A basic logarithmic inequality, and the logarithmic mean

József Sándor
Department of Mathematics, Babeş-Bolyai University
Str. Kogalniceanu nr. 1, 400084 Cluj-Napoca, Romania
e-mail: jjsandor@hotmail.com

Abstract

By using the basic logarithmic inequality $\ln x \leq x-1$ we deduce integral inequalities, which particularly imply the inequalities $G<L<A$ for the geometric, logarithmic, resp. arithmetic means.

Keywords: Logaritmic function, Logarithmic mean, Means and their inequalities.
AMS Classification: 26D15, 26D99.

1 Introduction

Let $a, b>0$. The logarithmic mean $L=L(a, b)$ of a and b is defined by

$$
\begin{equation*}
L=L(a, b)=\frac{b-a}{\ln b-\ln a} \text { for } a \neq b \text { and } L(a, a)=a . \tag{1}
\end{equation*}
$$

Let $G=G(a, b)=\sqrt{a b}$ and $A=A(a, b)=\frac{a+b}{2}$ denote the classical geometric, resp. logarithmic means of a and b.

One of the most important inequalities for the logarithmic mean (besides e.g. $a<L(a, b)<b$ for $a<b$) is the following:

$$
\begin{equation*}
G<L<A \text { for } a \neq b \tag{2}
\end{equation*}
$$

The left side of (2) was discovered by B. C. Carlson in 1966 ([1] see [2]), while the right side in 1957 by B. Ostle and H. L. Terwilliger [3].

We note that relation (2) has applications in many subject of pure or applied mathematics and physics including e.g. electrostatics, probability and statistics, etc. (see e.g. [4, 5]).

The following basic logarithmic inequality is well-known:

Theorem 1.

$$
\begin{equation*}
\ln x \leq x-1 \text { for all } x>0 . \tag{3}
\end{equation*}
$$

There is equality only for $x=1$.
Inequality (3) may be proved e.g. by considering the auxiliary function

$$
f(x)=x-\ln x-1,
$$

and it is easy to show that $x=1$ is a global minimum to f, so

$$
f(x) \geq f(1)=0
$$

Another proof is based on the Taylor expansion of the exponential function, yielding $e^{t}=1+t+\frac{t^{2}}{2} \cdot e^{\theta}$, where $\theta \in(0, t)$. Put $t=x-1$, and (3) follows.

The continuous arithmetic, geometric and harmonic means of positive, integrable function $f:[a, b] \rightarrow \mathbb{R}$ are defined by

$$
A_{f}=\frac{1}{b-a} \int_{a}^{b} f(x) d x, \quad G_{f}=e^{\frac{1}{b-a} \int_{a}^{b} \ln f(x) d x}
$$

and

$$
H_{f}=\frac{b-a}{\int_{a}^{b} d x / f(x)}
$$

where $a<b$ are real numbers.
By using (3) we will prove the following classical fact:

Theorem 2.

$$
\begin{equation*}
H_{f} \leq G_{f} \leq A_{f} \tag{4}
\end{equation*}
$$

Then, by applying (4) for certain particular functions, we will deduce (2). In fact, (2) will be obtained in a stronger form. The main idea of this note is the use of very simple inequality (3) in the theory of means.

2 The proofs

Proof of Theorem 2. Put

$$
x=\frac{(b-a) f(t)}{\int_{a}^{b} f(t) d t}
$$

in (3), and integrate on $t \in[a, b]$ the obtained inequality. One gets

$$
\int_{a}^{b} \ln f(t) d t-\left(\left(\frac{1}{b-a} \int_{a}^{b} f(t) d t\right)\right)(b-a) \leq \frac{(b-a) \int_{a}^{b} f(t) d t}{\int_{a}^{b} f(t) d t}-(b-a)=0
$$

This gives the right side of (4).
Apply now this inequality to $\frac{1}{f}$ in place of f. As

$$
\ln \frac{1}{f(t)}=-\ln f(t)
$$

we immediately obtain the left side of (4).
Corollary 1. If f is as above, then

$$
\begin{equation*}
\left(\int_{a}^{b} f(t) d t\right)\left(\int_{a}^{b} \frac{1}{f(t)} d t\right) \geq(b-a)^{2} . \tag{5}
\end{equation*}
$$

