

Universidade Federal de Pelotas

Instituto de Física e Matemática Pró-Reitoria de Ensino

Atividades de Revisão em Matemática

Módulo de

Funções

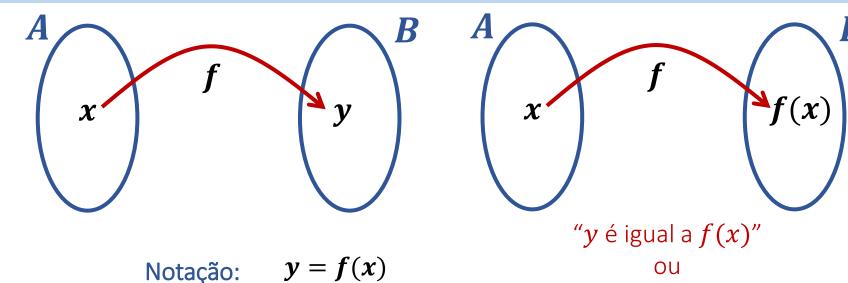
Aula 01

σο Apojo em Market

Definição de função

Definição: Sejam A e B dois conjuntos não vazios.

Uma função f de A em B é uma relação que associa cada elemento $x \in A$ a um ÚNICO elemento $y \in B$.



Definição: Sejam A e B dois conjuntos e f uma função de A em B.

• O conjunto A é chamado de conjunto de partida.

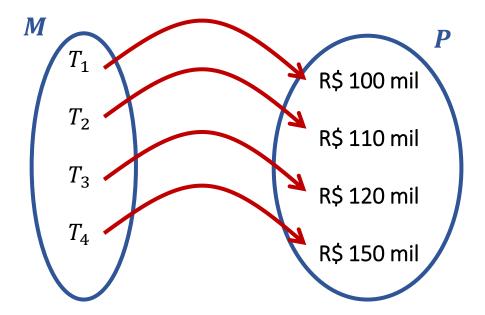
"f(x) é igual a y"

• O conjunto B é chamado de conjunto de chegada.

1) Uma empresa revendedora de máquinas agrícolas possui 4 modelos diferentes de tratores: T_1 , T_2 , T_3 e T_4 . O preço à vista a ser pago pelo comprador é dado **em função** do modelo de trator escolhido. Temos nesse caso um modelo de função.

Vejamos a seguir 3 possibilidades que podem ocorrer:

Possibilidade 1:

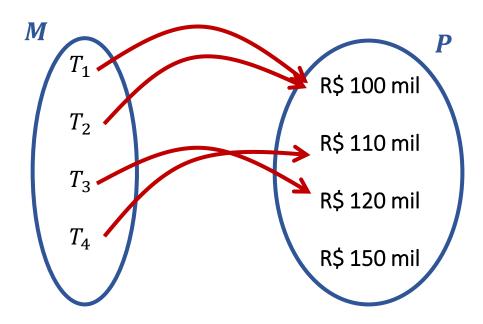


 $\acute{\mathbf{E}}$ uma função pois cada elemento do conjunto M está relacionado a um único elemento do conjunto P.

ο A Poio en Market

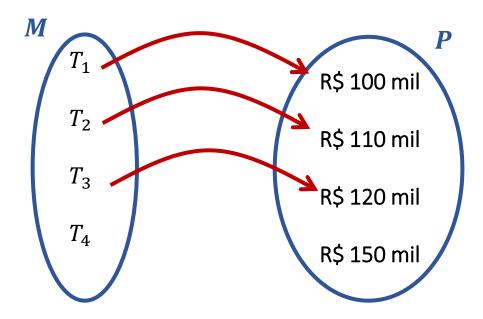
Exemplos

Possibilidade 2:



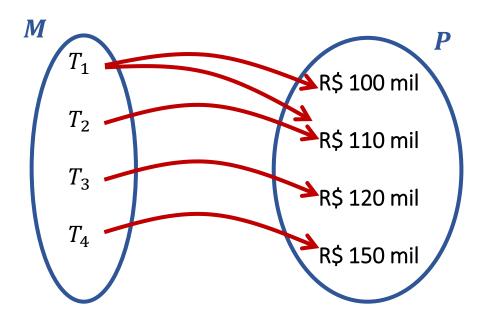
 $\acute{\mathbf{E}}$ uma função pois cada elemento do conjunto M está relacionado a um único elemento do conjunto P.

Vejamos a seguir alguns exemplos que não podem ocorrer nesta relação:



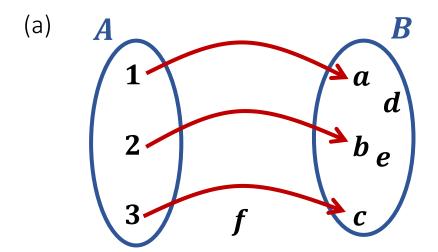
Não é uma função pois existe elemento do conjunto M que não se relaciona a elemento algum do conjunto P.

Vejamos a seguir alguns exemplos que não podem ocorrer nesta relação:



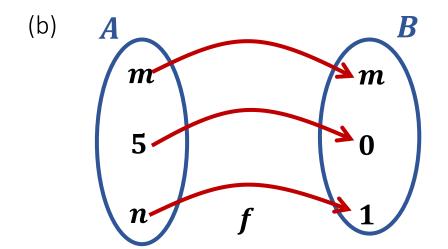
Não é uma função pois existe elemento do conjunto M que se relaciona com mais de um elemento do conjunto P.

2) Determine se a relação abaixo representa uma função.



Solução:

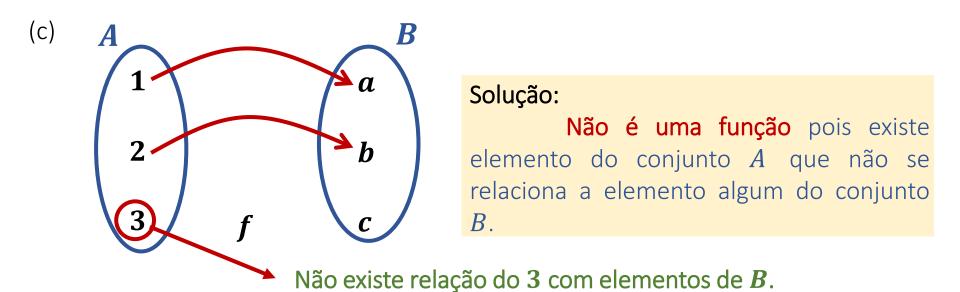
É uma função pois cada elemento do conjunto A está relacionado a um único elemento do conjunto B.



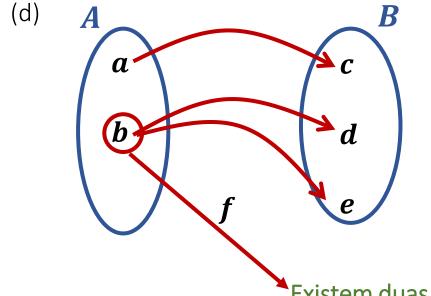
Solução:

 $\acute{\mathbf{E}}$ uma função pois cada elemento do conjunto A está relacionado a um único elemento do conjunto B.

2) Determine se a relação abaixo representa uma função.



2) Determine se a relação abaixo representa uma função.



Solução:

Não é uma função pois existe elemento do conjunto A relacionado a mais de um elemento do conjunto B.

Existem duas relações de b com elementos de B.

Domínio, contra-domíno e imagem

Definição: Sejam A e B dois conjuntos e f uma função de A em B.

- O conjunto A é chamado de domínio da função f.
- O conjunto B é chamado de **contradomínio** da função f.
- Os elementos do conjunto B que foram relacionados na função fformam o conjunto **imagem** da função f.

- Notação:

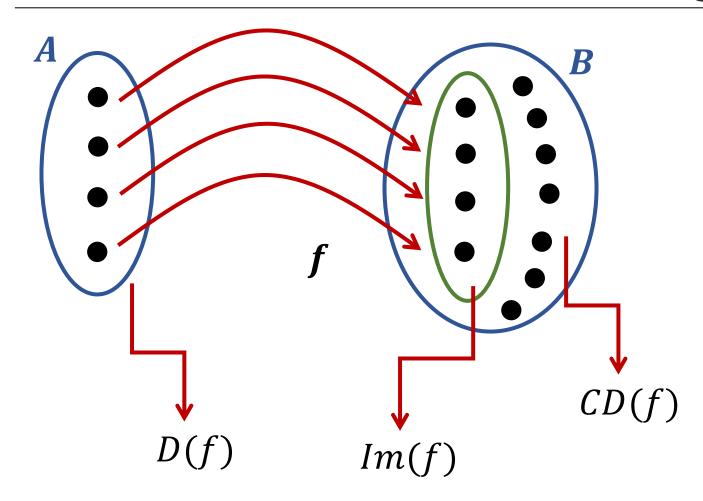
 O domínio é indicado por D(f).

 O contradomínio é indicado por CD(f).

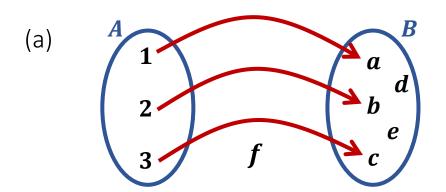
 A imagem é indicada por Im(f).

CAM Θηθ ππ α Apojo em Marte

Domínio, contra-domíno e imagem



3) Dados os conjuntos A e B e a relação f a seguir, determine os conjuntos D(f), CD(f) e Im(f).



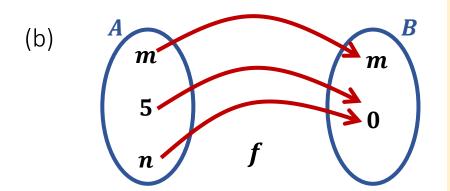
Solução:

$$f(1)=a$$
 $f(2)=b$ $(f \text{ de } 1 \text{ \'e igual a } a).$ $(f \text{ de } 2 \text{ \'e igual a } b).$ $f(3)=c$ $(f \text{ de } 3 \text{ \'e igual a } c).$

$$D(f) = \{1, 2, 3\}$$

 $CD(f) = \{a, b, c, d, e\}$
 $Im(f) = \{a, b, c\}$

3) Dados os conjuntos A e B e a relação f a seguir, determine os conjuntos D(f), CD(f) e Im(f).



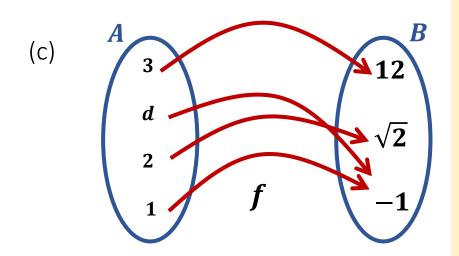
Solução:

$$f(m) = m \qquad f(5) = 0$$
 (f de m é igual a m). (f de 5 é igual a 0).
$$f(n) = 0$$
 (f de n é igual a 0).

$$D(f) = \{m, 5, n\}$$

 $CD(f) = \{m, 0\}$
 $Im(f) = \{m, 0\}$

3) Dados os conjuntos A e B e a relação f a seguir, determine os conjuntos D(f), CD(f) e Im(f).



