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We provide isomorphic classifications of some C(K, X) spaces, the Banach spaces 
of all continuous X-valued functions defined on infinite compact metric spaces K, 
equipped with the supremum norm. We first introduce the concept of ω1-quotient of 
Banach spaces X. Thus, we prove that if X has some ω1-quotient which is uniformly 
convex, then for all K1 and K2 the following statements are equivalent:

(a) C(K1, X) is isomorphic to C(K2, X).
(b) C(K1) is isomorphic to C(K2).

This allows us to classify, up to an isomorphism, some C(K, Y ⊕ lp(Γ)) spaces, 
1 < p ≤ ∞, and certain C(S) spaces involving large compact Hausdorff spaces S.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We refer the reader to [1,7,18] for details on standard notation and terminology we use in the paper. For 
a compact Hausdorff topological space K let C(K, X) denote the Banach space of all continuous X-valued 
functions defined on K, equipped with the supremum norm. This space will be denoted by C(K) in the 
case where X = R. As usual, in the case where K is the interval of ordinals [0, α] endowed with the order 
topology, these spaces will be denoted respectively by C(α, X) and C(α). When α is the first infinite ordinal, 
these spaces will be also denoted by c0(X) and c0 respectively. If K and S are compact Hausdorff spaces, 
we denote by K ⊕ S and K × S respectively the topological sum and the topological product of K and S. 
For a fixed cardinal number m ≥ 1, 2m denotes the Cantor cube, that is, the product of m family of copies 
of the two-point space 2, provided with the product topology. If X and Y are Banach spaces, then X ∼ Y

means that X is isomorphic to Y and X � Y means that Y is isomorphic to a quotient of X. Finally, the 
symbol X ⊕ Y denotes the Cartesian product of X and Y .
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The central result on the isomorphic classification of separable C(K) spaces, that is, K are metric spaces, 
is Milutin’s Theorem [13], see [16]. This result states that if K is an uncountable compact metric space, 
then

C(K) ∼ C(2ℵ0). (1.1)

In the case where K is a countable compact metric space, a classical Mazurkiewicz and Sierpiński’s Theorem 
[12] asserts that K is homeomorphic to some interval of ordinals [0, α] for some ordinal α < ω1, where ω1
is the first uncountable ordinal. The isomorphic classification of the C(α) spaces was done by Bessaga and 
Pełczyński [2] in the following way. Let ξ and η be two ordinals such that ω ≤ ξ ≤ η < ω1. Then

C(ξ) ∼ C(η) ⇔ η < ξω. (1.2)

In the present paper we are mainly interested in getting the isomorphic classification of certain spaces 
involving the spaces (1.1) and (1.2). The starting point of our research is the fact that recently in [10] it 
was provided an extension of (1.2) to the vector-valued case. Namely, recall that a subspace H of a Banach 
space X is a maximal factor of X whenever X is the direct sum of H and some subspace Y of X such that 
every finite sum Y n of Y contains no copy of H. Then, the main result of [10] is as follows.

Theorem 1.1. Let X be a Banach space containing some uniformly convex maximal factor and ordinals 
ω ≤ ξ ≤ η < ω1. Then

C(ξ,X) ∼ C(η,X) ⇔ η < ξω.

Of course Theorem 1.1 can be applied to obtain the isomorphic classifications of so many C(α, X) spaces, 
where ω ≤ α < ω1. In particular, since C(2m) contains no copy of the classical uniformly convex Banach 
spaces lp(Γ), 1 < p < ∞, whenever Γ is an uncountable set [5], [14, Proposition 8.11] and moreover

C(α,C(2m)) ∼ C(2m), (1.3)

for all ω ≤ α < ω1 and infinite cardinal m, it follows by Theorem 1.1 that the isomorphic classification of 
the following spaces is the same as that of C(α) spaces, ω ≤ α < ω1, mentioned in (1.2)

C(α,C(2m) ⊕ lp(Γ)) ∼ C(2m) ⊕ C(α, lp(Γ)). (1.4)

On the other hand, observe that when Γ is finite, the spaces (1.4) are isomorphic to C(2m), for all ω ≤ α < ω1
and infinite cardinal m.

