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Abstract. The Debye-Hückel interaction, or Yukawa potential, between
point particles is used to evaluate the total interaction energy between spher-
ical colloids. The charge of colloids is supposed to be uniformly distributed
over their surfaces. The Helmholtz free energy corresponding to this inter-
action is evaluated as in van der Waals theory. The complete free energy
shows phase separation. We evaluated the association isotherms and the
phase diagram of the colloid system.

1 Interaction energies

The Debye-Hückel interaction, or Yukawa potential, among two particles, is
given by,

u =
λe−κr

r
, (1)

where λ is a constant with dimensions of energy × lenght. The parameter κ
is the inverse Debye screening lenght, since we study here mainly electrolyte
solutions and colloids.

1- Particle-circle

We consider here a circle of radius a with a uniform linear density of particles
ρl, located in the xy plane (fig. 1). We choose the origin at the center of the
circle, and a particle at the position P , distant z from the origin.
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Fig. 1. A particle at P interacting with a circle of radius a.

An infinitesimal element of arc ds = adϕ at the circle contains ρlds par-
ticles, which interact with the particle at P through the infinitesimal energy
du,

du =
λe−κr

r
ρlds =

λe−κr

r
ρladϕ . (2)

All arc elements are at the same distance r from P . The total energy inter-
action is then an integral in ϕ, and we obtain,

u =

∫

du =

∫ 2π

0

λe−κr

r
ρladϕ =

λe−κr

r
ρla

∫ 2π

0

dϕ ,

or,

u = 2πλρla
e−κr

r
. (3)

2- Particle-disc

In figure 2 we have a particle at P interacting with a disc of radius a and
uniform surface density of particles ρs. Using the previous result with ρl =
ρsdx, we can write interaction energy of the particle with the circle of radius
x and thickness dx,

du = 2πλρsdx x
e−κr

r
. (4)

The interaction energy depends on an integral in x,

2



u =

∫

du = 2πλρs

∫ a

0

dx x
e−κr

r
.

The distance z is constant, but not x and r. We have then,

r2 = x2 + z2 ,

hence,

2rdr = 2xdx ,

and,

u = 2πλρs

∫

√
z2+a2

z

dre−κr .

The limits of integration are r(x = 0) = z and r(x = a) =
√
z2 + a2.
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Fig. 2. A particle at P intercat with a disc of radius a.

Evaluating the integral we have the interaction energy among the particle
and the disc,

u =
2πλρs
κ

[

e−κz − e−κ
√
z2+a2

]

. (5)

3- Particle-sphere (as an assembly of discs)

The interaction energy among a particle and a sphere can be evaluated con-
sidering a sphere as an assembly of discs (fig. 3). If the sphere has constant
volume particle density ρv, the particle surface density of a disc with thick-
ness dz′ is ρs = ρvdz

′.
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Fig. 3. A particle at P interact with a sphere of radius a.

Using the previous result, the interaction energy among a disc of radius
R and a particle is,

du =
2πλρvdz

′

κ

[

e−κ(z−z′) − e−κ
√

(z−z′)2+R2

]

. (6)

The distance between the disc and the center of the sphere is z′. Also,

R2 + z′2 = a2 .

hence,

(z − z′)2 +R2 = z2 − 2zz′ + a2 .

The expression (6) is then,

du = −
2πλρvdz

′

κ

[

e−κ
√
z2−2zz′+a2 − e−κ(z−z′)

]

, (7)

and the interaction energy is,

u =

∫

du = −
2πλρv
κ

∫ +a

−a

dz′
[

e−κ
√
z2−2zz′+a2 − e−κ(z−z′)

]

. (8)

We define in the first integral,

x2 = z2 − 2zz′ + a2 ,
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then,

dz′ = −
xdx

z
.

The equation (8) becomes,

u = −
2πλρv
κ

[

−
1

z

∫ z−a

z+a

xdxe−κx −
∫ +a

−a

dz′e−κ(z−z′)

]

,

or,

u = −
2πλρv
κ

[

1

z

∫ z+a

z−a

xdxe−κx −
∫ +a

−a

dz′e−κ(z−z′)

]

. (9)

Evaluating the integrals we obtain,

u =
2πλρv
κ3

e−κz

z

{

eκa(κa− 1) + e−κa(κa+ 1)
}

. (10)

Defining the function,

f(x) ≡ ex(x− 1) + e−x(x+ 1) , (11)

we have,

u =
2πλρv
κ3

f(κa)
e−κz

z
. (12)

4- Particle-infinitesimal shell

We may consider an infinitesimal shell, that is, a spherical shell of infinites-
imal thickness, as an assembly of circles and use (3) to write du, and then
integrate over the shell. Figure 4 shows a spherical shell of radius a interact-
ing with a particle at P .

