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Abstract: By using the basic logarithmic inequality Inz < x — 1 we deduce integral inequali-
ties, which particularly imply the inequalities G < L < A for the geometric, logarithmic, resp.
arithmetic means.
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1 Introduction

Let a,b > 0. The logarithmic mean L = L(a, b) of a and b is defined by

L = L(a,b) = _bra fora # band L(a,a) = a. (1)

~ Inb—1Ina

Let G = G(a,b) = Vaband A = A(a,b) = GT—H) denote the classical geometric, resp.
logarithmic means of @ and .
One of the most important inequalities for the logarithmic mean (besides e.g. a < L(a,b) < b
for a < b) is the following:
G<L<Afora#b (2)

The left side of (2) was discovered by B. C. Carlson in 1966 ([1] see [2]), while the right side
in 1957 by B. Ostle and H. L. Terwilliger [3].

We note that relation (2) has applications in many subject of pure or applied mathematics and
physics including e.g. electrostatics, probability and statistics, etc. (see e.g. [4, 5]).

The following basic logarithmic inequality is well-known:
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Theorem 1.
Inz <x—1forallx > 0. (3)

There is equality only for v = 1.
Inequality (3) may be proved e.g. by considering the auxiliary function

flz) =2z —Ilnz —1,
and it is easy to show that x = 1 is a global minimum to f, so
flx) = f(1) =

Another proof is based on the Taylor expansion of the exponential function, yielding

t
e=1+t+ 3 e?, where 0 € (0,t). Putt = x — 1, and (3) follows.
The continuous arithmetic, geometric and harmonic means of positive, integrable function
f : [a,b] — R are defined by

I :
—b_alf(m)dx, Gy =ebt-a

b—
=t

/ e/ f(2)

By using (3) we will prove the following classical fact:

f: In f(z)dx

and

where a < b are real numbers.

Theorem 2.
Hy <Gy < Ay (4)

Then, by applying (4) for certain particular functions, we will deduce (2). In fact, (2) will be
obtained in a stronger form. The main idea of this note is the use of very simple inequality (3) in
the theory of means.

2 The proofs

Proof of Theorem 2. Put 0
— CL

/f

in (3), and integrate on ¢ € [a, b] the obtained inequality. One gets

(b—a) [ f(t)dt

/mf( (( /f dt))b—a /f —(b—a)=0.
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This gives the right side of (4).
1
Apply now this inequality to ? in place of f. As

1
lnm = —In f(1),

we immediately obtain the left side of (4).

Corollary 1. If f is as above, then

(/abf(t)dt) (/b %dt) > (b—a)>. (5)

This follows by Hy < Ay in (4).

Remark 1. Let f be continuous in [a, b]. The above proof shows that there is equality e.g. in
right side of (4) if

1= 5= [ s (6

By the first mean value theorem of integrals, there exists ¢ € [a, b] such that

1
b—a

b
/f@ﬁzﬂd

Since by (6) one has f(t) = f(c) forall ¢t € [a, b], f is a constant function.
When f is integrable, as

(b—a)f(t)

b

/ F(t)dt

a

as for g(t) = In > () one has

[ stwar=o,

it follows by a known result that g(¢) = 0 almost everywhere (a.e.). Therefore

16 =5 [ s

a.e., thus f is a constant a.e.

Remark 2. If f is continuous, it follows in the same manner, that in the left side of (4) there is
equality only for f = constant. The same is true for inequality (5).
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1
Proof of (2). Apply G; < Ay to f(z) = —. Remark that
Xz

1 b
b—a/a Inxdx =1InI(a,b),

where a < I(a,b) < b.

This mean is known in the literature as “identric mean” (see e.g. [4]). As f(z) = — is not
T

constant, we get by

1 1
Y= Ty

that
L<I (7)

Applying the same inequality Gy < Ay to f(z) = x one obtains

I <A (8)

Remark 3. Inequalities (7) and (8) can be deduced at once by applying all relations of (4) to
f(z) = x. Apply now (5) to f(t) = €. After elementary computations, we get

eb —e® a+b

. e 9)

As f(t) > 0 for any ¢ € R, inequality (9) holds true for any a,b € R, b > a. Replace now
b :=1Inb, a := In a, where now the new values of a and b are > 0. One gets from (9):

L>G (10)
By taking into account of (7) — —(10), we can write:
G<L<I<A, (11)

i.e. (2) is proved (in improved form on the right side).
Remark 4. Inequality (4) (thus, relation (10)) follows also by Gy < Ay applied to f(t) = €.

Remark 5. The right side of (2) follows also from (5) by the application f(t) = t. As

b 2 _ 2 b
b* — 1
/ tdt = 5 “ and / Zdt = (Inb—1Ina),

the relation follows.

Remark 6. Clearly, in the same manner as (4), the discrete inequality of means can be proved,
(x1,...,2, > 0).

by letting x = ————
y & T+ ... +x,
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