Then, it is natural to look for the complete isomorphic classification of the spaces (1.4) when 1 ≤ p ≤ ∞. 
The study of this question in the case where p �= 1 led us to obtain two more general isomorphic classifications 
of some C(K, X) spaces for infinite compact metric spaces K. So, our contribution to answering the above 
question will be presented as a consequence of them. More precisely, in Section 3 we will prove:

Theorem 1.2. Let Y be a Banach space, 1 < p < ∞ and Γ be an infinite set. Suppose that Y ∗ contains no 
copy of lq, where 1/p + 1/q = 1. Then for all infinite compact metric spaces K1 and K2,

C(K1, Y ⊕ lp(Γ)) ∼ C(K2, Y ⊕ lp(Γ)) ⇔ C(K1) ∼ C(K2).

Therefore in the case where 1 < p < 2, since the dual of each C(2m) space contains no copy of lq, with 
q > 2 [1, Theorem 6.4.19.i], the isomorphic classification of the spaces (1.4) with 1 < p < 2 is a corollary of 
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Theorem 1.2 regardless of whether the infinite set Γ is countable or uncountable. This furnishes a solution 
to [10, Problem 4.3.a] when 1 < p < 2.

Furthermore, recall that the density character of a topological space F (denoted by dens F ) is the smallest 
cardinality of a dense subset of F and denote by |Γ| the cardinality of a set Γ. In Section 4 we will prove 
the following theorem.

Theorem 1.3. Let Y be a Banach space and Γ an infinite set. Suppose that dens Y < 2|Γ|. Then for all 
infinite compact metric spaces K1 and K2,

C(K1, Y ⊕ l∞(Γ)) ∼ C(K2, Y ⊕ l∞(Γ)) ⇔ C(K1) ∼ C(K2).

Thus, since densC(2m) = m, for every infinite cardinal m [18, Corollary 8.2.6 and Proposition 7.6.5],
Theorem 1.3 provides the isomorphic classification of the spaces (1.4) when p = ∞ and ℵ0 ≤ m < 2|Γ|. In 
the case where m = |Γ| = ℵ0, Theorem 1.3 solves [10, Problem 4.3.c].

In order to prove Theorems 1.2 and 1.3, in the next section we state our main result (Theorem 2.4) which 
is a suitable extension of Theorem 1.1.

2. The isomorphic classification of certain C(K, X) spaces

Concerning Theorem 1.1 our main technical improvement in this paper is to replace the uniformly convex 
maximal factor of X by a similarly positioned subspace of X which has a uniformly convex quotient. We 
start by introducing the following definition:

Definition 2.1. We say that a Banach space Z is an ω1-quotient of a Banach space X if there exist subspaces 
A and B of X such that

(a) X = A ⊕B,
(b) B � Z,
(c) C(ξ, A) ⊕Bn �� c0(Z), for every ω ≤ ξ < ω1 and 1 ≤ n < ω.

Remark 2.2. The above definition was inspired by the proof of [9, Theorem 2]. This result states that if 
F is the uniformly convex Banach space introduced by Figiel in [8] and Z = F ∗, then for all ordinals 
ω ≤ ξ ≤ η < ω1,

C(ξ, C(2ℵ0) ⊕ Z) ∼ C(η, C(2ℵ0) ⊕ Z) ⇔ η < ξω.

In order to prove this, it was shown that for all 1 ≤ n < ω,

C(2ℵ0) ⊕ Zn �� c0(Z). (2.1)

Thus, we can see Definition 2.1 as a refinement of this technical obstruction to maps onto c0 sums. Indeed, 
according to (1.3) and (2.1) we deduce that the dual of the Figiel space F is an ω1-quotient of C(2ℵ0) ⊕F ∗.

Remark 2.3. Notice that ω1-quotients of a Banach space X are in fact quotients of X; while l1 is not an 
ω1-quotient of itself. Moreover, any Banach space Z containing no quotient isomorphic to c0 is an ω1-quotient 
of itself. Indeed, if the item (c) of Definition 2.1 does not hold with A = 0 and B = Z, then

Zn � c0(Z) � c0,
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for some 1 ≤ n < ω. Therefore by [17, Theorem 2] c0 is isomorphic to a quotient of Z, which is an absurd. 
In particular, each uniformly convex space is an ω1-quotient of itself.

