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Abstract. We consider the attractive potential energy between two par-
ticles in the form of London-van der Waals interaction, u = —\/r®. The
constant A has dimensions of energy x (distance)®. The interaction between
systems is evaluated in different symmetries. In particular, the Hamaker
potential between spheres is obtained.

1 Introduction

We consider here the attractive potential between two point particles,

A

known as London-van der Waals attraction [3, 4, 5, 18]. The interaction
energy between systems in different geometries is evaluated. In particular we
obtain the Hamaker potential energy between two spherical shells.

1- Particle - line

We consider here a particle at a distance a from a straight line, located on
the z axis (fig. 1). The energy between the particle and a line element dz of
the straight line is,

A

du = —T—6pldz = — spdz,

(2% +a?)
where p; is the linear density of particles on the line. The number density p;
is considered uniform. The energy between the particle and the line is,

+Lo dz
= [ du= -\ S —
! / ! P /L1 (22 +a?)?

Integrating the above expression we have,
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Fig. 1. A particle interacting with a line on the z axis.
For an infinite linte we take the limit L, Ly — oo,

3T
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2- Particle - plane

We consider now a particle on the z axis, interacting with a plane located
in the zy plane (fig. 2). The interaction energy between the particle and a
surface element da of the plane is,

du = —%psda,
r
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with 72 = 22 + 92 + 22 and p; is the surface density of particles on the plane,
consideraded uniform. Integrating the above expression we have the energy,

dx dy
U= —Aps (22 + 42 + 22)3

Integrating in x first,
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How to evaluate the above integral? First we consider the limit of an infinite
plane. Taking the limit a,b — oo we have,
\ RY O e dy
U= —Aps— —_—
SEW NI
Evaluating the above integral we obtain,

w— T (5)
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Fig. 2. A particle interacting with a plane located in the zy plane.



3- Particle - circle

We consider now a particle in the 2z axis and a circle of radius a in the plane
xy with center at the origin (fig. 3). The interaction energy between the
particle and a line element ds of the circle is,

A
du = —Eplds .

The linear density of particles p; is taken to be uniform. Substituting ds =
adp, where @ is the usual angle in polar coordinates, we have,

du = —%pladgo.
r

Integrating the above expression on the circle,

A o A
u:/du:——b,pla/ dp = ——2mpa,
r 0 r

since 7 is the same for all points on the circle. Substituting r? = 2% + 12,
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Fig. 3. A particle interacting with a circle of radius a.

4- Particle - disc

We consider now a particle in the z axis interacting with a disc in the xy
plan, with the center at the origin (fig. 4). Using equation (6),



2mpre A
duy = —————=, 7
(22 + 22)3 (M)
where p; is linear density of particles on the circular strip of infinitesimal
thickness dzx,

B N
pl—27rx'

The number N of particles on the infinitesimal strip is,

N = p2rxdx

where py is the surface density of particles on the disc, taken to be uniform.
Hence,

N p2rxdr

pr = Psdx )

2mx 2mx
and the equation (7) becomes,

2 \psxdx
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P
*

Fig. 4. A particle interacting with a disc of radius a.

The total energy is obtained integrating the above expression,

1 1 1
o= fou i 5]

or,
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5- Particle - infinitesimal shell

We consider here a particle on the z axis interacting with a spherical shell of
infinitesimal thickness and radius a, with center at the origin (fig. 5). The
interaction energy between the particle and dA is,

A
du = —EdeA.

The surface element is dA = 2ra%sen d 0 and we have also,

r? = a® + 2% — 2azcos 0,

hence,
T senfdf
= [ du= —2ma*\ps :
" / " TaAp /0 (a? 4 22 — 2azcos 0)?
We evaluate the above integral changing variables, x = cos 0, dv = —sen 6 d 6.
We obtain,
a?(2* 4 a?)
P
*
:




Fig. 5. A particle interacting with a shell of radius a.

6- Particle - sphere (as a set of discs)

We consider a particle on the z axis, interacting with a sphere of radius a,
with center at the origin (fig. 6), represented as a set of discs. Using the
expression before (9),

du = 17r)\p [ L — L }
277 (z=2)2+ RY2 (z—2)4)7
where p; is the surface density of particles on the disc. If p, is the volume
density of particles on the sphere,

N  nR*p,d?

7R2  1R? = pud'.
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Therefore,
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Evaluating the above integral we obtain,

ATt \pya’
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Fig. 6. A particle interacts with a sphere of radius a, considered as a set of
discs.