Solução:

$$f(3) = 12$$
 $f(d) = -1$

(f de 3 'e igual a 12) (f de d 'e igual a -1)

$$f(2) = \sqrt{2} \qquad f(1) = -1$$
(f de 2 é igual a $\sqrt{2}$) (f de 1 é igual a -1)

$$D(f) = \{1, 2, 3, d\}$$

$$CD(f) = \{-1, \sqrt{2}, 12\}$$

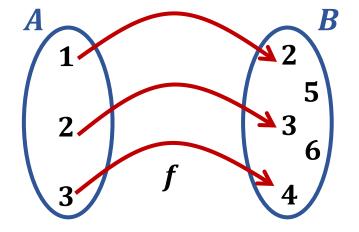
$$Im(f) = \{-1, \sqrt{2}, 12\}$$

Que a management of the second of the second

Representação de uma função

Uma mesma função pode ser representada de várias formas:

Diagrama de flechas



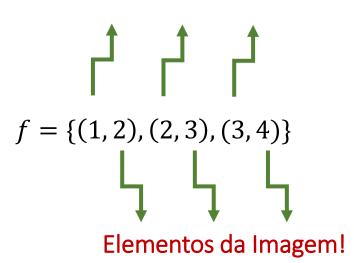
Tabela

X	1	2	3
f(x)	2	3	4

GAMA GAPojo em Marte

Representação de uma função

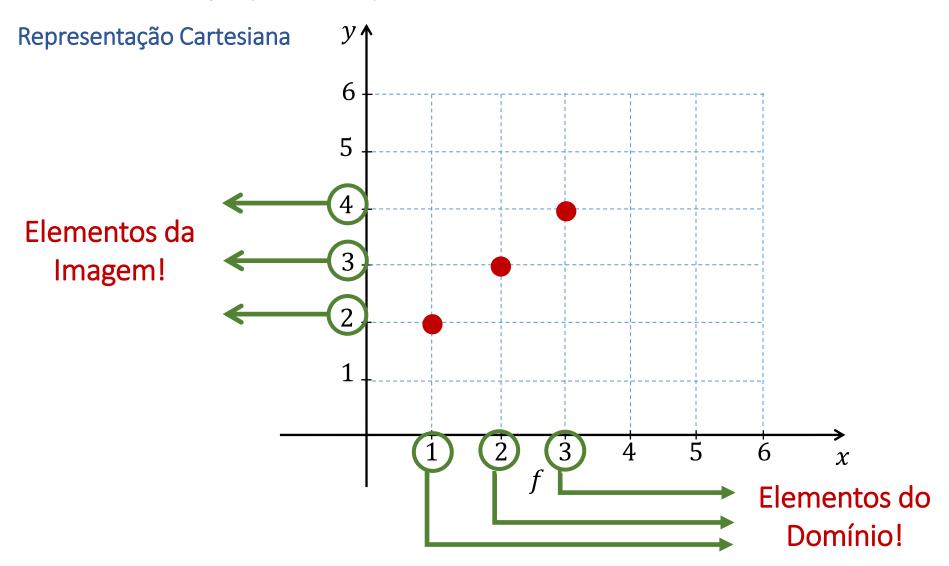
Pares ordenados



Company of the state of the sta

Representação de uma função

Uma mesma função pode ser representada de várias formas:

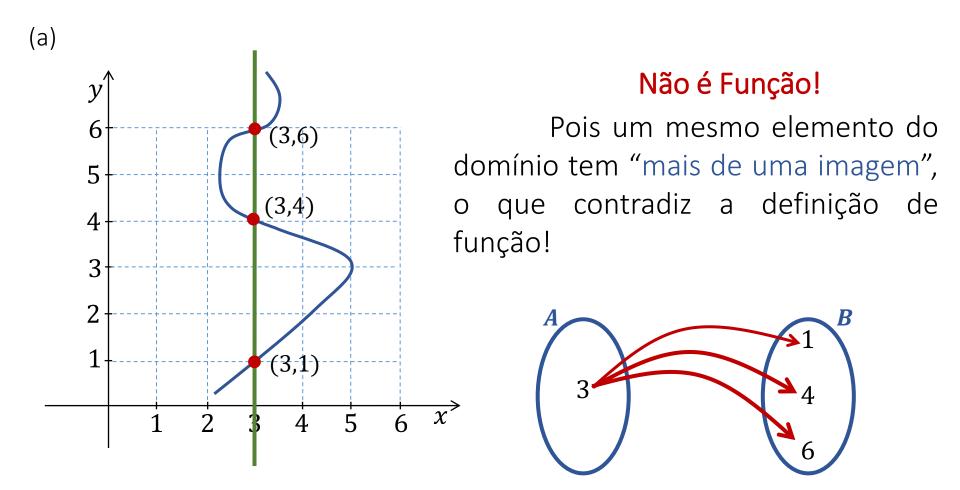


Teste: Uma curva no plano xy representa o gráfico de uma função f se, e somente se, nenhuma reta vertical intercepta a curva mais de uma vez.

CA THE TOTAL OF TH

Exemplos

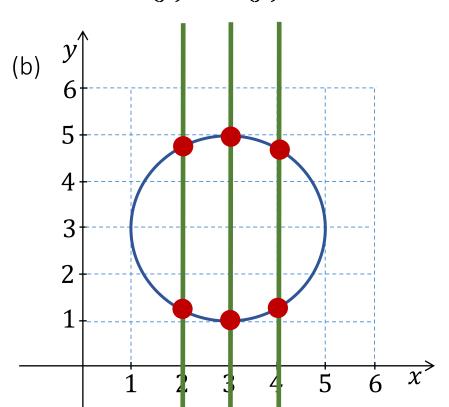
4) Determine para cada relação a seguir, se representam funções. Se for função, determine D(f) e Im(f).

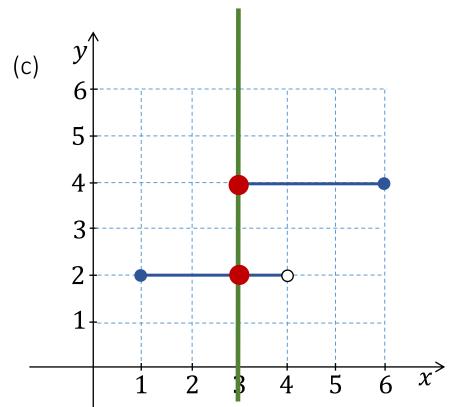


Q Apolo em por

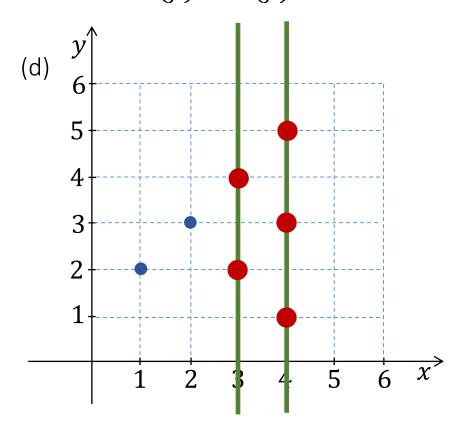
Exemplos

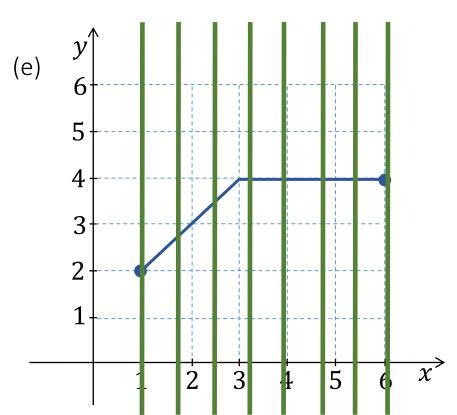
4) Determine para cada relação a seguir, se representam funções. Se for função, determine D(f) e Im(f).





4) Determine para cada relação a seguir, se representam funções. Se for função, determine D(f) e Im(f).

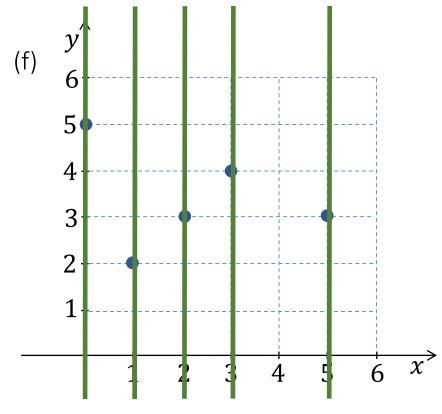




Não é função!

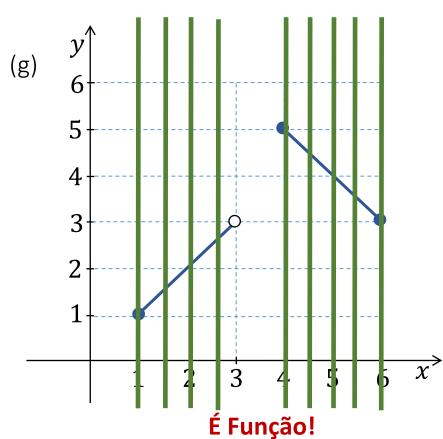
$$D(f) = [1, 6]$$
 ou $D(f) = \{x \in \mathbb{R} \mid 1 \le x \le 6\}$
 $Im(f) = [2, 4]$ ou $Im(f) = \{y \in \mathbb{R} \mid 2 \le y \le 4\}$

4) Determine para cada relação a seguir, se representam funções. Se for função, determine D(f) e Im(f).



É Função!

$$D(f) = \{0, 1, 2, 3, 5\}$$
 $Im(f) = \{2, 3, 4, 5\}$



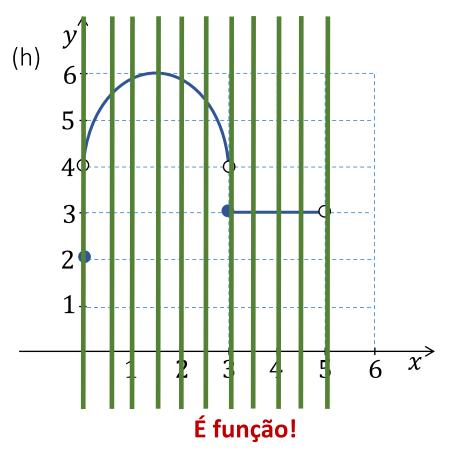
$$D(f) = [1,3) \cup [4,6]$$
 ou $D(f) = \{x \in \mathbb{R} \mid 1 \le x < 3 \text{ ou } 4 \le x \le 6\}$

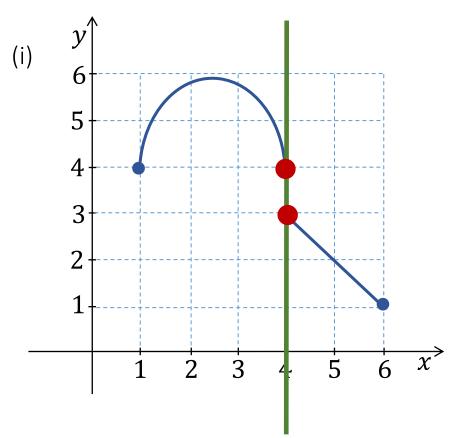
$$Im(f) = [1,5]$$
 ou $Im(f) = \{y \in \mathbb{R} \mid 1 \le y \le 5\}$

Q Apojo em Marke

Exemplos

4) Determine para cada relação a seguir, se representam funções. Se for função, determine D(f) e Im(f).





D(f) = [0,5) ou $D(f) = \{x \in \mathbb{R} \mid 0 \le x < 5\}$ $Im(f) = \{2,3\} \cup (4,6]$ ou $Im(f) = \{y \in \mathbb{R} \mid y = 2, y = 3 \text{ ou } 4 < y \le 6\}$ Não é função!

Lei de formação

Definição: A **Lei de Formação** de uma função $f:A\to B$ é a fórmula matemática que estabelece a forma com que cada elemento $x\in A$ se relacionará com o respectivo $y\in B$.