The aim of this section is to prove the following isomorphic classification.

Theorem 2.4. Let X be a Banach space having an ω1-quotient which is uniformly convex. Then for all 
infinite compact metric spaces K1 and K2,

C(K1, X) ∼ C(K2, X) ⇔ C(K1) ∼ C(K2).

Before proving this theorem, we shall state two propositions.

Proposition 2.5. Let A, B and Z be Banach spaces such that Z is uniformly convex and ordinals ω ≤ ξ ≤
η < ω1. Suppose that

(a) B � Z,
(b) A ⊕Bn �� c0(Z), for every 1 ≤ n < ω.

Then

A⊕ C(ξ,B) � C(η, Z) =⇒ η < ξω.

Proof. First we will show by transfinite induction that for any 0 ≤ α < ω1 and γ < ωωα

A⊕ C(γ,B) �� C(ωωα

, Z). (2.2)

The hypothesis (b) covers the case α = 0. Next suppose that β = α + 1, for some ordinal α, and for all 
γ < ωωα (2.2) holds. Assume that

A⊕ C(γ1, B) � C(ωωβ

, Z) = C((ωωα

)ω, Z), (2.3)

for some γ1 < ωωβ .
Now observe that if γ1 < ωωα then C(ωωα

, B) � C(γ1, B). Moreover, if ωωα ≤ γ1, then by (1.2) we have 
C(ωωα

, B) ∼ C(γ1, B). Thus, by (2.3)

A⊕ C(ωωα

, B) � C((ωωα

)ω, Z).

Therefore by [9, Proposition 5.4] there exists an ordinal γ2 < ωωα such that

A⊕ C(γ2, B) � C(ωωα

, Z),

but this contradicts (2.2).
Finally suppose that β is a limit ordinal and for all α < β and γ < ωωα (2.2) holds.
Assume that

A⊕ C(γ1, B) � C(ωωβ

, Z), (2.4)

for some γ1 < ωωβ . Pick an ordinal α such that γ1 < ωωα

< ωωβ . According to (2.4)

A⊕ C(γ1, B) � C(ωωα

, Z),

contradicting (2.2).
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Now we pass to prove the statement of the proposition. Assume then that

A⊕ C(ξ,B) � C(η, Z), (2.5)

with ω ≤ ξ ≤ η < ω1.
In view of (1.2) the spaces C(ωωγ ), for 0 ≤ γ < ω1, are a complete set of representatives of the isomorphism 

classes of C(ξ) spaces for 0 ≤ ξ < ω1. So, let α be the ordinal such that

C(η) ∼ C(ωωα

).

Notice that η < ωωα+1 and

C(η, Z) ∼ C(ωωα

, Z). (2.6)

According to (2.5) and (2.6)

A⊕ C(ξ,B) � C(ωωα

, Z). (2.7)

Hence by (2.2) and (2.7) we have ωωα ≤ ξ and therefore ωωα+1 ≤ ξω. Consequently η < ξω. �
The following remark will be useful in the sequel.

Remark 2.6. Suppose that Z is isomorphic to a quotient of the Banach space B. It follows from the Bartle–
Graves continuous selection for quotient maps [4, p. 52] that C(ξ, Z) is isomorphic to a quotient of C(ξ, B)
for every ordinal ξ.

Proposition 2.7. Let X be a Banach space having an ω1-quotient which is uniformly convex. Then for all 
ordinals ω ≤ ξ ≤ η < ω1,

C(ξ,X) ∼ C(η,X) ⇒ η < ξω.

Proof. By hypothesis there exist a uniformly convex space Z and subspaces A and B of X satisfying (a), 
(b) and (c) of Definition 2.1. First of all observe that if we fix an ordinal ω ≤ ξ0 < ω1, since

C(ξ0, A) ⊕Bn �� c0(Z),

for every 1 ≤ n < ω, it follows from Proposition 2.5 applied to the spaces C(ξ0, A), B and Z that for all 
ordinals ω ≤ ξ ≤ η < ω1,

C(ξ0, A) ⊕ C(ξ,B) � C(η, Z) =⇒ η < ξω. (2.8)

Now, pick ordinals ω ≤ ξ ≤ η < ω1 and suppose that

C(ξ,X) ∼ C(η,X). (2.9)

Since X = A ⊕B and B � Z, by (2.9) and Remark 2.6 we have

C(ξ, A) ⊕ C(ξ,B) ∼ C(η,A) ⊕ C(η,B) � C(η, Z).