The element of area is,

dA = a2sen θ dθ dϕ ,

or,

dA = 2πa2sen θ dθ ,

since we have symmetry in the angle ϕ.
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Fig. 4. A particle located at P interact with a shell of radius a.

Using (1) we have,

du = ρsdAλ
e−κr

r
,

where ρs is the uniform particle surface density on the shell. The number of
particles in dA is therefore ρsdA, and all are at the same distance r from P .
Substituting dA,

du = 2πa2ρsλsen θ dθ
e−κr

r
.

The variables r and θ are related by,

r2 = a2 + z2 − 2zacos θ ,

hence,

2rdr = 2zasen θ dθ ,

and,

sen θ dθ =
rdr

za
.
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Substituting this in du we obtain,

du = 2πρsλ
a

z
dre−κr . (13)

The interaction energy between the shell and the particle at P is then,

u =

∫

du = 2πρsλ
a

z

∫ z+a

z−a

dre−κr ,

or,

u = 2πaρsλ
e−κz

κz
(eκa − e−κa) . (14)

5- Particle-sphere (as an assembly of shells)

We may evaluate de interaction energy between a particle and a sphere con-
sidering the sphere as an assembly of shells (fig. 5). If the sphere has a
volume particle density ρv, the surface particle density of a shell with radius
r and thickness dr is ρs = ρvdr.

O

P

z

r

dr

a

Fig. 5. A particle located at P interact with a sphere of radius a. The solid
sphere is considered as an assembly of spherical shells, each with radius r
and thickness dr.

Using (14) we have the interaction energy between a particle and a shell
of radius r as,
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du = 2πρvdrλ
r

κz
e−κz(eκr − e−κr) . (15)

This expression must be integrated in r to give the total energy u,

u =

∫

du = 2πρvλ
e−κz

κz

∫ a

0

rdr(eκr − e−κr) .

We obtain,

u = 2πλρv
e−κz

κ3z

[

eκa(κa− 1) + e−κa(κa+ 1)
]

,

or,

u =
2πλρv
κ3

f(κa)
e−κz

z
, (16)

that is identical to (12), as it should be.

6- Two spherical shells

We consider now two spherical shells of radius a e b, and particle surface
densities ρ′s, ρs (fig. 6). We write du as the interaction energy bwtween one
of the shells and an element of area dA at the other sphere. Using (14) we
have,

du = 2πρ′s(ρsdA)λ
a

κr
e−κr[eκa − e−κa] .

Substituting dA = 2πb2 sen θ d θ,

du = 4π2b2ρ′sρs λ
a

κ
sen θ d θ

e−κr

r
[eκa − e−κa] . (17)
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Fig. 6. Two spherical shells at distance z.

The relation between variables r, θ is,

r2 = b2 + z2 + 2zbcos θ ,

therefore,

rdr = −zb sen θ d θ .

The interaction energy is then,

u =

∫

du = −4π2abρ′sρs λ
1

κz
[eκa − e−κa]

∫ z−b

z+b

dre−κr ,

or,

u = 4π2abρ′sρs
λ

κ2
(eκa − e−κa)(eκb − e−κb)

e−κz

z
. (18)

7- Sphere (as an assembly of shells)- spherical shell

A sphere may be considered formed by spherical shells. Using this repre-
sentation we may evaluate the interaction energy between a sphere and a
spherical shell (fig. 7). If the particle volume density of the sphere is ρv, the
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particle surface density of a spherical shell with thickness dr is ρ′s = ρvdr.
Using the expression (18) we write du as,

du = 4π2bρvρs
λ

κ2
(eκb − e−κb)

e−κz

z
(eκr − e−κr)rdr , (19)

and the interaction energy is,

u =

∫

du = 4π2bρvρs
λ

κ2
(eκb − e−κb)

e−κz

z

∫ a

0

(eκr − e−κr)rdr .