5) Sejam os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Se a função $f: A \rightarrow B$ tem a lei de formação dada por f(x) = 2x, tem-se:

Solução:

$$f(1) = 2(1) = 2$$

1 está relacionado ao 2

$$f(2) = 2(2) = 4$$

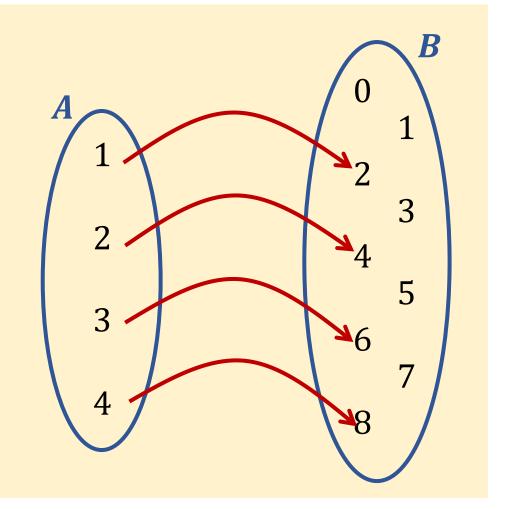
2 está relacionado ao 4

$$f(3) = 2(3) = 6$$

3 está relacionado ao 6

$$f(4) = 2(4) = 8$$

4 está relacionado ao 8



C A M

Valor numérico

Para determinar o valor numérico de uma função y=f(x) em um elemento específico x=a do domínio, basta substituir "a" no lugar de "x" na lei de formação da função f.

Definição: O valor de f(a) é chamado de imagem de a pela função f.

 $(l\hat{e}\text{-se }f(a)\text{ como "}f\text{ de }a")$

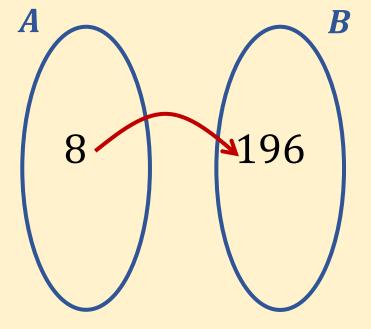
6) Determine a imagem de x=8 para a função $f(x)=3x^2+4$.

Solução:

Substituindo x=8 na lei de formação da função f ,

obtém-se:

$$f(8) = 3(8)^{2} + 4$$
$$= 3(64) + 4$$
$$= 192 + 4$$
$$= 196$$



196 é a imagem de 8 pela função f .

Q Apojo em Marte

Exemplos

- 7) Numa determinada cidade, houve um período sem chuva que durou 152 dias, ocasionando a diminuição do nível de água no reservatório desta cidade. Se no início da estiagem o nível de água no reservatório era de 12m e se o nível diminuiu em média 5cm por dia, neste período, determine:
- (a) A função que descreve o nível de água no reservatório em função do tempo.
- (b) Qual era o nível do reservatório depois de 30 dias?
- (c) Depois de quantos dias o nível do reservatório caiu pela metade?

- 7) Numa determinada cidade, houve um período sem chuva que durou 152 dias, ocasionando a diminuição do nível de água no reservatório desta cidade. Se no início da estiagem o nível de água no reservatório era de 12m e se o nível diminuiu em média 5cm por dia, neste período, determine:
- (a) A função que descreve o nível de água no reservatório em função do tempo.

Solução:

Nível inicial: N(0) = 12m

Nível depois de um dia: $N(1) = 12 - (0.05) \cdot 1 = 11.95m$

Nível depois de dois dias:N(2) = 12 - (0.05).2 = 11.90m

Nível depois de três dias: $N(3) = 12 - (0.05) \cdot 3 = 11.85m$

:

Nível depois de t dias: N(t) = 12 - (0, 05).t

GAMOO CONTRACTOR OF APOIO CONTRACTOR OF APOID CONTRACTOR OF APOID

Exemplos

- 7) Numa determinada cidade, houve um período sem chuva que durou 152 dias, ocasionando a diminuição do nível de água no reservatório desta cidade. Se no início da estiagem o nível de água no reservatório era de 12m e se o nível diminuiu em média 5cm por dia, neste período, determine:
- (a) A função que descreve o nível de água no reservatório em função do tempo.

Solução:

Nível depois de t dias:

$$N(t) = 12 - (0.05).t$$

Lei de formação:

$$N(t) = 12 - (0,05) \cdot t$$

 $0 \le t \le 152$

CAM Θγο ππ π α Apoio em Made

Exemplos

- 7) Numa determinada cidade, houve um período sem chuva que durou 152 dias, ocasionando a diminuição do nível de água no reservatório desta cidade. Se no início da estiagem o nível de água no reservatório era de 12m e se o nível diminuiu em média 5cm por dia, neste período, determine:
- (b) Qual era o nível do reservatório depois de 30 dias?

Solução:

$$N(t) = 12 - (0.05) \cdot t$$

Portanto, no trigésimo dia (t = 30) tem-se:

$$N(30) = 12 - (0.05) \cdot 30$$

$$N(30) = 12 - 1.5$$

$$N(30) = 10,5m$$

- 7) Numa determinada cidade, houve um período sem chuva que durou 152 dias, ocasionando a diminuição do nível de água no reservatório desta cidade. Se no início da estiagem o nível de água no reservatório era de 12m e se o nível diminuiu em média 5cm por dia, neste período, determine:
- (c) Depois de quantos dias o nível do reservatório caiu pela metade?

Solução:

$$N(t) = 6m$$

$$12 - (0,05) \cdot t = 6$$

$$N(t)$$

$$(0,05) \cdot t = 6$$

$$t = \frac{6}{0,05} = \frac{6}{\frac{5}{100}} = \frac{6}{1} \cdot \frac{100}{5}$$

$$t = \frac{600}{5} = 120$$
 dias.

Exercícios Propostos

Exercícios

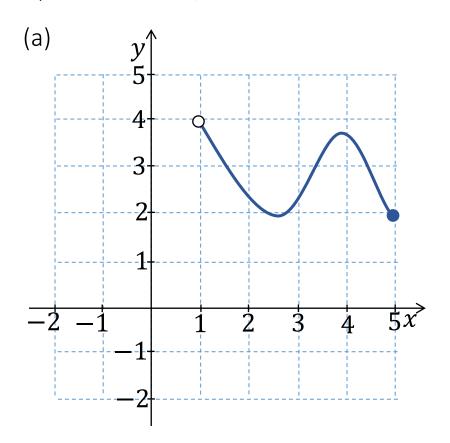
1) Sabendo que a posição de um objeto que parte da posição inicial $s_0=2m$ e desloca-se com velocidade constante de $v_0=5m/s$ e dada pela tabela a seguir:

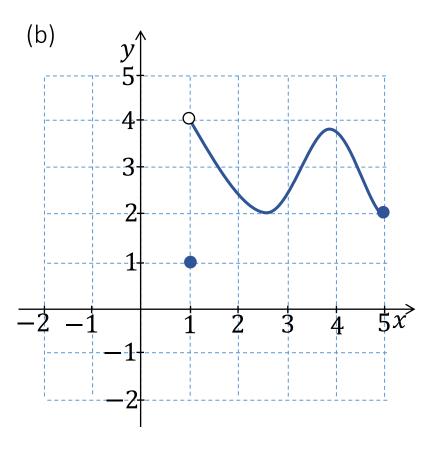
t	0	1	2	3	• • •
s(t)	2	7	12	17	• • •

- (a) Escreva a função que expressa a posição em função do tempo t.
- (b) Qual é a posição do objeto após 20 segundos?
- (c) Quanto tempo é necessário para o objeto atingir a posição 152m?

Exercícios

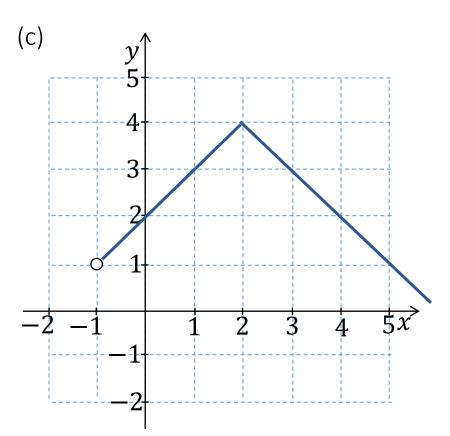
2) Em cada caso, determine o domínio e a imagem da função f.

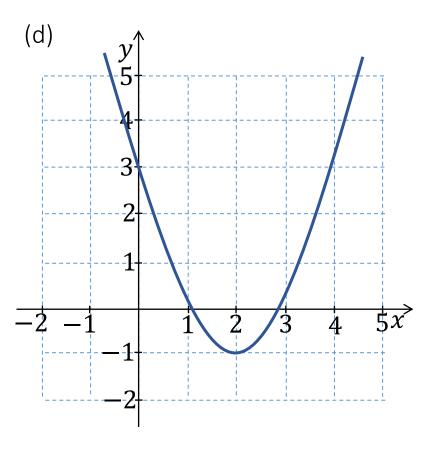




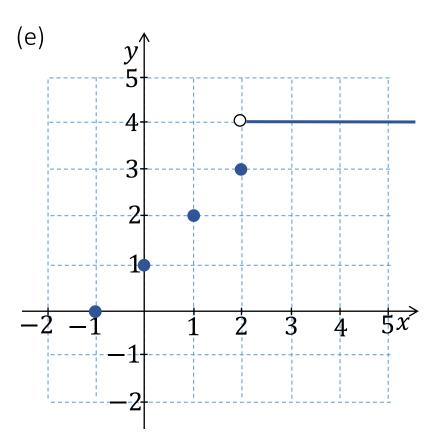
Exercícios

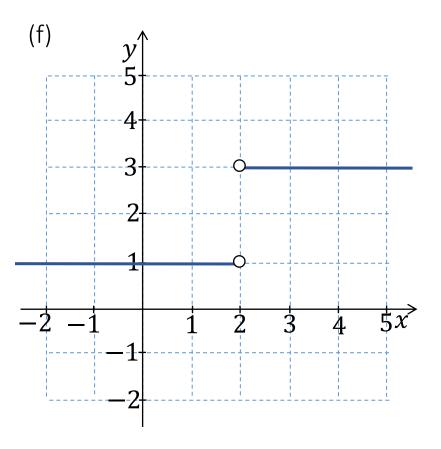
2) Em cada caso, determine o domínio e a imagem da função f.





2) Em cada caso, determine o domínio e a imagem da função f.





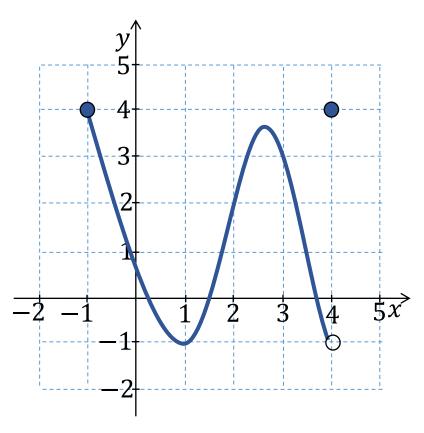
CAMPOJO em March

Exercícios

- 3) Considerando o gráfico da função f ao lado, determine:
- (a) O domínio e a imagem de f;

(b) f(1), f(2), f(3) e f(4);

(c) Os valores de x para os quais y = 4;



(d) Quantos valores de x possuem imagem igual a 3? Você pode citar um deles?

4) Considere a função f dada pela sentença:

$$f(x) = \frac{5x - 4}{2}$$

- (a) Calcule f(2) e $f(\frac{1}{2})$.
- (b) Calcule f(2m + 6).
- (c) Qual é o número real que tem 8 como imagem?
- 5) Sendo $f: \mathbb{R} \to \mathbb{R}$ definida pela lei

$$f(x) = 3x + 1,$$

calcule:

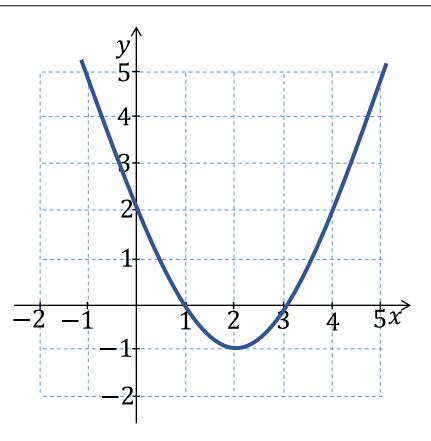
(a) f(-2).

