-corrector method (Milne's method):

 4h

 Y)(? = 1Yi3 + 3 [2fj - fj-l + 2fj-2]

 Yj+?l = Y1-il + 3 [ f P) + 4fj + ?j],
 where fjf+P = f(xi+, yj(+P)).

 Conclusion. All the results above arose from studying the error term in the
 Taylor's polynomial approximation to a given function. By no means is this
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 restricted to Taylor's polynomials: in general, suppose that A(f) is a numerical
 approximation to a functional F(f ) such that F(f ) = A (f ) + E( f ) for all f in an
 appropriate class of functions. If anything can be said about the error term E(f),
 then perhaps one should try to use A(f) + E(f) as a better approximation to
 F(f). Here, E(f) is an "estimate" of the error that does not depend on the
 particular function f. To illustrate this, consider the trapezoidal rule in numerical
 integration:

 fbf( dt (b-a)
 f (t) dt ~ 2 [ f (a) + f (b)].

 Now, the error of this approximation is -f"(()(b - a)3/12, for some ( in (a, b). It
 can then be shown that if f(3) is continuous and nonzero at a, then, as b > a+, c
 approaches the midpoint of [a, b], that is,

 (c-a) 1

 b-a+ (b-a) 2

 Therefore, we obtain the numerical integration method:

 af(t)dt 2 [f(a) +f(b)] f

 with error - (1/480)f (4)()(b - a)5. Finally, we note that if we approximate

 f( b) y [f(a) 2f(;b) +f(b)j/(;a)

 and replace, we obtain the approximation

 Sfs(t)dt r 6 uf(a) + 4fr 2 )e c

 i.e., Simpson's rule once again.
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