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ON THE DERIVATIVE
OF A DISCONTINUOUS FUNCTION

BY

F. M. FILIPCZAK (LODZ)

In this note we shall deal with finite real functions defined on the
interval I = (0,1). For a given function f we shall denote by C; the set
of its continuity points, by D, the set of its discontinuity points and by
A7 the set of points at which f has a derivative (finite or infinite).

Kronrod [2] has proved that a necessary and sufficient condition
for a set F to be the set of discontinuity points of a function f with a fi-
nite derivative at every continuity point is that Ee(F,~ Gy), i. e., H
is both an F, and a Gsset. As indicated by examples of functions with
a derivative everywhere, given by Garg [1] and Marcus [4], for a larger
class of functions f having a finite or infinite derivative at its continuity
points the condition Fe@s is not more necessary that ¥ = D, for a func-
tion f of that class. The set of discontinuity points of the mentioned func-
tions is dense and countable and thus it is not a Gs-set. In this connection
Garg [1] asked if for every set EeF, there exists a function f such that
E = D; and A7 o ;. The answer to this question is “no”, as stated
in corollary 1 below. It is worth while to note that as well the condition
of E<(F, ~ G,) as the condition of E being countable are sufficient for K
to be the set of discontinuity points of a function f of the class spoken of.
This follows from a theorem of Marcus [4], according to which for every
countable set there exists a function having a derivative everywhere
and such that the countable set in question is the set of its discontinuity
points. The reader may compare also a generalization of this theorem
given by Lipinski [3].

We shall use in some proofs the notion of a point of asymmetrical
structure of a function, introduced by Young. A number ! with — co <1
< oo will be called a left-hand limiting value of function f at point zel, if
there exists a sequence x,, #,, @5, ... of points from I such that x, < « for

n=1,2,...,limz, =2 and lim f(x,) = 1. A right-hand limiting value
Nn—00 N—00
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is defined analogously. A number ze will be called a point of asymmetrical
structure of f, if there exists a number I which either is a left-hand limit-
ing value of f and is not a right-hand limiting value of f at a, or it is
a right-hand limiting value of f at # and is not a left-hand one.
Further notation: f(z) and f(x) are upper and lower derivatives
of f at point x; E° is the set of condensation points of the set E; A, is the

set of asymmetrical structure of function f; A, is the set of points at which
f has a finite derivative.

LEMMA.  Let f be an arbitrary function and a a number with
—oo s a << oco. If any one of the sets {w|f(x) > a} and {x|f(x) < a} is
dense on I, then it is residual on I. -

Proof. We shall provide the proof for the set {a|f(x) > a} only,
for in the other case the reasoning is quite analogous.

We can assume that a -+ 4+ oo, since for a = —oo the lemma is
evidently true and for @ = + oo it is implied by the case of a finite a.

In fact, if for every natural » the sets {&|f(x) = n} are residual in I, then
80 is the set

@li(@) > oo} = N i) > n).

First we shall prove under an additional assumption of ¥ ~ C; being
dense in every open interval Y < I that the set ¥ ~ C; ~ {z|f(z) > a}
is residual on Y. To this end let K = Y be a non-empty open interval

and let O; = (M) G, where G, are open sets satisfying the condition
n=1

Gn> Guyy for n =1,2,3,... The sets G, ~ Y are dense on Y. Hence
we conclude that there exists a non-empty open interval K’ = K ~ G,.
In the interval K’ there exist two points x; and ¥, such that

f) —fim)

Yp—

0<y,—a <1, a—1 and <@,y < G,

For if such points did not exist, then for any two points z, y<K’
we had

<a—1,

fy)—f(o)
Yy—ax

and, consequently, we had f(r) <a—1 for any weK'. This, how-

ever, yields a contradiction with the assumption of {x|f(z) = a} being
dense.
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Suppose we have defined, for n > 1, the points z, and y, satisfying
the conditions

1 n)— T (@y 1
n y'n_wn n

Tp_ 1< Tp < Yn < Yn_1 and {®p, yn> < Gn-

In the interval (a,,y,) there exists a non-empty open interval K’
< (®n, Yn) » Guyy of lenght smaller than 1/(n+1) and in K" there are
two points x, ., and y,., such that

1 f(y7l-f—l)_'f(a7‘n+l) 1
0 << — L1 < >0— —
Yny1— Tpypa Al Yror— T i1’
Ly < Tpip < Ynip1 < Yn, {Bni1y Ynp1) S Guyy-

For if no such points were in K'’, we would get, as in the case of
K’, a contradiction with the assumption of {x|f(x) = a} being dense.
The intersection of the intervals (z,,¥,) is a one-point set (&).