7- Particle - sphere (as a set of shells)

We consider the interaction between a particle with a sphere, this time con-
sidered as a set of shells (fig. 7). Using (10),

r2(2% +1r?)
(22— p2)t

where p; is the surface number density of particles in a shell. In terms of p,,

du = —4m\ps

N pdArridr P
Ps = 4ar2 = dmpz P
Therefore,
r?(2? +r?)
du = —4%)\pvdrm .

Integrating the above expression we have the total energy,

a T2<Z2 +T2)
u = /du: —47r)\pv/0 drm.
The result is,

ATt \pya’
u= _—3(22 a7y (12)

as the equation (11), as expected.
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Fig. 7. A particle interacts with a sphere of radius a, considered as a set of
infinitesimal shells.

8- Particle - finite shells

We consider now the interaction of a particle with a spherical shell of finite
thickness, with internal radius a and external radius b (fig. 8). Using (11) or
(12), we can write the interaction energy as,

u = u(b) —u(a),

in which we subtract the interaction energy of a sphere with radius a with
the particle from the interaction energy of a sphere with radius b with the
particle. Therefore,

AT APy b a’

3 (22 _ bz):s B (22 _ a2)3
It is of interest to consider the limit of a shell with infinitesimal thickness.

We do b = a + ¢, and then take the limit 6 — 0. The product p,0 is the
surface density ps. After some algebra we obtain the expression (10).

(13)
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Fig. 8. A particle interacts with a shell of finite thickness, with internal
radius a and external radius b.

9- Circle - infinitesimal shell

We consider now the interaction between a circle of radius b and an infinites-
imal shell of radius a (fig. 9). All the points of the circle are at the same
distance r from the shell, with r given by,

r? =224+,
We can use the expression (10),
a’(r* + a?)
(r2 — a?)*
where py is the surface density of particles over the shell and p; is the linear

density over the circle, both uniform, and ds is the line element on the circle.
Substituting ds = bdy and the expression for r2, we obtain,

du = —4AmApspids

a*(z? + b + a?)
(2402 — a2yt

du = —4mApspbdyp
and hence,

a?(22 +b* + a?)
(22 _|_ b2 _ a2)4 )

u = —8m*\pypib (14)
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Fig. 9. A circle of radius b interacts with a shell of infinitesimal thickness of
radius a.

10- Circle - sphere

We consider now the interaction between a circle of radius b and a sphere of
radius a. The situation is the same of figure 9. All points of the circle are at
the same distance r from the sphere, with r given by,

r? =22+ b,
We can use (11) or (12),
A \pyad
3(r2 — az):spl

where p, is the volume density of particles over the sphere and p; is the linear
density of particles over the circle, both uniform, and ds is the line element
of the circle. Substituting ds = bdy and the expression for 72, we obtain,

du = — ds,

4t \pya’

du = —
R TPy )

3 Pl bdg@ )
and hence,

872 \p,piba’
= — . 15
" 3(22 4+ 0% — a?)? (15)
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11- Circle - finite shell

We consider a circle of radius ¢ interacting with a finite shell of internal
radius a and external radius b (fig. 10). We have,

u=u(b) —ufa),

where u(b) is the energy between a circle and a sphere of radius b, and
similarly for u(a). Using the expression (15),
8 2 by v b3 3
u= T APPIC . a . (16)
3 (22+ 2 =023 (224 —a?)?

It is of interest to consider the limit of an infinitesimal shell, as previously in
the case of a particle. We do b = a + 9§, and after we take the limit 6 — 0.
The product p,d is the surface density of particles ps. After some algebra we
obtain,

ca®(2% + & + a?)

u = —81°\pspy

(22 + 2 — a2)4 )

that is equivalent to the expression (14).

e

Fig. 10. A circle of radius ¢ interacts with a spherical shell with internal
radius a and external radius b.
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12- Infinitesimal shell - infinitesimal shell

We consider now the interaction between two infinitesimal shells (fig. 11),
representing one of them as a set of circles. Using the expression (14), we
write the interaction between a shell of radius a and a circle of radius r over
the shell radius b, in the form,

ra®(z"? +r? + a?)
(22 412 — a2yt

du = —8m*\p%phd’

where we used the linear density over the circle as p; = pdz’. We see in the
figure that,

2+ (z—2) =02,

hence,

du = —87T2)\Papbdz’ \/mag(bZ — 22+ 222 +d?) )

(0% — 22 4+ 222" — a?)4

How to do the above integral?