- (d) A imagem de $\frac{2}{3}$.
- (b) O valor de x para o qual f(x) = 3.
- (e) O número cuja imagem é 7.
- (c) O valor de x para o qual f(x) = 0.
- (f) O valor de x que é igual a sua imagem.

Q A Pojo em Marke

Exercícios

- 6) Considere o gráfico da função f ao lado.
- (a) Qual o domínio e a imagem de f;
- (b) Qual é a imagem de 2?
- (c) Determine f(0);
- (d) Determine para quais valores de x se tem f(x) = 2?
- (e) Quais valores de x possuem imagem igual a 0?



- (f) Para quais valores de x as imagens são números positivos?
- (g) Para quais valores de x as imagens são números negativos?

7) O custo de fabricação de x unidades de um produto é dado pela função:

$$C(x) = 100 + 2x.$$

- (a) Qual o custo de fabricação de 10 unidades?
- (b) Qual o custo de fabricação de 20 unidades?
- (c) Quantas unidades podem ser fabricadas com um custo de \$ 200,00 ?
- (d) Quantas unidades podem ser fabricadas com um custo de \$ 350,00 ?
- 8) Um vendedor de assinaturas de uma revista ganha \$ 2.000,00 de salário fixo mensal, mais uma comissão de \$ 50,00 por assinatura. Sendo x o número de assinaturas vendidas por mês, expresse seu salário total \$ como função de x.

- 9) Uma livraria vende uma revista por \$ 5,00 a unidade. Seja x a quantidade vendida.
- (a) Obtenha a função receita R(x).
- (b) Calcule R(40).
- (c) Qual a quantidade que deve ser vendida para dar uma receita igual a \$ 700,00?

10) Chama-se **custo médio de fabricação** de um produto o custo de produção dividido pela quantidade produzida. Indicando o custo médio correspondente a x unidades produzidas por Cme(x), teremos:

$$Cme(x) = \frac{C(x)}{x}$$

O custo de fabricação de x unidades de um produto é C(x) = 500 + 4x.

- (a) Qual o custo médio de fabricação de 20 unidades?
- (b) Qual o custo médio de fabricação de 40 unidades?
- (c) Quantas unidades podem ser produzidas quando o custo médio de fabricação é de \$ 24,00 ?

Q Apojo em Marke

Respostas

Exercício 1:

a)
$$S(t) = 2 + 5t$$

b)
$$S(20) = 2 + 5(20) = 102 m$$

c) 30 segundos

Exercício 2:

a)
$$D(f) = (1,5]$$
 ou $D(f) = \{x \in \mathbb{R} \mid 1 < x \le 5\}$ $Im(f) = [2,4)$ ou $Im(f) = \{y \in \mathbb{R} \mid 2 \le y < 4\}$

b)
$$D(f) = [1,5]$$
 ou $D(f) = \{x \in \mathbb{R} \mid 1 \le x \le 5\}$ $Im(f) = \{1\} \cup [2,4)$ ou $Im(f) = \{y \in \mathbb{R} \mid y = 1 \text{ ou } 2 \le y < 4\}$

GAM

Respostas

c)
$$D(f) = (-1, +\infty)$$
 ou $D(f) = \{x \in \mathbb{R} \mid x > -1\}$
 $Im(f) = (-\infty, 4]$ ou $Im(f) = \{y \in \mathbb{R} \mid y \le 4\}$

d)
$$D(f)=\mathbb{R}$$

$$Im(f)=[-1 + \infty) \text{ ou } Im(f)=\{y\in\mathbb{R}\mid -1\leq y\}$$

e)
$$D(f) = \{-1, 0, 1\} \cup [2, +\infty)$$

 $Im(f) = \{0, 1, 2, 3, 4\}$

f)
$$D(f) = \mathbb{R} - \{2\}$$
 ou $D(f) = \{x \in \mathbb{R} \mid x \neq 2\}$
 $Im(f) = \{1, 3\}$

GAM Θγθ ππ Apojo em Market

Respostas

Exercício 3:

a)
$$D(f) = [-1, 4] Im(f) = [-1, 4]$$

b)
$$f(1) = -1$$
 $f(2) = 2$ $f(3) = 3$ $f(4) = 4$

c)
$$x = -1$$
 $x = 4$

d) Existem três valores de x tais que f(x) = 3, um deles é o x = 3.

Exercício 4:

a)
$$f(2) = 3$$
 $f\left(\frac{1}{2}\right) = -\frac{3}{4}$

b)
$$f(2m+6) = 5m+13$$

c)
$$x = 4$$

Respostas

Exercício 5:

a)
$$f(-2) = -5$$

b)
$$x = \frac{2}{3}$$

c)
$$x = -\frac{1}{3}$$

$$d) f\left(\frac{2}{3}\right) = 3$$

e)
$$x = 2$$

f)
$$x = a \to f(a) = a \to a = -\frac{1}{2}$$
 f) $(-\infty, 1) \cup (3, +\infty)$

Exercício 6:

a)
$$D(f) = \mathbb{R}$$
 $Im(f) = [-1, +\infty)$

b)
$$f(2) = -1$$

c)
$$f(0) = 2$$

d)
$$x = 0$$
 $x = 4$

e)
$$x = 1$$
 $x = 3$

f)
$$(-\infty,1) \cup (3,+\infty)$$

CAMA

Respostas

Exercício 7:

- a) \$ 120,00
- b) \$ 140,00
- c) 50 unidades
- d) 125 unidades

Exercício 8:

$$S(x) = 2000 + 50x$$

Exercício 9:

a)
$$R(x) = 5x$$

b)
$$R(40) = 5(40) = 200,00$$

c)
$$x = 140 unidades$$

Exercício 10:

- a) \$ 29,00
- b) \$ 16,50
- c) 25 unidades

49 Monitorias!!

Não esqueça de procurar os monitores do GAMA para melhor esclarecer suas dúvidas!!

Os horários e locais de monitorias podem se encontrados na página do Projeto:

http://wp.ufpel.edu.br/projetogama/monitorias

Não deixe de visitar e se inscrever em nosso canal no YouTube para ter acesso às nossas vídeo-aulas:

http://l.ufpel.edu.br/YouTubeGAMA

O GAMA possui monitorias de:

- Matemática Elementar, Cálulo 1, Cálculo 1A e Cálculo I (e equivalentes)
 - ☐ ALGA Álgebra Linear e Geometria Analítica (e disciplinas equivalentes)
 - Cálculo A e B, Cálculo 2, Cálculo II e Cálculo 3 (e equivalentes)

Certificado de 20 horas para quem procurar a monitoria do GAMA por pelo menos 15 vezes dentro do mesmo semestre letivo.

Universidade Federal de Pelotas

Instituto de Física e Matemática Pró-Reitoria de Ensino

Atividades de Revisão em Matemática

Módulo de

Funções

Aula 02

Função do primeiro grau

Definição: Dados $a \in b \in \mathbb{R}$ tais que $a \neq 0$.

A função $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = ax + b é chamada de **função do primeiro grau**.

Exemplos

$$1) \qquad f(x) = x$$

$$a = 1$$
 , $b = 0$

2)
$$f(x) = 2x + 1$$

$$a = 2$$
 , $b = 1$

$$3) \quad f(x) = -5x$$

$$a = -5$$
 , $b = 0$

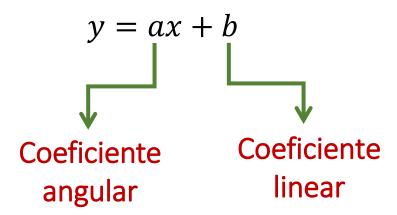
$$4) \quad f(x) = 4 - 3x$$

$$a = -3$$
 , $b = 4$

O A Pojo em Marce

Função do primeiro grau

Em uma função do primeiro grau o número a é chamado de coeficiente angular e o número b é chamado de coeficiente linear.



Quando b=0, a função y=ax é chamada de função linear.

Gráfico da função do primeiro grau

Teorema: O gráfico de uma função do primeiro grau é uma reta.

Passos para o esboço do gráfico:

1) Escolha livremente um número x_1 e calcule $f(x_1)$.

2) Indique o $A(x_1, f(x_1))$ no plano cartesiano.

3) Escolha um número x_2 , diferente de x_1 , e calcule $f(x_2)$.

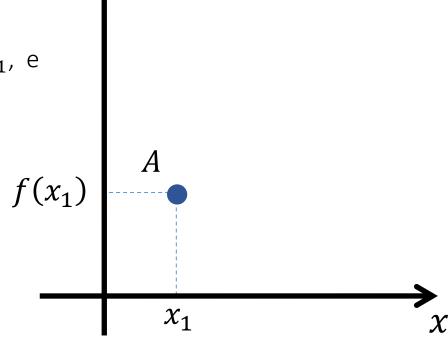


Gráfico da função do primeiro grau

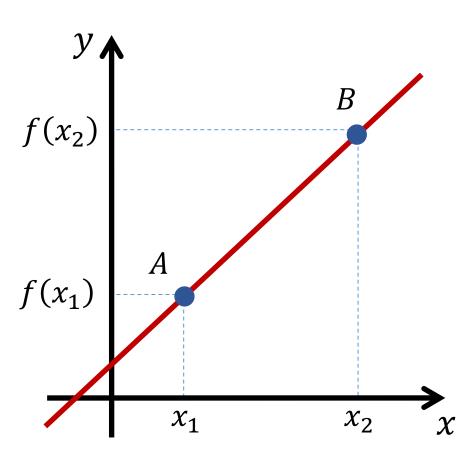
Teorema: O gráfico de uma função do primeiro grau é uma reta.

Passos para o esboço do gráfico:

4) Indique o $B(x_2, f(x_2))$ no plano cartesiano.

Por dois pontos distintos passa uma única reta!

5) Trace a reta passando pelos pontos A e B.



Exemplos

5) Esboce o gráfico da função f(x) = x + 1.

Solução:

Escolhendo $x_1 = 1$, tem-se

$$f(x_1) = f(1) = 1 + 1 = 2$$

e, portanto,

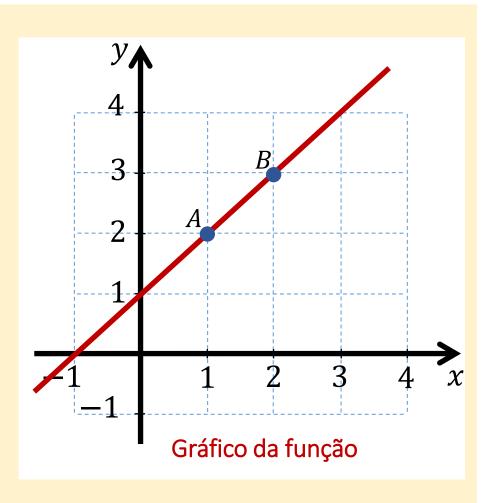
$$A(-1,0)$$
 (primeiro ponto)

Escolhendo $x_2 = 2$, tem-se

$$f(x_2) = f(2) = 2 + 1 = 3.$$

e, portanto,

$$B(2,3)$$
 (segundo ponto)



Observação: Se escolhermos $x_1 = -1$ e $x_2 = 3$, por exemplo, o gráfico será o mesmo!

Q Apolo em Marcel

Exemplos

5) Esboce o gráfico da função f(x) = x + 1.