Evaluating the integral we obtain,

u = 4π2bρvρs
λ

κ4
(eκb − e−κb)

{

eκa(κa− 1) + e−κa(κa+ 1)
} e−κz

z
,

or,

u = 4π2bρvρs
λ

κ4
(eκb − e−κb)f(κa)

e−κz

z
. (20)
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Fig. 7. A sphere as an assembly of spherical shells interacts with a spherical
shell at distance z.
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8- Sphere (as an assembly of shells)-sphere

We can now evaluate the energy of interaction between two spheres consider-
ing one of them as an assembly of spherical shells (fig. 8). Using the equation
(20),

du = 4π2ρvρ
′
v

λ

κ4
{

eκa(κa− 1) + e−κa(κa+ 1)
} e−κz

z
rdr(eκr − e−κr) . (21)

The energy of interaction is then,

u =

∫

du = 4π2ρvρ
′
v

λ

κ4
{

eκa(κa− 1) + e−κa(κa+ 1)
} e−κz

z
×

×
∫ b

0

rdr(eκr − e−κr) .

Evaluating the integral we have,

u = 4π2ρvρ
′
v

λ

κ6
{

eκa(κa− 1) + e−κa(κa+ 1)
}

×

×
{

eκb(κb− 1) + e−κb(κb+ 1)
} e−κz

z
,

or,

u = 4π2ρvρ
′
v

λ

κ6
f(κa)f(κb)

e−κz

z
. (22)
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Fig. 8. Two spheres interacting at distance z. One of them can be considered
as an assembly of spherical shells.

9- Finite shell-particle

With the previous results we can evaluate the energy between a spherical
shell of finite thickness and a particle. Using (16),

u =
2πλρv
κ3

[f(κb)− f(κa)]
e−κz

z
, (23)

in which we consider a shell of finite thickness, of internal radius a and
external radius b. The energy of interaction with a particle may be written
then as the energy with a sphere of radius b minus the energy with a sphere
of radius a.

It is interessing to study the limit of an infinitesimal thickness. We make
b = a+ δ and take the limit δ → 0. We have,

f(κb)− f(κa) ∼= (eκa − e−κa)κ2 a δ +O(κδ)2 , (24)

hence,

u ∼= 2πaλρvδ(e
κa − e−κa)

e−κz

κz
.
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In the limit δ → 0 the product ρvδ becomes the surface density ρs, and the
above expression becomes identical to (14), for the interaction between a
particle and an infinitesimal shell.

10- Finite shell-Infinitesimal shell

We consider now a shell of finite thickness, with internal radius a and external
radius b, interacting with a shell of infinitesimal thickness with radius c. We
write the energy of interaction as the energy between the shell and a sphere
of radius b, minus the energy of the shell with a sphere of radius a. Using
the relation (20),

u = 4π2cρvρs
λ

κ4
(eκc − e−κc)[f(κb)− f(κa)]

e−κz

z
. (25)

We may obtain the energy of interaction between two shells of infinitesimal
thickness doing b = a+ δ in the above expression and taking the limit δ → 0,
as before.

11- Finite shell-sphere

The energy of interaction between a finite shell with internal radius a external
radius b, with a sphere of radius c, can be written as the energy between two
spheres of radius b and c, minus the energy between two spheres of radius a
and c. Using the equation (22),

u = 4π2ρvρ
′
v

λ

κ6
f(κc)[f(κb)− f(κa)]

e−κz

z
. (26)

In the limit δ → 0, with b = a+ δ, we obtain (20), for the energy between a
sphere and a shell of infinitesimal thickness.

12- Finite shell-finite shell

We consider a shell of finite thickness with internal radius a and external
radius b, interacting with a finite shell with internal radius c and external
radius d. With the expression for the energy between two spheres, eq.(22),
we have,

u = (ubd − uad)− (ubc − uac) ,

u = 4π2ρvρ
′
v

λ

κ6
e−κz

z
[f(κb)f(κd)− f(κa)f(κd)

−f(κb)f(κc) + f(κa)f(κc)] ,
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or,

u = 4π2ρvρ
′
v

λ

κ6
e−κz

z
[f(κd)− f(κc)][f(κb)− f(κa)] . (27)

We consider the limit of infinitesimal shells. Doing first c = d + ε and then
ε→ 0, and using (24),

u = 4π2ρvρ
′
v

λ

κ6
e−κz

z
[(eκc − e−κc)κ2c ε][f(κb)− f(κa)] .