For every n we have

1 F(Yn) —f(@n) f(yn) —f(E)+f(&) —f(@n)

TR g, Yo E+ e—wn
- (f(yn)—f(f), f(E)—f(wn)).
yn"'_ f E_wn
Let &, be that of the points x, and ¥, for which we have
F(&)—f(8) ( (f(ya)—f(&) f(E)—f(wn))
= Y — max 3 .
‘Sn— ":’-: yn_‘ E E_mn
We thus have
1 n) —
|Ep— &l < Yn—an < — and M>w—l
n En—iE n

for every n. These inequalities imply f(&) = a. Moreover, for every n
we have &e(n,y,) € K ~ G, and thus &eK ~ ;. From this and the
preceding sentence we conclude that £eK ~ Oy~ {z|f(z) > a}.

We have thus proved that for any open interval K < Y there
exists a point &eK ~ C;~ {®|f(z) < a}, which means that the set
Y ~C ~{x|f(z) > a} isdenseon Y. Now, as proved by Zahorski [7], the
set ¥ ~ C; ~ {&|f(x) > a} is a Gyset. Consequently it is residual on Y.

Let us pass now to the proof of the lemma in its full generality.
Suppose the set {x|f(z) = a} is not residual in I. The set {x|f(x) < a}
is residual on a certain interval Y, because it is an F,s-set of the second
category. We have f(z) = co at points xeD,\A;. Therefore the set
D; ~ {x|f(®) < a} is countable, as it is a part of a countable set A,
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(see [6]). We thus conclude that the set ¥ ~ ;> ¥ ~ O ~ {z|f(z) < a}
is dense on Y (it is even residual on V). Hence and in view of the first
part of the proof the set ¥ ~ {2|f(2) >a}> Y ~ ) ~ {2|j(z) > a} is
residual on Y. We have got a contradiction, for the sets ¥ ~ {z|f(z) < a}
and Y ~ {z|f(x) > a} cannot be residual simultaneously.

The proof of the lemma is complete.

THEOREM 1. If the set of discontinuity points of a function f has the
power of the continuum on every subinterval of I, then A7 is of the first
category on 1.

Proof. The set A; is countable. Consequently the set DN Ay has
the power of the continuum on every interval contained in I. But for
reDNA; we have f(r) = — oo and f(r) = co. Hence the sets
{e|f(®) < — oo} and {z|f() = co} are dense, and, in view of lemma,
they are residual on I. Since 47 = I\ ({#|f(z) < — oo} ~ {z[f(2) > oo}),
the set A7 is of the first category on I, q. e. d.

COROLLARY 1. If an F,set E < I is of the first category on I and
has the power of the continuum on every subinterval of I, then there is no
Junction f such that B = D; and A} > I\ H.

Proof. By virtue of the conditions imposed on ¥ and of theorem 1
we infer that if ##/ = D, for a function f, then A} is of the first category
and thus f cannot have a derivative f’'(2) at every point « of the residual
set INFE, q. e. d.

Remark. If FeF, and |E| = 1, then in view of theorem 1 there is
no function f such that D; = E and the set {z|f'(z) = oo} is residual on I.

In fact, the equations D; = F and E° = <0,1> imply that A7 i of
the first category on I.

Marcus [5] has proved that for any number a with 0 < a < 1 there
exists a function ¢ with a dense set of discontinuity points of measure a
such that it has on I a residual set of points at which its right-hand deriva-
tive exists and is equal to + co. It follows from the Remark that for
a =1 it is not possible to strengthen this theorem through replacing
the right-hand derivative by derivative. However, theorem 2 shows
that it is possible if 0 < a< 1.

THEOREM 2. Let A and B be two sets such that:

(a) A <=1 and A is countable,

(b) B I, BeF, and B is nowhere dense on I.

Then there exists a function ¢ with the following properties:

(1) D, =A4 v B,

(2) 47 > INB, where B is the closure of B,

(3) {z|¢' (x) = oo} is residual on I.
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Proof. The set A B is countable. Arrange its points into a se-
quence s, dg, ty, ... Put a; =0 and f(z) = ) b,, where b; = 0 and

@, <T
b, =2"" for n =2,3,4,... The function f nis non-decreasing and D
= ANB. The set I\ 4, has measure 0. Therefore there exists a Gsseb
C c I, dense on I and such that |C| =0 and IN4; < . By a theorem
of Zahorski [8] there exists an increasing continuous function g defined
on I such that 47 = I and {x|g'(x) = oo} = C.