According to (2.8) with ξ0 = ξ we obtain η < ξω. �
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Now we are ready to prove the main result of this paper.

Proof of Theorem 2.4. The condition is clearly sufficient. Let us show necessity. Suppose then that C(K1, X)
is isomorphic to C(K2, X), for some infinite compact metric spaces K1 and K2. We distinguish two cases:

Case 1. K1 and K2 are countable. Let ξ and η be infinite countable ordinals such that C(K1) is isomorphic 
to C(ξ) and C(K2) is isomorphic to C(η). Hence

C(ξ,X) ∼ C(η,X).

Without loss of generality we may assume that ξ ≤ η. So, by Proposition 2.7 and (1.2) we infer that C(K1)
is isomorphic to C(K2).

Case 2. K2 is uncountable. In this case, by (1.1) it suffices to show that K1 is also uncountable. Otherwise, 
there exists a countable ordinal ξ such that C(K1) is isomorphic to C(ξ). Consequently,

C(ξ,X) ∼ C(K1, X). (2.10)

Furthermore, it follows from (1.1) and (1.2) that

C([0, ξω] ×K2) ∼ C(K2) and C(ξω) ∼ C([0, ξω] × [0, ξ]).

Therefore

C(ξω, X) ∼ C(ξω, C(ξ,X)) ∼ C(ξω, C(K2, X)) ∼ C(K2, X). (2.11)

Thus, by (2.10) and (2.11) we see that

C(ξ,X) ∼ C(ξω, X),

which contradicts Proposition 2.7 and the theorem follows. �
3. On the isomorphic classification of C(K, Y ⊕ lp(Γ)) spaces, 1 < p < ∞

The purpose of this section is to provide the proof of Theorem 1.2. We shall denote by {ei,j}∞i,j=1 the 
canonical basis of l1(lq), i.e.,

∥∥∥∥∥∥
∞∑

i,j=1
ai,jei,j

∥∥∥∥∥∥ =
∞∑
j=1

( ∞∑
i=1

|ai,j |q
)1/q

,

for all {ai,j}∞i,j=1 ⊆ R.
The next lemma is obtained by a gliding hump argument and a simple perturbation argument which are 

well-known [11, p. 77], but we include the proof for completeness.

Lemma 3.1. Let X be a Banach space and 1 < q < ∞. Let T be a linear operator from l1(lq) to X ⊕ lq and 
P the natural projection from X ⊕ lq onto lq. Then:

(a) For all double sequences {εij}∞i,j=1 of positive numbers there exist a double sequence {bij}∞i,j=1 ⊆ lq with 
pairwise disjoint finite supports and subsequences Nj ⊆ N such that denoting Nj = {[i, j]}∞i=1,
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‖PT (e[i,j],j) − bij‖ < εij , (3.1)

for every 1 ≤ i, j < ω.
(b) If T is an into isomorphism then there exist subsequences Nj = {[i, j]}∞i=1 ⊆ N, 1 ≤ j < ω, and 

an isomorphism 
∼
T from the span of {e[i,j],j}∞i,j=1 into X ⊕ lq such that {P

∼
T (e[i,j],j)}∞i,j=1 is a double 

sequence in lq with pairwise disjoint finite supports.

Proof. (a) Define an order ≺ on N × N by (i, j) ≺ (k, l) if, and only if, i + j < k + l or i + j = k + l and 
i < k.

Assume we already found the initial segments of Nj = {[i, j]}kj

i=1 for (i, j) ≺ (i0, j0). We need to find 
[i0, j0] and bi0j0 . Since {ei,j0}∞i=1 tends weakly to zero, for i0 large enough ‖PiT (ei0,j0)‖ < εi0,j0/2, where 
Pi is the projection onto Si, the finite union of the supports of {bij}(i,j)≺(i0,j0).