Solução:

Escolhendo $x_1 = -1$, tem-se

$$f(x_1) = f(-1) = -1 + 1 = 0$$

e, portanto,

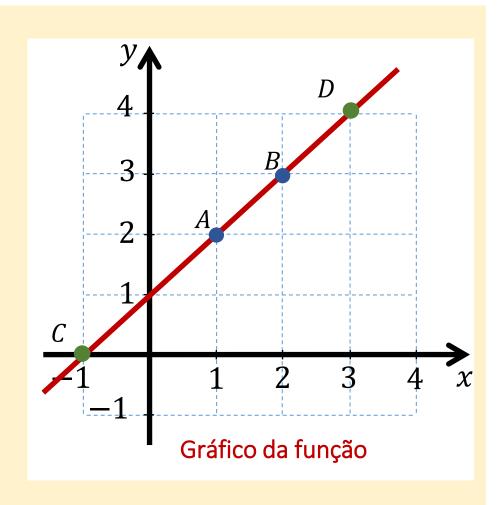
$$C(-1,0)$$
 (terceiro ponto)

Escolhendo $x_2 = 3$, tem-se

$$f(x_2) = f(3) = 3 + 1 = 4.$$

e, portanto,

$$D(3,4)$$
 (quarto ponto)



GAMON THE STATE OF THE STATE OF

Exemplos

6) Esboce o gráfico da função f(x) = -x + 3.

Solução:

Escolhendo $x_1 = 0$, tem-se

$$f(x_1) = f(0) = -(0) + 3 = 3$$

e, portanto,

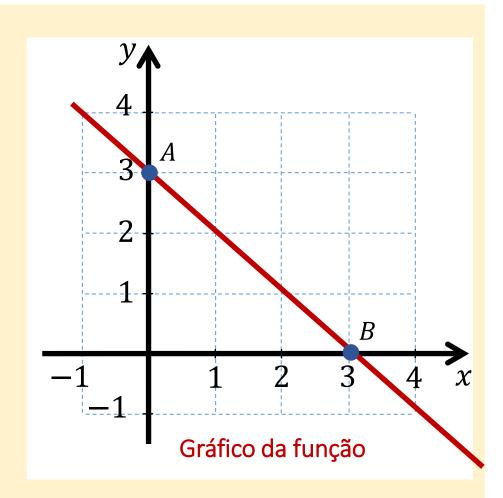
$$A(0,3)$$
 (primeiro ponto)

Escolhendo $x_2 = 3$, tem-se

$$f(x_2) = f(3) = -(3) + 1 = 0$$

e, portanto,

B(3,0) (segundo ponto)



Q Apolo em Marce

Exemplos

7) Esboce o gráfico da função f(x) = x.

Solução:

Escolhendo $x_1 = 0$, tem-se

$$f(x_1) = f(0) = 0$$

e, portanto,

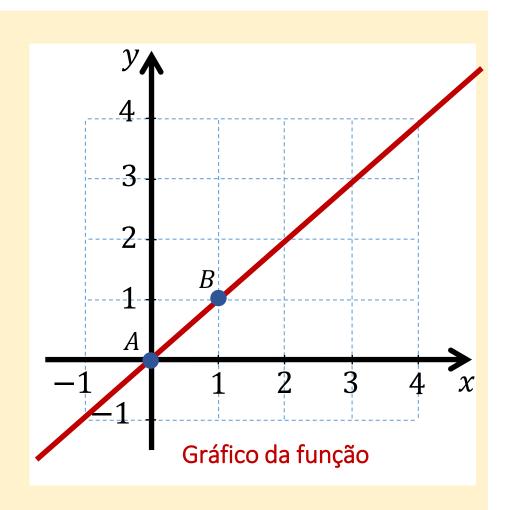
$$A(0,0)$$
 (primeiro ponto)

Escolhendo $x_2 = 1$, tem-se

$$f(x_2) = f(1) = 1$$

e, portanto,

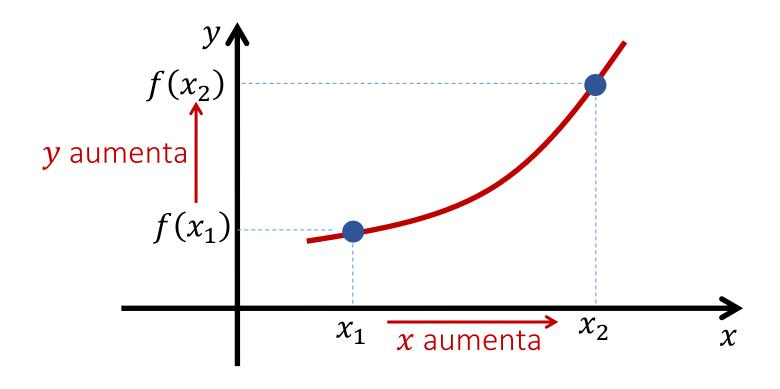
$$B(1,1)$$
 (segundo ponto)



Monotonia (crescimento/decrescimento)

Definição: Uma função f é dita **crescente** em um intervalo I se, para quaisquer x_1 , x_2 pertencentes a I, tais que $x_1 < x_2$ tem-se

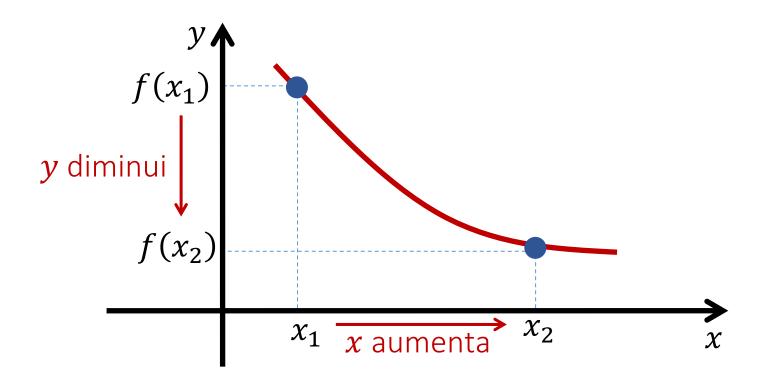
$$f(x_1) < f(x_2)$$



Monotonia (crescimento/decrescimento)

Definição: Uma função f é dita **decrescente** em um intervalo I se, para quaisquer x_1, x_2 pertencentes a I, tais que $x_1 < x_2$ tem-se

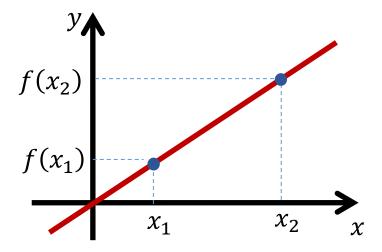
$$f(x_1) > f(x_2)$$



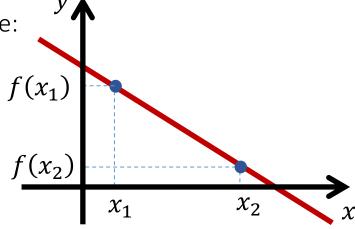
Monotonia (crescimento/decrescimento)

O crescimento e o decrescimento de uma função do primeiro grau dada pory=ax+b está diretamente ligado ao sinal do coeficiente angular.

1) Se a > 0, então a função é crescente:



2) Se a < 0, então a função é decrescente:



Zeros de uma função

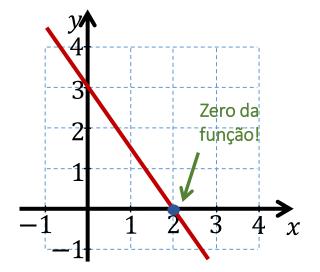
Definição: Um número c é chamado de **zero da função** se

$$f(c) = 0$$

No gráfico, um zero de uma função pode ser interpretado como um intercepto da curva com o eixo x.

Exemplos

1) Determine os zeros da função dada.



Solução:

Um único zero em x = 2.

(b)



Solução:

Dois zeros, em x = 1 e x = 3.

Q Apojo em Mate

Zeros de uma função

Observação: Os zeros de uma função y = f(x) podem ser obtidos resolvendo a equação f(x) = 0. Se obtém, assim, os valores de x para os quais y = 0, ou seja, os interceptos do gráfico da função com o eixo x.

Zeros da função do primeiro grau.

$$f(x) = ax + b$$

$$f(x) = 0 \Rightarrow ax + b = 0$$

$$\Rightarrow ax = -b$$

$$\Rightarrow x = -\frac{b}{a}$$

GAM GYO GYO MARINIA MARINIA

Exemplos

8) Determine o zero da função f(x) = 2x - 4.

Solução:

1) Resolvendo a equação.

$$2x - 4 = 0 \implies 2x = 4 \implies x = \frac{4}{2} \implies x = 2$$

2) Utilizando diretamente a fórmula.

$$x = -\frac{b}{a} \implies x = -\frac{-4}{2} \implies x = \frac{4}{2} \implies x = 2$$

Portanto, o gráfico desta função intercepta o eixo x no ponto (2,0).

Sinal de uma função

Definição: Uma função f é **positiva** em um número c se

$$f(c) > 0$$
.

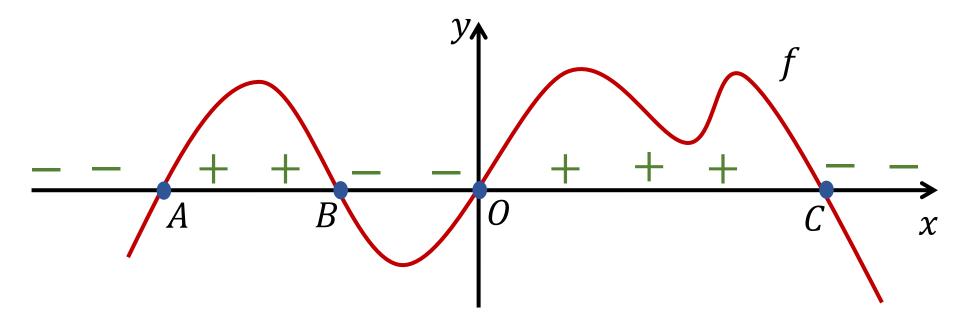
Uma função f é **negativa** em um número c se

$$f(c) < 0$$
.

Observação: Determinar o sinal de uma função f significa encontrar todos os valores de x para os quais f é positiva e todos os valores de x para os quais f é negativa.

No gráfico, a função é positiva nos intervalos onde o gráfico está acima do eixo x e negativa nos intervalos onde o gráfico está abaixo do eixo x.

Sinal de uma função



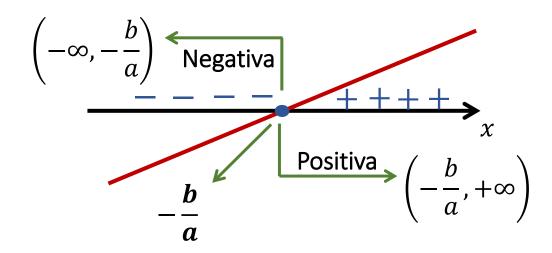
- A função é positiva em: $(A, B) \cup (O, C)$.
- A função é negativa em: $(-\infty, A) \cup (B, O) \cup (C, +\infty)$.

Para determinar o sinal de uma função do primeiro grau y = ax + b

basta encontrar o zero da função e verificar se ela é crescente ou decrescente.

Sinal da função do primeiro grau

Crescente: a > 0



Decrescente: a < 0

Exemplos

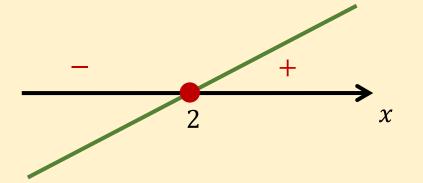
9) Determine o sinal da função f(x) = 2x - 4.

Solução:

Como a = 2 e b = -4 temos:

$$-\frac{b}{a} = -\frac{-4}{2} = 2$$
 (Zero da Função)

$$a = 2 > 0$$
 (crescente)



Negativa: $(-\infty, 2)$

Positiva: $(2, +\infty)$

Exemplos

10) Encontre o domínio da função $f(x) = \sqrt{1-3x}$.