Substituting ρ′vε by ρ′s, we obtain the energy of interaction between a finite
shell and an infinitesimal shell,

u = 4π2cρvρs
λ

κ4
e−κz

z
(eκc − e−κc)[f(κb)− f(κa)] .

Using again the expression (24), now doing b = a+δ, we obtain the expression
for the interaction between two shells of infinitesimal thickness, in the limit
δ → 0,

u = 4π2acρsρ
′
s

λ

κ2
e−κz

z
(eκc − e−κc)(eκa − e−κa) ,

in which we replace ρvδ by ρs.

13- Particle-infinite line

We consider now the interaction between a particle and an infinite line (fig.
9). One example of this system is a solution of linear polyelectrolytes [27].

P
R

θ

r

dz

z

O

Fig. 9. A particle at P interact with an infinite line at the z axis.
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The infinitesimal energy between the particle and an element dz of the
line is,

du = λ
e−κr

r
ρldz .

We see from the figure that r2 = z2 +R2, hence,

u = λρl

∫ +∞

−∞

e−κ
√
R2+z2

√
R2 + z2

dz = 2λρl

∫ +∞

0

e−κ
√
R2+z2

√
R2 + z2

dz .

Doing the change of variables R2t2 = R2 + z2,

u = 2λρl

∫ +∞

1

e−κRtdt
√
t2 − 1

.

The above integral is the integral representation of the modified Bessel func-
tion of the second kind, of order zero, K0. Therefore,

u = 2λρlK0(κR) . (28)
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System u

Particle 2πλρla
e−κr

r
-circle of radius a

Particle −
2πλρs
κ

[

e−κ
√
z2+a2 − e−κz

]

-disc of radius a

Particle
2πλρv
κ3

f(κa)
e−κz

z
-sphere of radius a

Particle 2πaρsλ
e−κz

κz
(eκa − e−κa)

-spherical shell of radius a

Two spherical shells 4π2abρaρb
λ

κ2
(eκa − e−κa)(eκb − e−κb)

e−κz

z
of radius a e b

Sphere of radius a 4π2bρvρs
λ

κ4
(eκb − e−κb)f(κa)

−κz
z

and spherical shell of radius b

Sphere-sphere 4π2bρaρb
λ

κ6
f(κa)f(κb)

−κz
z

Finite shell -
2πλρv
κ3

[f(κb)− f(κa)]
e−κz

z
particle

Table 1. Interaction energies for some systems (see text).
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System u

Finite shell- 4π2cρvρs
λ

κ4
(eκc − e−κc)[f(κb)− f(κa)]

e−κz

z
infinitesimal shell

Finite shell- 4π2ρvρ
′
v

λ

κ6
f(κc)[f(κb)− f(κa)]

e−κz

z
sphere

Finite shell- 4π2ρvρ
′
v

λ

κ6
e−κz

z
[f(κd)− f(κc)][f(κb)− f(κa)]

finite shell

Particle- 2λρlK0(κR)
infinite line

Table 1 (cont.). Interaction energies for some systems (see text).

2 The free energy for spherical colloids

In this section we write de Helmholtz free energy for a colloidal solution with
Np polyions, which are spheres of radius a and charge −Zq, and positive
counterions of charge +q each, the proton charge. We can also have mono-
valent salt, or other valent salts, in the system. The free energy is a sum of
the main contributions [24],

F = Fid + Fent + Fion + Fdh + Fpp , (29)

where Fid is the ideal gas term,

βFid =
∑

s

Ns[ln ρ
∗
s − 1] , (30)

and the sum is over all species, polyions and free ions. The dimensionless
density is ρ∗ = ρ a3, β = 1/kT , and k is Boltzmann constant.

The entropic term describes all possible configurations of n condensed
ions at Z sites [24, 39],

βFent = ZNp[m lnm+ (1−m) ln(1−m)] , (31)
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with m = n/Z being the association fraction. The term describingeach with
charge −(1−m)q, is [24, 39]

βFion =
Np(Z − n)2

2T ∗
, (32)

with T ∗ = 4πεakT/q2, and ε is the absolute permitivity of water.