Let B = |J B,, where B, are closed sets such that B, < B, , for
Nn=1

n=1,2,3,... The function

0 if zeI\B,
hiz) =11
(m) — if men\Bn—la
n
where n =1, 2,3, ... and B, is the empty set, is discontinuous at every

point z,e¢B and it is continuous at the remaining points.

In fact, if xz,eB, then h(zy) >0 and in every neighbourhood of x,
there is a point x of the set I~ B at which h(zx) = 0. Now, if z,¢I\ B,
then we have x,eI\ B, for every n. Let ¢ be an arbitrary positive number
and n, a positive integer such that 1/n, << £. There exists a ¢ > 0 such
that (z,— 0, xy+ 0) = IN\By,. For ze(®,— 9, x,+ d) we have h(z) < 1/n,
and |h(x)—h(x,)| = |h(x)] < 1/ny< €. This proves that the function &
is continuous at points x,eIN\B. Evidently 4, > {®|l/'(z) = 0} > I\ B.

We now define the function searched for by

¢(v) = f(z)+ g(2)+h(z).

As D; and D, are disjoint, we have D, = D;v D; = (A\B) v B
= A v B. In order to prove (2) and (3) let us note that if x,¢B v C,
then the derivatives f'(x,), ¢’ (x,) and h'(x,) exist and are finite, and if
x,eC B, then there exists a 6 >0 such that (z,— d,x,+ ) = I\B.
Now, if xe(xy— 0, xy+ 6), then h(x) = h(x,) = 0 and

p@)—p@)  fl@)—f(@) g(x) —g(@,) h () — h(,)

= - -
mo—wo w—wo LU-—-'EO m—-$0
_ J(@)—f () 4 g(x)—g(x,) = g(x)— g(2,) ,
m_mo w_wo .’B—.’Bo

because the function f is non-decreasing. The inequality and equation
g' (@) = oo imply ¢ (w,) = oo, q. e. d.

THEOREM 3. If the set of points at which a function f has a (finite
or infinite) derivative is residual on I, then Dy = A w B, where A is an
F_-set nowhere dense on I and B is countable.
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Proof. We have D;= (D;~ Dj) v (D, DS = A o B. The set
B = D/\Dj is countable, where as A = D, ~ DS is an F,-set, because
Dj is closed. Suppose A4 is not a nowhere dense set. Then there exists
an interval Y < I on which the set ¥ ~ 4 is dense. In every subinterval
of Y there exists a point of the set D> 4 and, consequently, the points
of D; belonging to Y form a set of the power of the continuum. Hence
and from theorem 1 it follows that A; is of the first category on Y. This,
however, contradicts the assumption of the theorem. The proof is thus
completed.

Theorems 2 and 3 characterize the set D, of function f which have
a derivative on a residual set. We can deduce from theorem 3 the theorem
of Garg we have spoken about in the introduction by substituting B = 0.

TurorREM 4. If the set of points at which a function f has no finite
derivative s of positive measure on every subinterval of I, then A3 is of the
first category on 1I.

Proof. Let Y < I be an arbitrary non-empty open interval. The
function f is not of bounded variation on ¥, because | Y~ 4y > 0. There-
tore the function F(x) = f(x)—a is not decreasing on Y. Thus there
exist points @, ¥, ¢Y such that 2, < y, and F(z,) < F (4,). Hence we get

F(y1)—f(2y) >1.

Y1— o,

Suppose we have defined, for » > 1, the points z, and v, such that

1
() Tp1 < Tpn < Yn < Yn_1, Yn— oy < 7‘;,

) —fm)

yn_wn

We prove in the same manner as above that in an interval L Vo)
< (@n, yn) of length smaller than 1/(n-+41) there exist points z, +1 and
Yn.y, Such that

1

T < Ty < Yng1 < Yny Yng1— Tnypy < m,

f(yn+1)-f(mn+1) >1

Yniy1— Tnypq

+n.

In this way we define by induction the sequences {w,} and {y,} of
points satisfying (%).
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Put <& = () (Za, ¥n). We obviously have f(£) = co. This means
1

Nn=

that the set {x|f(x) = oo} is dense on I and in view of the lemma it is

residual on I.
We prove analogously that also the set {x|f(x) = — oo} is resi-

dual. Now A} is a part of IN({#|f(#) = oo} ~ {& f(x) = — oo}). Hence
A7 is of the first category on I, q. e. d. B
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