Now, for all 1 ≤ n < ω, denote by Rn the natural projection of lq given by Rn({ai}∞i=1) =
(a1, a2, . . . , an, 0, 0, . . .). Pick 1 ≤ m < ω strictly greater than the maximum of Si and such that

‖PT (ei0,j0) −RmPT (ei0,j0)‖ < εi0,j0/2.

So, it suffices to define bi0j0 = (Rm − Pi)PT (ei0,j0).
(b) Fix a double sequence {εij}∞i,j=1 of positive numbers such that 

∑∞
i,j=1 ε

p
ij < 1/‖T−1‖p, where 1/p +

1/q = 1. By the item (a) there exist subsequences Nj = {[i, j]}∞i=1 ⊆ N and a double sequence {bij}∞i,j=1 ⊆ lq

with pairwise disjoint finite supports and satisfying (3.1). Define the linear operator 
∼
T from the span of 

{e[i,j],j}∞i,j=1 to X ⊕ lq by

∼
T (e[i,j],j) = (I − P )T (e[i,j],j) + bij .

Then ‖T−
∼
T (e[i,j],j)‖ < εi,j , for every 1 ≤ i, j < ω. Therefore 

∼
T is an into isomorphism and P

∼
T (e[i,j],j) = bij , 

for every 1 ≤ i, j < ω. �
Proposition 3.2. Let X be a Banach space and 1 < q < ∞. Suppose that X ⊕ lq contains a copy of l1(lq). 
Then X contains a copy of lq.

Proof. Let T be an isomorphism from l1(lq) into X ⊕ lq. Initially observe that for all infinite sequences 
Nj ⊆ N, 1 ≤ j < ω, {ei,j}∞j=1, i∈Nj

spans in l1(lq) a subspace isometric to l1(lq). Thus, thanks to Lemma 3.1
we may suppose that {PT (ei,j)}∞i,j=1 is a sequence in lq with pairwise disjoint finite supports.

First of all notice that for any finite set A ⊂ N × N and sequence {an,j}∞n,j=1 ⊆ R we have

‖
∑

(n,j)∈A

an,jPT (en,j)‖ ≤ M(
∑

(n,j)∈A

|an,j |q)1/q, (3.2)

where M = ‖P‖‖T‖.
Now pick 0 < ε < 1 and 1 ≤ k < ω satisfying M‖T−1‖k−1/p < ε. Observe that for all {an}∞n=1 ⊆ R and 

1 ≤ m < ω we have

‖
m∑

n=1
an( 1

k

k∑
j=1

en,j)‖ = (
m∑

n=1
|an|q)1/q, (3.3)

that is, {k−1 ∑k
en,j}∞n=1 is equivalent to the lq basis. Denote by W be the span of these vectors.
j=1
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Let 
∑m

n=1 an( 1
k

∑k
j=1 T (en,j)) be a vector of norm less than or equal to 1. By (3.2) and (3.3) we infer

‖P (
m∑

n=1
an( 1

k

k∑
j=1

T (en,j)))‖ ≤ M(k
m∑

n=1

|an|q
kq

)1/q ≤ M

k1/p ‖
m∑

n=1
an( 1

k

k∑
j=1

en,j)‖

≤ M

k1/p ‖T
−1‖ ‖

m∑
n=1

an( 1
k

k∑
j=1

T (en,j))‖ < ε.

Consequently, if I denotes the identity operator of X⊕ lq, then I−P is an isomorphism from a subspace 
isomorphic to lq into X. �
Proof of Theorem 1.2. The condition is of course sufficient. Let us show that it is also necessary. To do 
this, by Theorem 2.4 it is enough to prove that lp(Γ) is an ω1-quotient of Y ⊕ lp(Γ). Since lp is a uniformly 
convex space and (lp(Γ))n ∼ lp(Γ) for every 1 ≤ n < ω, it suffices to prove that

C(ξ, Y ) ⊕ lp(Γ) �� c0(lp),

for every ω ≤ ξ < ω1. But if this is not the case, then by duality and by the separability of l1(lq) it follows 
that l1(Y ∗) ⊕ lq contains a copy of l1(lq). Thus, Proposition 3.2 implies that l1(Y ∗) contains a copy of lq. 
Then, by a standard gliding hump argument we can prove that Y ∗ contains a copy of lq, see for instance [3], 
a contradiction. This proves the theorem. �
4. On the isomorphic classification of C(K, Y ⊕ l∞(Γ)) spaces

In this section we prove Theorem 1.3. First we need to state the following proposition.