Solução:

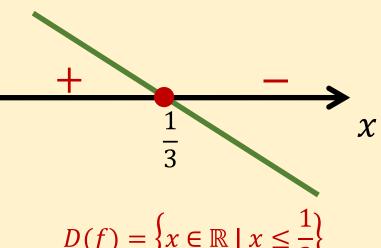
A função que está dentro da raiz deve ser não negativa, ou seja

$$y = 1 - 3x \ge 0$$

Como
$$a = -3$$
 e $b = 1$ temos:

$$-\frac{b}{a} = -\frac{1}{-3} = \frac{1}{3}$$
 (Zero da Função)

$$a = -3 < 0$$
 (decrescente)



$$D(f) = \left\{ x \in \mathbb{R} \mid x \le \frac{1}{3} \right\}$$

Apple on Market

Exemplos

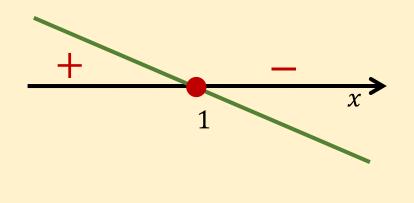
11) Determine o domínio da função
$$f(x) = \sqrt{\frac{1-x}{3x+6}}$$
.

Solução:

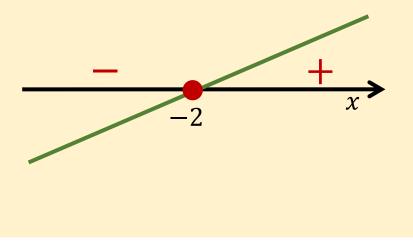
Neste caso, a condição imposta pela raiz quadrada é:

$$\frac{1-x}{3x+6} \ge 0$$

Sinal do fator 1 - x:



Sinal do fator 3x + 6:



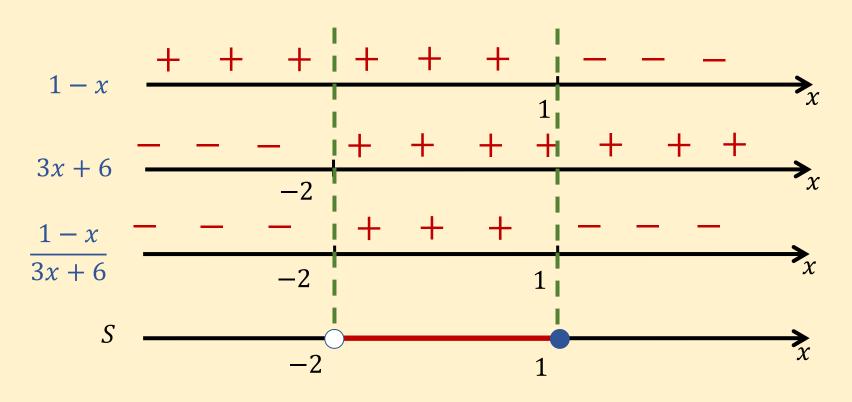
GAM α (a) ππ (b) ππ (c) Apoio em Master (d) Ap

Exemplos

11) Determine o domínio da função
$$f(x) = \sqrt{\frac{1-x}{3x+6}}$$
.

Solução:

Analisando o sinal do quociente, tem-se:

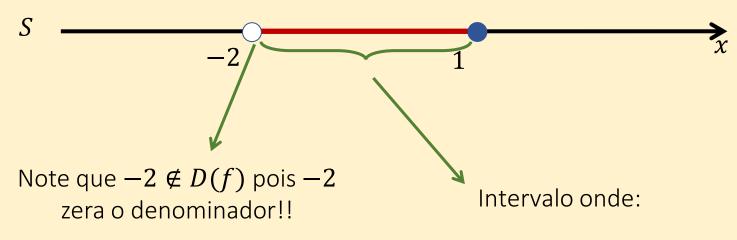


GAM THE STATE OF THE STATE OF

Exemplos

11) Determine o domínio da função
$$f(x) = \sqrt{\frac{1-x}{3x+6}}$$
.

Solução:



$$\frac{1-x}{3x+6} \ge 0$$

Portanto,

$$D(f) = (-2,1]$$

Função do segundo grau

Definição: Dados $a, b, c \in \mathbb{R}$ tais que $a \neq 0$.

A função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = ax^2 + bx + c$ é chamada de **função**

do segundo grau ou função quadrática.

Exemplos

12)
$$f(x) = x^2$$

$$a = 1$$
 , $b = 0$, $c = 0$

13)
$$f(x) = -x^2 + 1$$

$$a = -1$$
 , $b = 0$, $c = 1$

14)
$$f(x) = 2x^2 + 3x - 1$$
 $a = 2$, $b = 3$, $c = -1$

$$a = 2$$
 , $b = 3$, $c = -1$

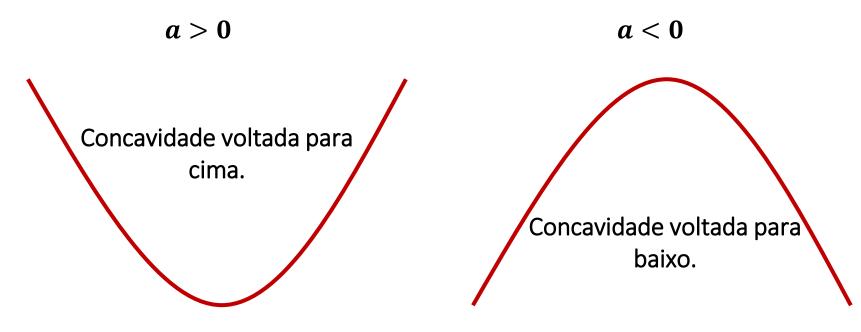
O Apojo em Marce

Gráfico da função do segundo grau

Teorema: O gráfico de uma função do primeiro grau é uma parábola.

A parábola pode ter concavidade voltada para cima ou concavidade voltada para baixo, de acordo com o sinal do coeficiente a.

Concavidade:



GAMONIA A POIO CHI MARANA

Exemplos

15) Esboce o gráfico da função $f(x) = x^2$.

Solução:

$$f(-3) = (-3)^2 = 9$$

$$f(-2) = (-2)^2 = 4$$

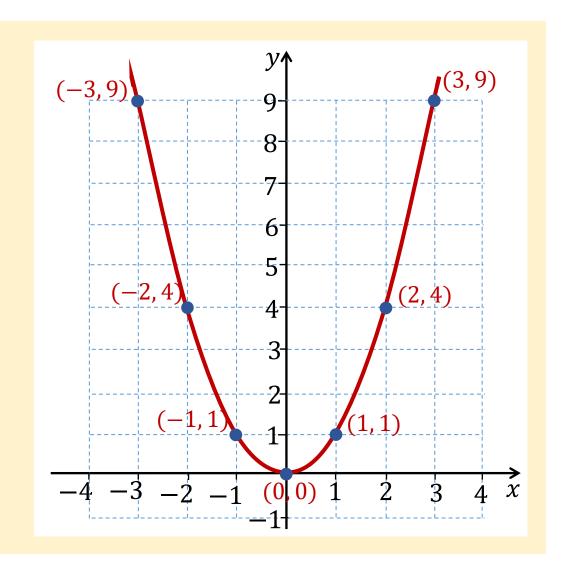
$$f(-1) = (-1)^2 = 1$$

$$f(0) = 0^2 = 0$$

$$f(1) = (1)^2 = 1$$

$$f(2) = (2)^2 = 4$$

$$f(3) = (3)^2 = 9$$



CAM ππ α Apoio em blance

Zeros da função do segundo grau

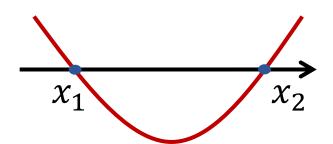
Os zeros da função $y=ax^2+bx+c$ podem ser obtidos resolvendo a equação do segundo grau $ax^2+bx+c=0$ utilizando a **fórmula de Bháskara**.

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$\Delta = b^2 - 4ac$$

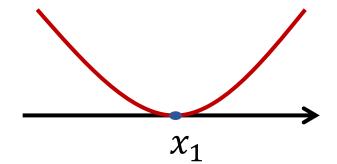
A quantidade de zeros reais obtidas para uma função quadrática depende do sinal de Δ .

 $\Delta > 0$ Dois zeros

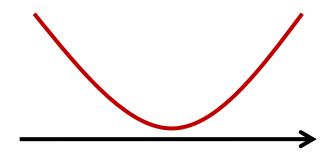


Zeros da função do segundo grau

 $\Delta=0$ Um único zero



 $\Delta < 0$ Nenhum zero

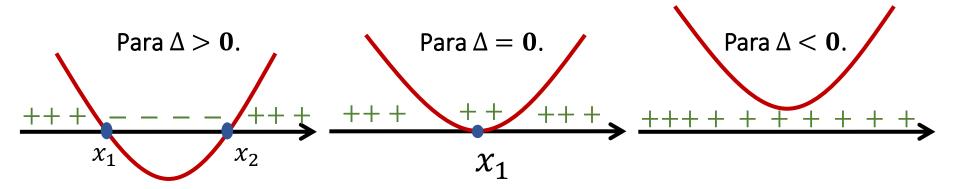


O TO TO THE PARTY OF THE PARTY

Sinal da função do segundo grau

O sinal da função quadrática $y = ax^2 + bx + c$ depende dos sinais de a (determina a concavidade) e de Δ (determina a quantidade de zeros).

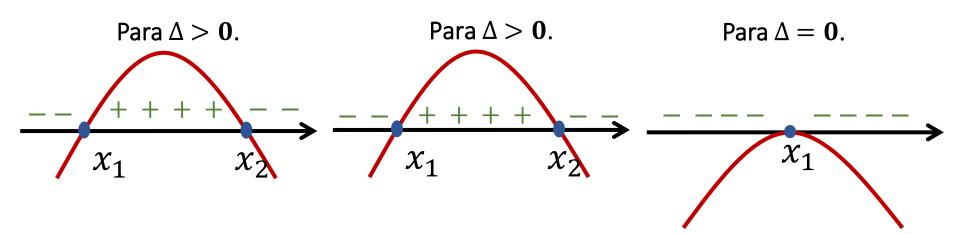
Concavidade voltada para cima



CAMA COYOURAN

Sinal da função do segundo grau

Concavidade voltada para baixo



Exemplos

16) Esboce o gráfico, determine os zeros e o sinal da função quadrática $y=x^2-4x+3$.

Solução:

Neste caso, tem-se

$$a = 1$$
, $b = -4$ e $c = 3$.

$$\Delta = b^2 - 4ac = (-4)^2 - 4.(1).(3) = 4$$

$$x_{1,2} = \frac{-(-4) \pm \sqrt{4}}{2(1)} = \frac{4 \pm 2}{2} = 2 \pm 1.$$

Portanto,

$$x_1 = 1 e x_2 = 3 \qquad (Zeros de f)$$

GAM Φηθοίο em Market

Exemplos

16) Esboce o gráfico, determine os zeros e o sinal da função quadrática $y=x^2-4x+3$.

Solução:

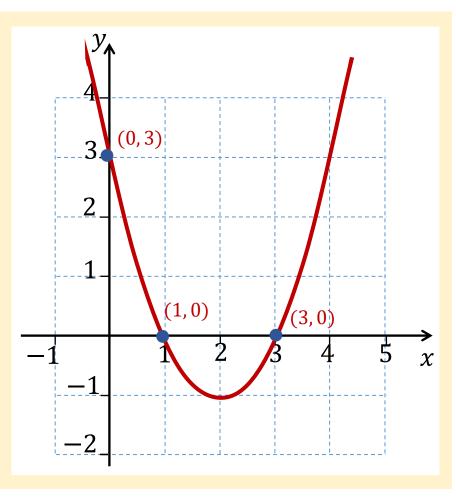
Como c=3, tem-se que o gráfico intercepta o eixo y no ponto (0,3).