Fig. 11. An infinitesimal shell of radius a interacts with other infinitesimal
shell of radius b.
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We evaluate u in another way. Figure 12 shows a surface element dA
over one of the shells. Using expression (10) we write the energy interaction
between a shell of radius b and the element dA as,

b (r? + b?)
(r2 — b2y
Substituting dA = a?sen 0d 0d ¢ = 2ma’sen d 6, and,

du = —4m\p’ pldA.

r? = 2% + a® — 2azcos b,

we obtain,
(2% + a® + b* — 2azcos 0)
(22 4+ a® — b? — 2azcos 0)*

Integrating the above expression we have the total energy u. Changing vari-
ables © = cos ) we have,

du = —8m?Xa?b? p®p’sen Od 0

22+ a® +b? — 2azx
22+ a? — b — 2azx)*

+1
U= —87?2)\a2b2p‘;p2/ dx(
-1
The result is,

272
=" \p%lab®T 17
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with,
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Fig. 12. An infinitesimal shell of radius a interacts with another infinitesimal
shell of radius b. A surface element dA over one of the shells is shown.

13- Infinitesimal shell - sphere

Here we evaluate the interaction between an infinitesimal shell of radius a
and a sphere of radius b (fig. 13). We consider the sphere as a set of shells.
Using equations (17) and (18), we write the interaction energy between the
shell of radius a and a shell of infinitesimal thickness dr and radius r as,

du = —8m?\a*r?ptpldr T,
with,

_ 3(z—a)+r* 3(z+a)* 407
C 12az[(z —a)?2 — 123 12az[(z +a)? —r23°

Using p, = pPdr as the surface density over the infinitesimal shell of radius r
and thickness dr. We need to integrate the above expression in dr to obtain
u?

8mi\a? ,

0 (Ly — T
12@2 pspv( 1 2)7

u=—

with
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Evaluating Z; and Z, we obtain,

b3

R CEr
b3

R R

The final expression for the interaction energy between an infinitesimal shell
of radius a and a sphere of radius b is then,
2mi\ab® 1 1
== pip, 2 _ 212 2 _ 212 [ (19)
3z [(z=a)? =0 [(z+0a)* = V7]

Fig. 13. An infinitesimal shell of radius a interacts with a sphere of radius
b. We consider the sphere as a set of infinitesimal shells.
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14- Sphere - sphere

We evaluate now the interaction between two spheres, considering one of
them as a set of infinitesimal shells (fig. 14). This figure is identical to figure
13, but here we have two spheres, while in figure 13 we have a shel and a
sphere. Using the expression (19) we write,

The total energy is then given by,

212 \a®
U= — 3z pvpv(Il 1.2) )
with
/ rdr
[(z—7r)2—a?]?’
/ Td?“
[(z+71)2—a??’

Evaluating the above integrals,

L= gt e [Z(Za; = 1]
=]
122_2_22 2[<z+b1)2—a2]{(zajb) 1]
o TS

The result for u is hence,

z(z—b) _1}

el

z—b—a)(z+b+a;}

(
—1
2a3 n(z—b—i—a)(z—l—b—a
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or, in a symmetric form in a, b,

(20)

Fig. 14. A sphere of radius a interacts with a sphere of radius b. We consider
the sphere of radius b as a set of infinitesimal shells.

15- Infinitesimal shell - finite shell

We consider here an infinitesimal shell of radius ¢ interacting with a finite
shell of internal radius a and external radius b. The interaction energy may
be writen as the energy with a sphere of radius raio b minus the energy with
a sphere of radius a. Using the expression (19),

18



Fig. 15. An infinitesimal shell of radius ¢ interacts with a finite shell of
internal radius a and external radius b.

16- Finite shell - sphere

We evaluate now the interaction energy between a sphere of radius ¢ and a
finite shell of internal radius a and external radius b. The situation is shown
in fig. 16, which is identical to figure 15, but now we have a sphere instead
of an infinitesimal shell. Using equation (20), we write this energy as the
difference betwenn the energies of a sphere of radius b and a sphere of radius
a, with a sphere of radius c,
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Fig. 16. A sphere of radius c interacts with a finite shell of internal radius a

and external radius b.

17- Finite shell - Finite shell

We here evaluate the energy interaction between finite shells (fig. 17). De-
noting by wu;; the energy between two spheres of radius ¢ and 7, we may write

the energy between the shells as,

U = Upg — Upe + Uge

20
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Using equation (20),

us 1 1
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w2 1 1
A b ch
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Fig. 17. A finite shell of internal radius a and external radius b interacts

with other finite shell, of internal radius ¢ and external radius d.