Proposition 4.1. Let A and B be Banach spaces such that there exist a set Λ and 1 < p < ∞ satisfying

(a) B � lp(Λ),
(b) B �� c0,
(c) for any ω ≤ ξ < ω1 and bounded linear operator T : C(ξ, A) → lp(Λ), we have dens T (C(ξ, A)) < |Λ|.

Then lp(Λ) is an ω1-quotient of X = A ⊕B.

Proof. Suppose that there exists a bounded linear operator T from C(ξ, A) ⊕ Bn onto c0(lp(Λ)) for some 
ω ≤ ξ < ω1 and 1 ≤ n < ω.

Given 1 ≤ m < ω, we will denote by Pm the natural projection on c0(lp(Λ)) onto the m-th coordinates, 
that is, Pm : c0(lp(Λ)) → c0(lp(Λ)) defined by

(x1, x2, . . . , xm, xm+1, . . .) → (0, 0, . . . , xm, 0, 0, . . .).

By our hypothesis we deduce that dens PmT (C(ξ, A)) < |Λ|, for every 1 ≤ m < ω. Hence there exists a 
subset Λ1 of Λ with |Λ1| < |Λ| such that T (x)(γ)(m) = 0 for every x ∈ C(ξ, A), γ /∈ Λ1 and 1 ≤ m < ω. 
We identify in the natural way c0(lp(Λ1)) as a subset of c0(lp(Λ)). Let Q be the natural projection from 
c0(lp(Λ)) onto c0(lp(Λ1)). So, it is easy to see that the following operator is onto

QT|Bn : Bn → c0(lp(Λ \ Λ1)).
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Consequently,

Bn � c0.

Thus, c0 is isomorphic to a quotient of B. This contradicts (b) and the proof is complete. �
Proof of Theorem 1.3. Sufficiency is obvious. Let us see necessity. Notice that if Γ is an infinite set, then by 
[15, Remark 2, p. 203] we have that l2(2|Γ|) is isomorphic to a quotient of l∞(Γ). Moreover, by [6, p. 179] it 
follows that l∞(Γ) has no quotient isomorphic to c0. So, by Proposition 4.1 with B = l∞(Γ) and Λ = 2|Γ|, 
we deduce that l2(2|Γ|) is an ω1-quotient of Y ⊕ l∞(Γ). So, by Theorem 2.4 we are done. �
5. On the isomorphic classification of C(K) spaces

In this last section we show that the concept of ω1-quotient of Banach spaces can also be used to get the 
isomorphic classifications of certain C(K) spaces for large compact Hausdorff spaces K. Let us start with 
a closely related result to Theorem 2.4.

Proposition 5.1. Let X be a Banach space having an ω1-quotient space Z which is uniformly convex. Write 
X = A ⊕B as in Definition 2.1. Then for all infinite compact metric spaces K1 and K2,

A⊕ C(K1, B) ∼ A⊕ C(K2, B) ⇒ C(K1) ∼ C(K2).

Proof. We consider two cases:
Case 1. K1 and K2 are countable. Pick ξ and η infinite countable ordinals such that C(K1) is isomorphic 

to C(ξ) and C(K2) is isomorphic to C(η). Without loss of generality we may assume that ξ ≤ η. Then,

A⊕ C(ξ,B) ∼ A⊕ C(η,B) � C(η,B) � C(η, Z).

Hence by Proposition 2.5 and (1.2) we infer that C(K1) is isomorphic to C(K2).
Case 2. K2 is uncountable. We will show that C(K1) is isomorphic to C(K2) by proving that K1 is 

uncountable. Otherwise, there exists a countable ordinal ξ such that C(K1) is isomorphic to C(ξ). Thus,

A⊕ C(ξ,B) ∼ A⊕ C(K2, B) � C(ξω, B) � C(ξω, Z)

a contradiction by Proposition 2.5 and the proof of proposition is complete. �
Recall that a topological space S is said to be dispersed if every nonempty subset of S contains a relatively 

isolated point. Furthermore, the topological weight of a topological space K is the smallest cardinal m such 
that there exists a base of open subsets of K of cardinality m.