Como a>0, a concavidade é voltada para cima.

Sinal

Positiva: $(-\infty, 1) \cup (3, +\infty)$

Negativa: **(1,3)**



Exemplos

17) Determine o domínio da função $f(x) = \sqrt[4]{x^2 - x + 6}$.

Solução:

Será necessário determinar os valores de x para os quais a função $y=x^2-x-6$ é não negativa.

Para isso, será analisado o sinal desta função.

Usando a fórmula de Bháskara para encontrar os zeros desta função, tem-se:

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} = \frac{1 \pm \sqrt{25}}{2} = \frac{1 \pm 5}{2}$$

Exemplos

17) Determine o domínio da função $f(x) = \sqrt[4]{x^2 - x + 6}$.

Solução:

$$x_1 = \frac{1+5}{2} = 3$$

$$x_2 = \frac{1-5}{2} = -2$$

Como a>0, a parábola possui concavidade voltada para cima.

Portanto, o conjunto solução da inequação:

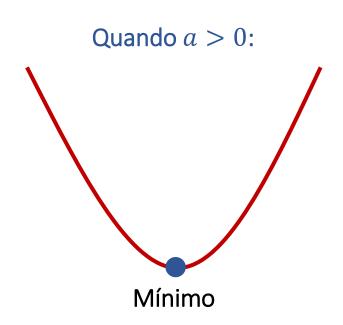
$$x^2 - x - 6 \ge 0$$

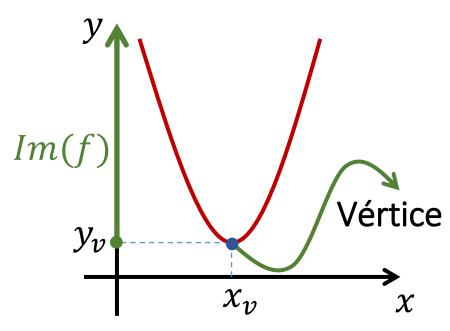
é dado por:

$$D(f) = (-\infty, -2] \cup [3, +\infty).$$

Coordenadas do vértice

No gráfico de uma função quadrática $y=ax^2+bx+c$, o ponto mínimo (quando a>0) ou ponto máximo (quando a<0) é chamado de **vértice** da parábola.

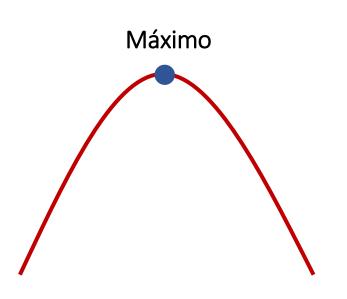


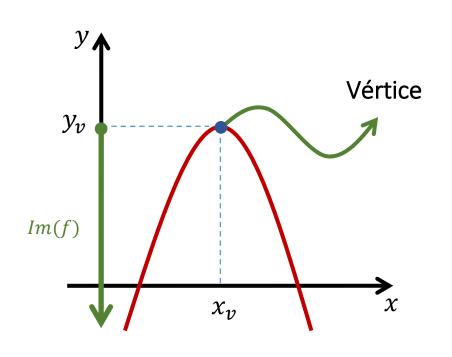


Se a > 0, então: $Im(f) = [y_v, +\infty)$.

Coordenadas do vértice

Quando a < 0:





Se a < 0, então: $Im(f) = (-\infty, y_v]$.

Coordenadas:

$$x_v = -\frac{b}{2a}$$

$$y_v = -\frac{\Delta}{4a}$$

Q Apolo em Marce

Exemplos

18) Esboce o gráfico da função $y = x^2 - 4x + 5$.

Solução:

Neste caso, tem-se:

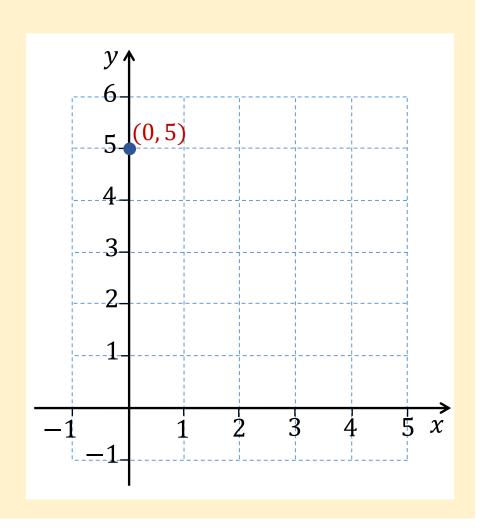
$$a = 1$$
, $b = -4$ e $c = 5$.

$$\Delta = b^2 - 4ac$$

$$\Delta = (-4)^2 - 4.(1).(5) = -4$$

Portanto, f não possui zeros.

Como c=5, tem-se que o gráfico intercepta o eixo y no ponto (0,5).



Exemplos

19) Esboce o gráfico da função $y = x^2 - 4x + 5$.

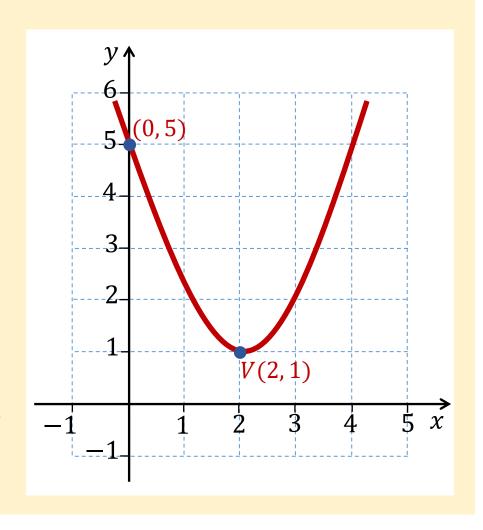
Solução:

$$x_v = -\frac{b}{2a} = -\frac{(-4)}{2.(1)} = 2$$

$$y_v = -\frac{\Delta}{4a} = -\frac{(-4)}{4.(1)} = 1$$

Portanto, o vértice da parábola é dado por V(2,1).

Como a>0, a concavidade é voltada para cima.



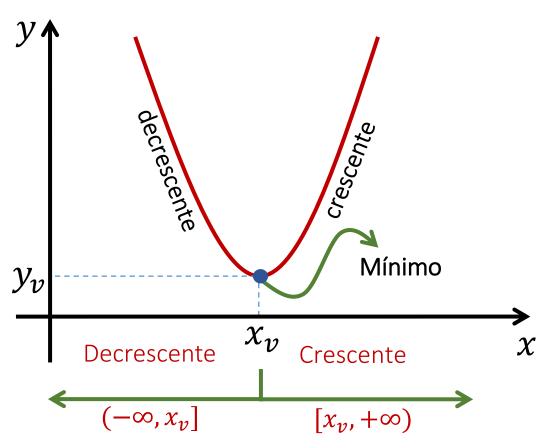
Monotonia (crescimento/decrescimento)

A abscissa do vértice (x_v) na função quadrática $y=ax^2+bx+c$, delimita onde ocorre uma mudança de comportamento no gráfico da função.

Mínimo

Muda de decrescente para crescente.

(a > 0)

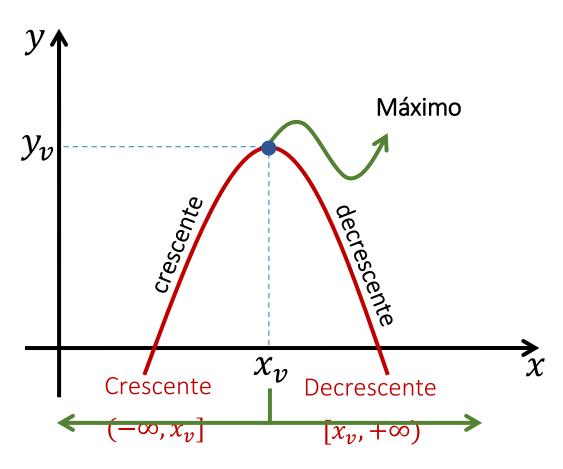


Monotonia (crescimento/decrescimento)

Máximo

Muda de crescente para decrescente.

(a < 0)



GAMA THE TRANSPORT OF THE TRANSPORT OF

Exemplos

20) Determine os intervalos de crescimento e decrescimento da função $y = x^2 - 4x + 5$.

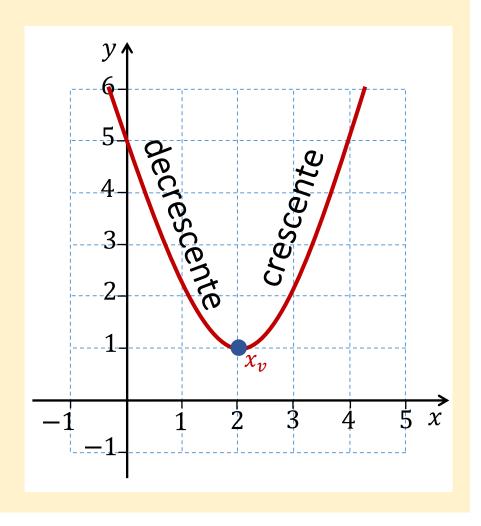
Solução:

$$x_v = -\frac{b}{2a} = -\frac{(-4)}{2.(1)} = 2$$

 $(a > 0) \Rightarrow Função côncava para cima!$

Decrescente: $(-\infty, 2]$

Crescente: $[2, +\infty)$



CAMA (Θγο) ππ RAPOIO em Metros

Exemplos

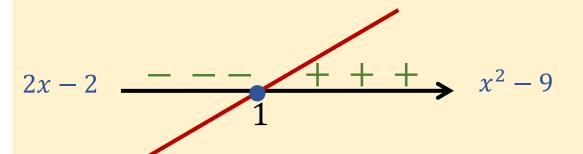
21) Determine o domínio da função
$$y = \sqrt{\frac{2x-2}{x^2-9}}$$
.

Solução:

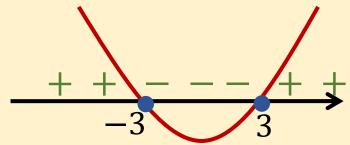
O domínio da função é formado pelos valores de x nos quais:

$$\frac{2x-2}{x^2-9} \ge 0$$

Sinal do numerador



Sinal do denominador



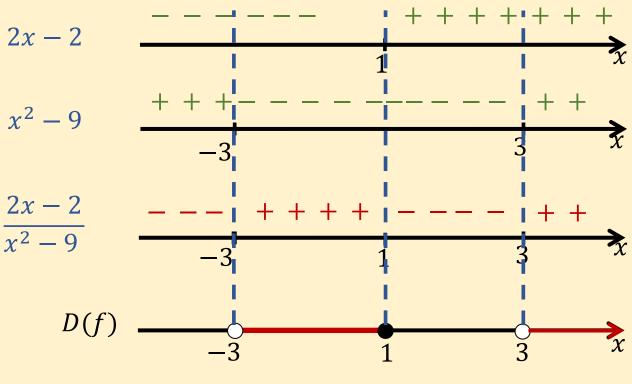
CAMA GOVERNMENT OF THE STATE O

Exemplos

21) Determine o domínio da função
$$y = \sqrt{\frac{2x-2}{x^2-9}}$$
.

Solução:

Analisando o sinal do quociente, tem-se:



$$D(f) = (-3, 1] \cup (3, +\infty).$$

Exercícios Propostos

Exercícios

1) Para cada uma das funções de 1º grau abaixo, classifique-as em crescente ou decrescente, encontre o zero da função e esboce o gráfico.

