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Abstract: By using the basic logarithmic inequality lnx ≤ x − 1 we deduce integral inequali-
ties, which particularly imply the inequalities G < L < A for the geometric, logarithmic, resp.
arithmetic means.
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1 Introduction

Let a, b > 0. The logarithmic mean L = L(a, b) of a and b is defined by

L = L(a, b) =
b− a

ln b− ln a
for a 6= b and L(a, a) = a. (1)

Let G = G(a, b) =
√
ab and A = A(a, b) =

a+ b

2
denote the classical geometric, resp.

logarithmic means of a and b.
One of the most important inequalities for the logarithmic mean (besides e.g. a < L(a, b) < b

for a < b) is the following:
G < L < A for a 6= b (2)

The left side of (2) was discovered by B. C. Carlson in 1966 ([1] see [2]), while the right side
in 1957 by B. Ostle and H. L. Terwilliger [3].

We note that relation (2) has applications in many subject of pure or applied mathematics and
physics including e.g. electrostatics, probability and statistics, etc. (see e.g. [4, 5]).

The following basic logarithmic inequality is well-known:
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Theorem 1.
lnx ≤ x− 1 for all x > 0. (3)

There is equality only for x = 1.
Inequality (3) may be proved e.g. by considering the auxiliary function

f(x) = x− lnx− 1,

and it is easy to show that x = 1 is a global minimum to f , so

f(x) ≥ f(1) = 0.

Another proof is based on the Taylor expansion of the exponential function, yielding

et = 1 + t+
t2

2
· eθ, where θ ∈ (0, t). Put t = x− 1, and (3) follows.

The continuous arithmetic, geometric and harmonic means of positive, integrable function
f : [a, b]→ R are defined by

Af =
1

b− a

∫ b

a

f(x)dx, Gf = e
1

b−a

∫ b
a ln f(x)dx

and
Hf =

b− a∫ b

a

dx/f(x)

,

where a < b are real numbers.
By using (3) we will prove the following classical fact:

Theorem 2.
Hf ≤ Gf ≤ Af (4)

Then, by applying (4) for certain particular functions, we will deduce (2). In fact, (2) will be
obtained in a stronger form. The main idea of this note is the use of very simple inequality (3) in
the theory of means.

2 The proofs

Proof of Theorem 2. Put

x =
(b− a)f(t)∫ b

a

f(t)dt

in (3), and integrate on t ∈ [a, b] the obtained inequality. One gets

∫ b

a

ln f(t)dt−
((

1

b− a

∫ b

a

f(t)dt

))
(b− a)≤

(b− a)
∫ b

a

f(t)dt∫ b

a

f(t)dt

− (b− a)= 0.
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This gives the right side of (4).

Apply now this inequality to
1

f
in place of f . As

ln
1

f(t)
= − ln f(t),

we immediately obtain the left side of (4).

Corollary 1. If f is as above, then(∫ b

a

f(t)dt

)(∫ b

a

1

f(t)
dt

)
≥ (b− a)2. (5)

This follows by Hf ≤ Af in (4).

Remark 1. Let f be continuous in [a, b]. The above proof shows that there is equality e.g. in
right side of (4) if

f(t) =
1

b− a

∫ b

a

f(t)dt. (6)

By the first mean value theorem of integrals, there exists c ∈ [a, b] such that

1

b− a

∫ b

a

f(t)dt = f(c).

Since by (6) one has f(t) = f(c) for all t ∈ [a, b], f is a constant function.
When f is integrable, as

∫ b

a

ln

(b− a) f(t)∫ b

a

f(t)dt

 dt = 0,

as for g(t) = ln
(b− a)f(t)∫ b

a

f(t)dt

> 0 one has

∫ b

a

g(t)dt = 0,

it follows by a known result that g(t) = 0 almost everywhere (a.e.). Therefore

f(t) =
1

b− a

∫ b

a

f(t)dt

a.e., thus f is a constant a.e.

Remark 2. If f is continuous, it follows in the same manner, that in the left side of (4) there is
equality only for f = constant. The same is true for inequality (5).
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Proof of (2). Apply Gf ≤ Af to f(x) =
1

x
. Remark that

1

b− a

∫ b

a

lnxdx = ln I(a, b),

where a < I(a, b) < b.

This mean is known in the literature as ”identric mean” (see e.g. [4]). As f(x) =
1

x
is not

constant, we get by

Af =
1

L(a, b)
, Gf =

1

I(a, b)
,

that
L < I (7)

Applying the same inequality Gf ≤ Af to f(x) = x one obtains

I < A (8)

Remark 3. Inequalities (7) and (8) can be deduced at once by applying all relations of (4) to
f(x) = x. Apply now (5) to f(t) = et. After elementary computations, we get

eb − ea

b− a
> e

a+b
2 (9)

As f(t) > 0 for any t ∈ R, inequality (9) holds true for any a, b ∈ R, b > a. Replace now
b := ln b, a := ln a, where now the new values of a and b are > 0. One gets from (9):

L > G (10)

By taking into account of (7)−−(10), we can write:

G < L < I < A, (11)

i.e. (2) is proved (in improved form on the right side).

Remark 4. Inequality (4) (thus, relation (10)) follows also by Gf ≤ Af applied to f(t) = et.

Remark 5. The right side of (2) follows also from (5) by the application f(t) = t. As∫ b

a

tdt =
b2 − a2

2
and

∫ b

a

1

t
dt = (ln b− ln a),

the relation follows.

Remark 6. Clearly, in the same manner as (4), the discrete inequality of means can be proved,
by letting x =

nxi
x1 + . . .+ xn

(x1, . . . , xn > 0).
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