Theorem 5.2. Let Γ be an infinite set and S a dispersed compact Hausdorff space or an infinite compact 
Hausdorff space having topological weight strictly less than 2|Γ|. Then for any infinite compact metric spaces 
K1 and K2,

(a) C(K1 × (S ⊕ βΓ)) ∼ C(K2 × (S ⊕ βΓ)) ⇔ C(K1) ∼ C(K2).
(b) C(S ⊕ (K1 × βΓ)) ∼ C(S ⊕ (K2 × βΓ)) ⇔ C(K1) ∼ C(K2).

Proof. Of course, the condition C(K1) ∼ C(K2) is sufficient for both statements of the proposition. We will 
show that this condition is also necessary. First of all observe that
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C(K × (S ⊕ βΓ)) ∼ C(K,C(S) ⊕ l∞(Γ)),

and

C(S ⊕ (K × βΓ)) ∼ C(S) ⊕ C(K, l∞(Γ)),

for every compact Hausdorff space K.
Set A = C(S), B = l∞(Γ) and Z = l2(2|Γ|). In view of Theorem 2.4 and Proposition 5.1, it suffices to 

show that l2(2|Γ|) is an ω1-quotient of X = C(S) ⊕ l∞(Γ). We distinguish two cases:
Case 1. S is dispersed. We know that l2(2|Γ|) is isomorphic to a quotient of l∞(Γ). On the other hand, 

notice that for any ordinal ω ≤ ξ < ω1 the compact space [0, ξ] × S is also dispersed. Moreover, it is 
well-known that any bounded liner operator T from C([0, ξ] × S) to l2(2|Γ|) is compact [6, Theorem 15, 
p. 159] and [7, p. 647]. Therefore, by [18, Proposition 7.6.5] dens T (C([0, ξ] × S)) ≤ ℵ0 < 2|Γ|. Thus, it is 
enough to apply Proposition 4.1 with Λ = 2|Γ|.

Case 2. The topological weight of S is strictly less than 2|Γ|. In this case, densC(S) < 2|Γ| [18, Proposi-
tion 7.6.3] and by Proposition 4.1 with Λ = 2|Γ| we are done. �

Recall that a compact Hausdorff space Ω is called Stonean (or extremally disconnected) if the closure of 
every open set is open, see [6, Definition 7, p. 154].

Theorem 5.3. Let Ω be an infinite Stonean space and S a dispersed compact Hausdorff space or an infinite 
compact Hausdorff space having topological weight strictly less than 2ℵ0 . Then for any infinite compact 
metric spaces K1 and K2,

(a) C(K1 × (S ⊕ Ω)) ∼ C(K2 × (S ⊕ Ω)) ⇔ C(K1) ∼ C(K2).
(b) C(S ⊕ (K1 × Ω)) ∼ C(S ⊕ (K2 × Ω)) ⇔ C(K1) ∼ C(K2).

Proof. Let us show the non-trivial implications. By [6, p. 156] C(Ω) has a quotient isomorphic to l∞. More-
over, l∞ has a quotient isomorphic to l2(2ℵ0). So, it is enough to proceed as in the proof of Theorem 5.2. �
Remark 5.4. Regarding the statements of Theorem 2.4 and Proposition 5.1 observe that if X = A ⊕ B as 
in Definition 2.1, then we do not have necessarily

C(K,X) ∼ A⊕ C(K,B),

for every infinite compact metric space K.
Indeed, on the one hand by Proposition 3.2 and [1, Theorem 6.4.19i] we deduce that the lp space with 

1 < p < 2 is an ω1-quotient of X = l∞ ⊕ lp.
On the other hand, since l2(2ℵ0) is a quotient of l∞, we conclude by Proposition 4.1 that l2(2ℵ0) is an 

ω1-quotient of lp ⊕ l∞. So, by the item (c) of Definition 2.1 we infer

C(ω, lp) ⊕ l∞ �� C(ω, l2(2ℵ0)). (5.1)

Consequently, we cannot have

C(ω, l∞ ⊕ lp) ∼ l∞ ⊕ C(ω, lp),

otherwise,
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C(ω, lp) ⊕ l∞ ∼ C(ω, l∞ ⊕ lp) � C(ω, l∞) � C(ω, l2(2ℵ0)),

a contradiction by (5.1).