2.1 The interaction of the colloid and the ionic solution

The ionic solution contains spherical molecules of diameter and charge very
larger than the ions in solution. We obtain an approximated Helmholtz free
energy througy Debye-Hückel theory [3]. We consider a spherical molecule
with radius a and chargeQ, in a ionic solution characterized by the parameter
κ, the inverse Debye screening length. The ions in solution are considered as
punctiform particle. We consider three cases: the charge at the center of the
sphere, the charge uniformly distributed over the volume of the sphere, and
the charge uniformly distributed over the surface of the sphere.

(a) Charge at the center of the sphere.
In this case, according Debye-Hückel theory, the electrostatic potential

around the colloid is,

φi =
Q

4πǫir
+ A , r ≤ a ,

φe =
Be−κr

r
, r ≥ a ,

where ǫi is the permittivity in r ≤ a and ǫ is the permittivity in the ionic
solution, in r ≥ a. The derivatives with respect to r are,

dφi

dr
= −

Q

4πǫir2
, r ≤ a ,

dφe

dr
= −

κBe−κr

r
−
Be−κr

r2
, r ≥ a .

Using the boundary conditions,

φi(a) = φe(a) , ǫi
dφi

dr
(a) = ǫ

dφe

dr
(a) ,

we obtain,
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A =
Q

4πǫa

[

1

1 + κa
−
ǫ

ǫi

]

,

B =
Qeκa

4πǫ(1 + κa)
.

If ǫi = ǫ,

A = −
Qκ

4πǫ(1 + κa)
,

ant the electrostatic potential is,

φi =
Q

4πǫr
−

Qκ

4πǫ(1 + κa)
, r ≤ a ,

φe =
Q

4πǫ

eκa

1 + κa

e−κr

r
, r ≥ a . (33)

The Helmholtz free energy due to electrostatic interaction between the
colloid and the ions in solution evaluated charging the potential ψ given by
the second term in φi,

ψ = φi − φi(κ = 0) = −
Qκ

4πǫ(1 + κa)
. (34)

Therefor,

dF = ψdQ ,

F =

∫

ψdQ = −
κ

4πǫ(1 + κa)

∫ Q

0

QdQ ,

F = −
Q2

8πǫ

κ

1 + κa
. (35)

We note that F → 0 if κ→ 0, as expected.
(b) Charge uniformly distributed at the volume of the sphere.
The electrostatic potential is given by,

φi = A+ Br2 , r ≤ a ,

φe =
Ce−κr

r
, r ≥ a .
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The derivatives of φ are,

dφi

dr
= 2Br ,

dφe

dr
= −

κCe−κr

r
−
Ce−κr

r2
, r ≥ a .

We have three constants to find. The constant B is evaluated from Gauss
law,

∮

EdS =
Qi

ǫi
.

We obtain, for r < a,

B = −
Q

8πǫia3
.

To determine A and C we use the boundary conditions,

φi(a) = φe(a) , ǫi
dφi

dr
(a) = ǫ

dφe

dr
(a) ,

obtaining, with ǫi = ǫ,

A =
Q

8πǫa

3 + κa

1 + κa
,

C =
Qeκa

4πǫ(1 + κa)
.

The electrostatic potential is then,

φi =
Q

8πǫa

3 + κa

1 + κa
−

Qr2

8πǫa3
, r ≤ a ,

φe =
Q

4πǫ

eκa

1 + κa

e−κr

r
, r ≥ a . (36)

The electrostatic potential for r ≥ a is the same as before. The potential ψ
is,

ψ = φi − φi(κ = 0) = −
Qκ

4πǫ(1 + κa)
, (37)

as before. Then we have the same free energy,
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F = −
Q2

8πǫ

κ

1 + κa
. (38)

(c) Charge uniformly distributed over the surface of the sphere.
The electrostatic potencial is,

φi = A ,

φe =
Be−κr

r
, r ≥ a .

The derivatives of the potential are,

dφi

dr
= 0 ,

dφe

dr
= −

κBe−κr

r
−
Be−κr

r2
, r ≥ a .

The constants A and B are determined as before by the boundary conditions,

φi(a) = φe(a) , ǫEe
n(a)− ǫiE

i
n(a) = σq ,

where σq = Q/4πr2 is the surface charge density of the colloid. We obtain,
using ǫi = ǫ,

A =
Q

4πǫa

1

1 + κa
,

B =
Qeκa

4πǫ(1 + κa)
.