This follows by $H_{f} \leq A_{f}$ in (4).
Remark 1. Let f be continuous in $[a, b]$. The above proof shows that there is equality e.g. in right side of (4) if

$$
\begin{equation*}
f(t)=\frac{1}{b-a} \int_{a}^{b} f(t) d t \tag{6}
\end{equation*}
$$

By the first mean value theorem of integrals, there exists $c \in[a, b]$ such that

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t=f(c) .
$$

Since by (6) one has $f(t)=f(c)$ for all $t \in[a, b], f$ is a constant function.
When f is integrable, as

$$
\int_{a}^{b} \ln \left[(b-a) \frac{f(t)}{\int_{a}^{b} f(t) d t}\right] d t=0
$$

as for $g(t)=\ln \frac{(b-a) f(t)}{\int_{a}^{b} f(t) d t}>0$ one has

$$
\int_{a}^{b} g(t) d t=0
$$

it follows by a known result that $g(t)=0$ almost everywhere (a.e.). Therefore

$$
f(t)=\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

a.e., thus f is a constant a.e.

Remark 2. If f is continuous, it follows in the same manner, that in the left side of (4) there is equality only for $f=$ constant. The same is true for inequality (5).

Proof of (2). Apply $G_{f} \leq A_{f}$ to $f(x)=\frac{1}{x}$. Remark that

$$
\frac{1}{b-a} \int_{a}^{b} \ln x d x=\ln I(a, b)
$$

where $a<I(a, b)<b$.
This mean is known in the literature as "identric mean" (see e.g. [4]). As $f(x)=\frac{1}{x}$ is not constant, we get by

$$
A_{f}=\frac{1}{L(a, b)}, \quad G_{f}=\frac{1}{I(a, b)}
$$

that

$$
\begin{equation*}
L<I \tag{7}
\end{equation*}
$$

Applying the same inequality $G_{f} \leq A_{f}$ to $f(x)=x$ one obtains

$$
\begin{equation*}
I<A \tag{8}
\end{equation*}
$$

Remark 3. Inequalities (7) and (8) can be deduced at once by applying all relations of (4) to $f(x)=x$. Apply now (5) to $f(t)=e^{t}$. After elementary computations, we get

$$
\begin{equation*}
\frac{e^{b}-e^{a}}{b-a}>e^{\frac{a+b}{2}} \tag{9}
\end{equation*}
$$

As $f(t)>0$ for any $t \in \mathbb{R}$, inequality (9) holds true for any $a, b \in \mathbb{R}, b>a$. Replace now $b:=\ln b, a:=\ln a$, where now the new values of a and b are >0. One gets from (9):

$$
\begin{equation*}
L>G \tag{10}
\end{equation*}
$$

By taking into account of $(7)--(10)$, we can write:

$$
\begin{equation*}
G<L<I<A \tag{11}
\end{equation*}
$$

i.e. (2) is proved (in improved form on the right side).

Remark 4. Inequality (4) (thus, relation (10)) follows also by $G_{f} \leq A_{f}$ applied to $f(t)=e^{t}$.
Remark 5. The right side of (2) follows also from (5) by the application $f(t)=t$. As

$$
\int_{a}^{b} t d t=\frac{b^{2}-a^{2}}{2} \text { and } \int_{a}^{b} \frac{1}{t} d t=(\ln b-\ln a)
$$

the relation follows.
Remark 6. Clearly, in the same manner as (4), the discrete inequality of means can be proved, by letting $x=\frac{n x_{i}}{x_{1}+\ldots+x_{n}}\left(x_{1}, \ldots, x_{n}>0\right)$.

References

[1] Carlson, B. C. (1966) Some inequalities for hypergeometric functions, Proc. Amer. Math. Soc.,
17, 32-39
[2] Carlson, B. C. (1972) The logarithmic mean, Amer. Math. Monthly, 79, 615-618.
[3] Ostle, B., \& Terwilliger, H. L. (1957) A comparison of two means, Proc. Montana Acad. Sci., 17, 69-70.
[4] Sándor, J. (1990) On the identric and logarithmic means, Aeq. Math., 40, 261-270.
[5] Lorenzen, G. (1994) Why means in two arguments are special, Elem. Math., 49, 32-37.