21



References
[1] P. W. Debye, E. Hiickel, Phys. Z. 24 (1923) 185.
2] Y. Levin, Rep. Prog. Phys. 65 (2002) 1577-1632

[3] T. L. Hill, An Introduction to Statistical Thermodynamics, Dover Pub-
lications, New York, 1986.

[4] T. L. Hill, Statistical Thermodynamics, Dover, New York, 1956.

[5] D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York,
1976.

[6] M. E. Fisher, Y. Levin, Phys. Rev. Lett. 71(23) (1993) 3826-3829.
[7] Y. Levin, M. E. Fisher, Phys. A 225 (1996) 164-220.

8] B. Guillot, Y. Guissani, Mol. Phys. 87(1) (1996) 37-86.

9] G. Stell, J. Stat. Phys. 78(1/2) (1995) 197.
[10] D. A. McQuarrie, J. Phys. Chem. 66 (1962) 1508-1512.
[11] L. Onsager, J. Am. Chem. Soc. 58 (1936) 1486-1493.
[12] N. F. Carnahan, K. E. Starling, J. Chem. Phys. 51(2), 635 (1969).

[13] 1. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products,
7n. ed. (Academic Press, 2007).

[14] M. Abramowitz, I. E. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Washington, 1964.

[15] N. Bjerrum, Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 7 (1926) 1.
[16] R. K. Wangsness, Electromagnetic Fields (John Wiley & Sons, 1986).

[17] Y. Levin, M. C. Barbosa, M. N. Tamashiro, Europhys. Lett. 41(2) (1998)
123-127.

[18] F. Reif, Fundamental of Statistical and Thermal Physics, McGraw-Hill,
New York, 1965.

[19] E. J. W. Verwey, J. Th. Overbeek, Theory of the Stability of Lyophobic
Colloids, Elsevier, Amsterdam, 1948.

22



[20]
[21]
[22]
23]
[24]
[25]
[26]

[27]
28]
[29]
[30]
[31]
[32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]

[40]

H. Léwen, Phys. Rep. 237(5) (1994) 249.

M. Baus and J. P. Hansen, Phys. Rep. 59 (1980) 1.

S. Nordholm, Chem. Phys. Lett. 105 (1984) 302.

M. N. Tamashiro, Y. Levin, M. C. Barbosa, Physica A 268 (1999) 24.
Y. Levin, Europhys. Lett. 34(6) (1996) 405-410.

R. A. Marcus, J. Chem. Phys. 23(6), 1057-1068 (1955).

C. Tanford, Physical Chemistry of Macromolecules, J. Wiley & Sons,
New york, 1961.

G. S. Manning, J. Chem. Phys. 51 (1969) 924-933.

A. F. Thiilnemann et al., Adv. Polym. Sci. 166 (2004) 113-171.
C. von Ferber, H. Lowen, J. Cem. Phys. 118(23) 10774-9.

C. von Ferber, H. Lowen, Faraday Discuss. 128 (2005) 389405.
H. Lowen et al., J. Phys. A: Math. Gen. 36 (2003) 58275834.

D. Andelman, FElectrostatic Properties of Membranes: The Poisson-
Boltzmann Theory, chapter 12 in Handbook of Biological Physics, Vol-
ume 1, edited by Lipowsky R and Sackmann E, (Elsevier Science, Am-
sterdam, 1995).

D. Andelman, Introduction to Electrostatics in Soft and Biological Mat-
ter, 2004.

Chapman, D L, 1913, Philos Mag 25 475

Gouy G, 1910, J Phys (Paris) 9 457

Gouy G, 1917, Ann Phys 7 129

[. Sogami, Phys. Lett. 96A (4) (1983) p. 199.
Sogami, I.; Ise, N. J. Chem. Phys. 1984, 81, 6320

P. S. Kuhn, Y. Levin, M. C. Barbosa, Macromolecules 31 (1998) 8347-
8355.

P. S. Kuhn, M. C. Barbosa, Physica A 357 (2005) 142-149.

23



[41] P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience Pub-
lishers, John Wiley & Sons, New York, 1969.

[42] P. J. Flory, Principles of Polymer Chemistry, Cornell University Press,
Ithaca, New York, 1971.

[43] P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell Univer-
sity Press, Ithaca, New York, 1979.

[44] A. Katchalsky, Polyelectrolytes, Pure Appl. Chem., 26 (1971) 327-373.

[45] R. M. Fuoss, A. Katchalsky, S. Lifson, Proc. Natl. Acad. Sci. USA 37(9)
(1951) 579-589.

[46] H. C. Hamaker, Physica 4, 1058 (1937).

24