Acknowledgments

We would like to thank Gideon Schechtman for showing us how to simplify the original proof of Proposi-
tion 3.2 via Lemma 3.1. We are also very grateful to the referee for several valuable remarks and suggestions 
that led to significant improvements in the exposition of this paper.

References

[1] F. Albiac, N.J. Kalton, Topic in Banach Space Theory, Grad. Texts in Math., vol. 233, Springer, New York, 2006.
[2] C. Bessaga, A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960) 53–61.
[3] L. Burlando, On subspaces of direct sums of infinite sequences of Banach spaces, Atti Accad. Ligure Sci. Lett. 46 (1989) 

96–105 (1990).
[4] J.M.F. Castillo, M. González, Three-Space Problems in Banach Space Theory, Lecture Notes in Math., vol. 1667, Springer-

Verlag, Berlin, 1997.
[5] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (3) (1936) 396–414.
[6] J. Diestel, J.J. Uhl Jr., Vector Measures, Math. Surveys, vol. 15, American Mathematical Society, 1977.
[7] M. Fabian, P. Habala, P. Hájek, V.M. Santalucía, J. Pelant, V. Zizler, Functional Analysis and Infinite-Dimensional 

Geometry, CMS Books Math./Ouvrages Math. SMC, vol. 8, Springer-Verlag, New York, 2001.
[8] T. Figiel, An example of infinite dimensional reflexive Banach space non-isomorphic to its Cartesian square, Studia Math. 

42 (1972) 295–306.
[9] E.M. Galego, Banach spaces of continuous vector-valued functions of ordinals, Proc. Edinb. Math. Soc. (2) 44 (1) (2001) 

49–62.
[10] E.M. Galego, The C(K, X) spaces for compact metric spaces K and X with a uniformly convex maximal factor, J. Math. 

Anal. Appl. 384 (2) (2011) 357–365.
[11] R. Levy, G. Schechtman, Stabilizing isomorphism from lp(l2) into Lp[0, 1], Banach J. Math. Anal. 5 (2) (2011) 73–83.
[12] S. Mazurkiewicz, W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920) 17–27.
[13] A.A. Milutin, Isomorphisms of spaces of continuous functions on compacts of power continuum, Teoria Func. (Kharkov) 

2 (1966) 150–156 (in Russian).
[14] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of 

continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968).
[15] H.P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from 

Lp(μ) to Lr(ν), J. Funct. Anal. 4 (1969) 176–214.
[16] H.P. Rosenthal, The Banach space C(K), in: Handbook of the Geometry of Banach Spaces, North-Holland Publishing 

Co., Amsterdam, 2001, pp. 1547–1602.
[17] C. Samuel, Sur la reproductibilite des espaces lp, Math. Scand. 45 (1) (1979) 103–117.
[18] Z. Semadeni, Banach Spaces of Continuous Functions, vol. I, Monogr. Mat., Tom 55, PWN – Polish Scientific Publishers, 

Warsaw, 1971.

http://refhub.elsevier.com/S0022-247X(15)00540-5/bib414Bs1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib634250s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4275s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4275s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4347s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4347s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib43s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4448s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4661s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4661s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4669s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4669s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4731s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4731s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4732s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4732s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib536563s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib4D53s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib634Ds1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib634Ds1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib50s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib50s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib5231s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib5231s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib5233s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib5233s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib53s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib5365s1
http://refhub.elsevier.com/S0022-247X(15)00540-5/bib5365s1

	On the isomorphic classiﬁcation of C(K, X) spaces
	1 Introduction
	2 The isomorphic classiﬁcation of certain C(K, X) spaces
	3 On the isomorphic classiﬁcation of C(K, Y ⊕lp(Γ)) spaces, 1<p< ∞
	4 On the isomorphic classiﬁcation of C(K, Y ⊕l∞(Γ)) spaces
	5 On the isomorphic classiﬁcation of C(K) spaces
	Acknowledgments
	References