The electrostatic potential is then,

φi =
Q

4πǫa

1

1 + κa
, r ≤ a ,

φe =
Q

4πǫ

eκa

1 + κa

e−κr

r
, r ≥ a . (39)

The potential φe is the same, as expected. The potential ψ is given by,

ψ = φi − φi(κ = 0) = −
Qκ

4πǫ(1 + κa)
, (40)

as before. Therefore we obtain the same free energy,

F = −
Q2

8πǫ

κ

1 + κa
. (41)
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2.2 The polyion-polyion contribution

The equation (18) is our approximation for the interaction energy between
spherical colloids in the ionic solution, considered as spherical shells. We
note that this is not exactly the same form of the repulsive term of the
DLVO potential [2, 19, 20, 24]. We will return to this point later. If all
colloid molecules have the same charge and diameter, we may write,

ρs = ρ′s =
Z − n

4πa2
, λ =

q2

4πε
, (42)

in which we consider a colloid with radius a and Z negative sites. At equi-
librium there are n associated positive ions at the colloid. Substituting in
(18),

u =
(Z − n)2q2

16πε

(eκa − e−κa)2

κ2a2
e−κz

z
. (43)

We can verify that this expression, in the limit κ→ 0, reduces to,

u =
(Z − n)2q2

4πεz
, κ→ 0 ,

as expected. This interaction energy may be used to evaluate the van der
Waals free energy [3, 5, 24, 39]. The contribution to the Helmholtz free
energy due to polyion-polyion interaction is then,

βFpp =
1

2
ρ2nV

∫

βud3r ,

where ρn is the number density of a polyion with n positive associated ions.
This forms what is called a complex of a polyion and n associated counterions.
We consider here all complexes with the same siza n, hence ρn = ρp = Np/V .
A complex size distribution may also be determined [17]. The result for Fpp

is,

βFpp =
πV

2κ4aT ∗
(Z − n)2ρ2n(e

κa − e−κa)2e−2κa(1 + 2κa) . (44)

The DLVO potential [19] has also been used in colloid studies [24]. We
include this possibility here for comparison. The interaction energy between
two spherical colloids in DLVO theory is,

uDLV O =
q2(Z − n)2

4πε

e2κa

(1 + κa)2
e−κr

r
. (45)

The corresponding contribution to the free energy, evaluated with van der
Waals theory, is [24],
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βFDLV O =
2πa3V

T ∗
(Z − n)2ρ2p

1 + 2κa

(κa)2(1 + κa)2
. (46)

The results with both interaction forms are shown below.

3 Resultados

We consider only the free salt case, that is, ρs = 0. In figure 10 we have the
association isotherms as function of Z for three different temperatures. In
figure 11 we have the association fractions as function of T ∗ for three different
densities of polyions. In figure 12 we have G × p in dimensionless units for
fixed T ∗. We see a phase transition. Figure 13 shows the phase diagram
T ∗ × ρ∗p for the system without several excluded volume terms included.
Figure 14 shows the T ∗×m diagram corresponding to the diagrams in figure
13.

Figure 15 shows the phase diagrams for the system with free energy cor-
responding to the interaction between polyions given by (44), evaluated with
the interaction between spherical shells (43). We also show the phase dia-
gram using (46), corresponding to the interaction between polyions given by
DLVO theory, equation (45), for comparison. In both curves we have not
any excluded volume form.
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Fig. 10. Associated fraction as function of Z, for ρ∗p = 0, 01 and ρ∗s = 0.
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Fig. 11. Associated fraction as function of T ∗, for ρ∗s = 0, Z = 100 and
different densities of colloids.
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Fig. 12. Graphic of g∗ × p∗ for the system with Z = 100, ρ∗s = 0 and
T ∗ = 0, 2, without excluded volume terms.
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Fig. 13. Phase diagram for the system with Z = 100 and ρ∗s = 0.
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Fig. 14. Association fractions corresponding to the diagrams in figure 13.
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Fig. 15. Phase diagrams for the system with free energy corresponding to the
interaction between polyions given by (44) (black line), evaluated with the
interaction between spherical shells (43). The red lineis the phase diagram
using (46), corresponding to the interaction between polyions given by DLVO
theory, equation (45).
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[29] C. von Ferber, H. Löwen, J. Cem. Phys. 118(23) 10774-9.
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