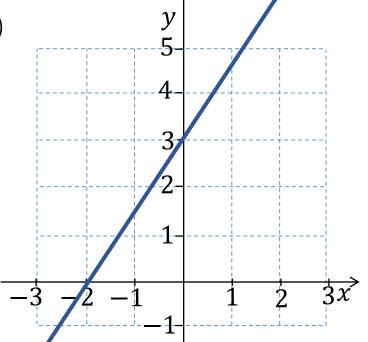
(a)
$$y = 2x + 3$$

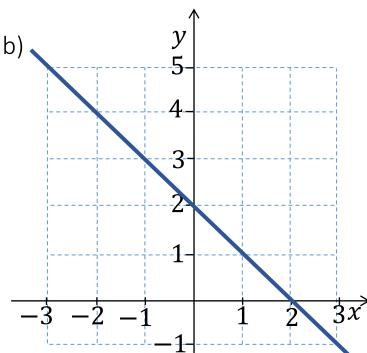
(b)
$$y = -x + 3$$

(c)
$$y = 2x - 1$$

(d)
$$y = -3x + 4$$

2) Em cada caso, determine a lei de formação da função representada pelo gráfico.





Exercícios

3) Para cada uma das funções de 2º grau a seguir, determine os zeros (se existirem), as coordenadas do vértice, o conjunto imagem e esboce o gráfico.

(a)
$$y = x^2 - 2x$$

(b)
$$y = -x^2 + 2x + 3$$

(c)
$$y = -x^2 - 1$$

(d)
$$y = x^2 - 4x + 4$$

4) Determine o domínio de cada uma das funções dadas:

(a)
$$y = \sqrt{x+3}$$

(d)
$$f(x) = \frac{2x+1}{\sqrt{x^2+x-6}}$$

(f)
$$y = \frac{2x+1}{\sqrt[3]{2-x}}$$

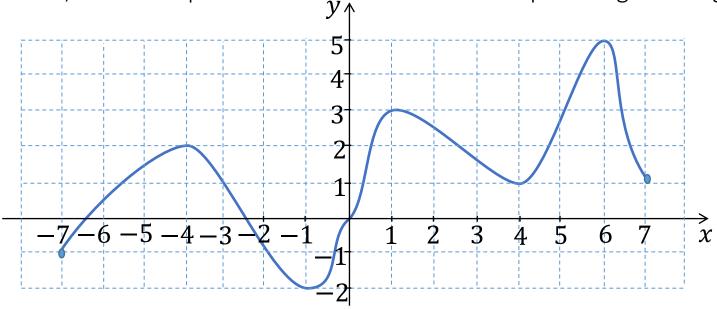
(b)
$$y = \sqrt{5 - x}$$

(e)
$$f(x) = \sqrt{\frac{x^2 + 2x - 8}{-x^2 + 9}}$$

$$(c) f(x) = \sqrt{5x - x^2}$$

Exercícios

5) Obtenha os intervalos nos quais a função dada é crescente e nos quais é decrescente, indicando pontos de máximo e de mínimo para a figura a seguir:



- 6) Obtenha a equação da reta que passa pelos pontos A e B nos seguintes casos e esboce o gráfico:
- (a) A(1,2) B(2,3) (b) A(-1,0) B(4,2) (c) A(2,1) B(0,4)
- 7) Construa os gráficos das funções definidas em \mathbb{R} e faça o estudo de sinal.

(a)
$$y = x^2 - 3x + 2$$

(a)
$$y = x^2 - 3x + 2$$
 (b) $y = -x^2 + 7x - 10$

(c)
$$y = x^2 + 2x + 1$$

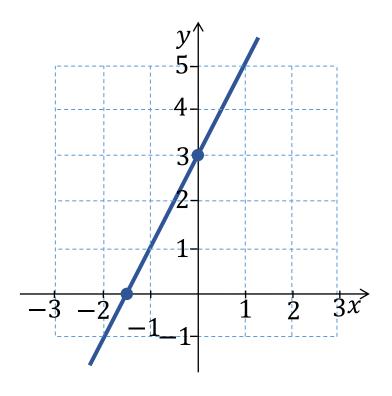
GAMA GAPojo em Marte

Exercícios

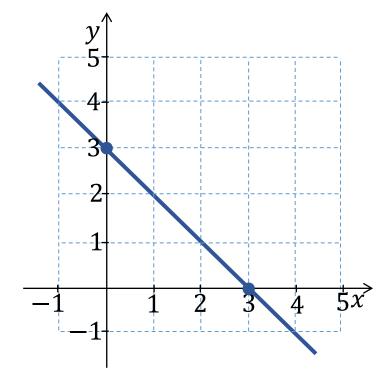
Exercício 1:

a) Crescente

zero:
$$x = -\frac{3}{2}$$

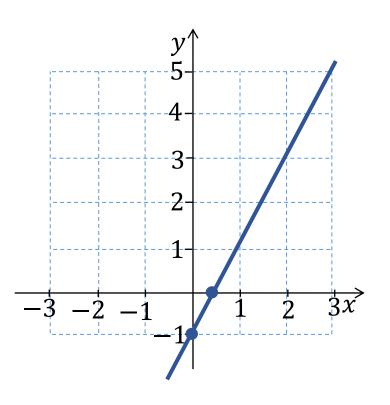


b) Decrescente



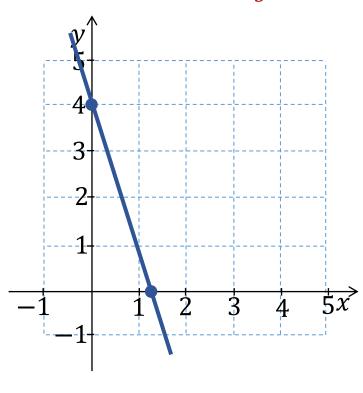
c) Crescente

zero:
$$x = \frac{1}{2}$$



d) Decrescente

zero:
$$x = \frac{4}{3}$$



Exercício 2:

$$y = \frac{3x}{2} + 3$$

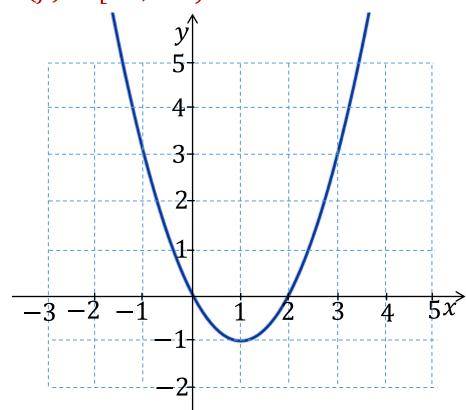
$$y = -x + 2$$

Exercício 3:

a) Zeros: $x_1 = 0$ e $x_2 = 2$

Vértice: V(1,-1)

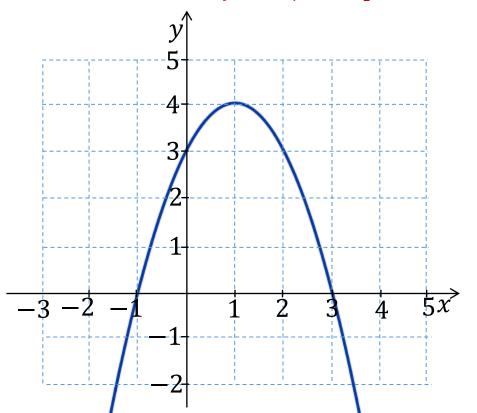
Imagem: $Im(f) = [-1, +\infty)$



b) Zeros: $x_1 = -1 e x_2 = 3$

Vértice: V(1,4)

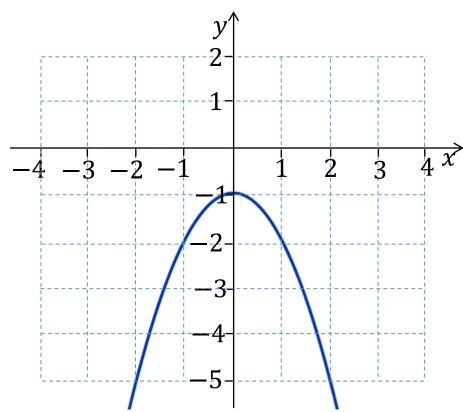
Imagem: $Im(f) = (-\infty, 4]$



c) Zeros: Não existem.

Vértice: V(0,-1)

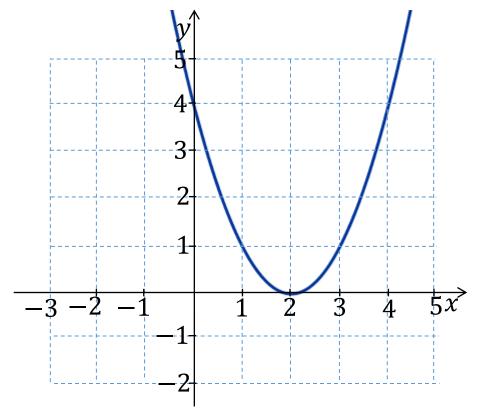
Imagem: $Im(f) = (-\infty, -1]$



d) Zeros: 2

Vértice: V(2,0)

Imagem: $Im(f) = [0, +\infty)$



Exercício 3:

a)
$$D(f) = [-3, +\infty)$$

b)
$$D(f) = (-\infty, 5]$$

c)
$$D(f) = [0,5]$$

$$d) D(f) = (-\infty, -3) \cup (2, +\infty)$$

e)
$$D(f) = [-4, -3) \cup [2,3)$$

f)
$$D(f) = \mathbb{R} - \{2\}$$

Exercício 5:

Intervalos crescentes: (-7, -4) U (-1, 1) U (4, 6)

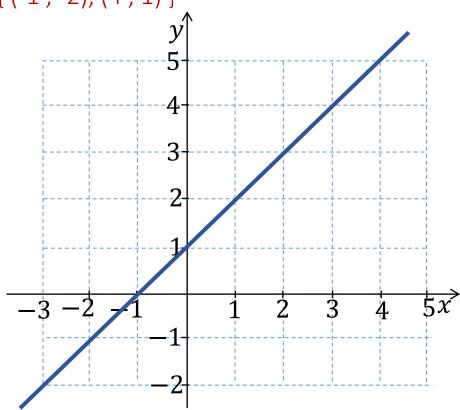
Intervalos decrescentes: (-4, -1) U (1, 4) U (6, 7)

Pontos de máximos: { (-4, 2), (1, 3), (6, 5) }

Pontos de mínimo: { (-1, -2), (4, 1) }

Exercício 6:

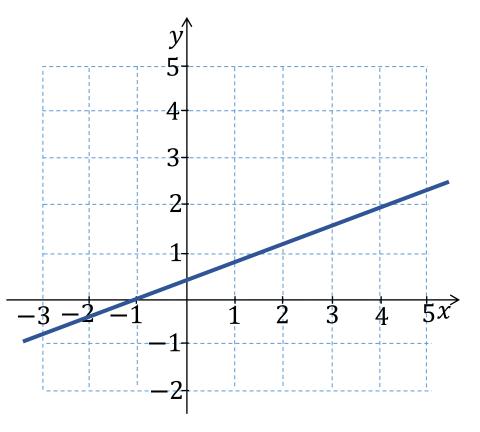
a) y = x + 1



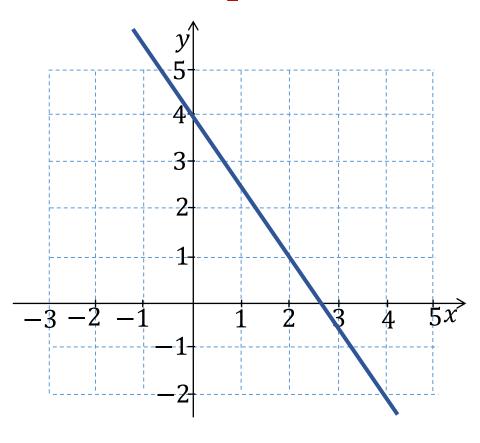
CAM Gyo ππ

Respostas

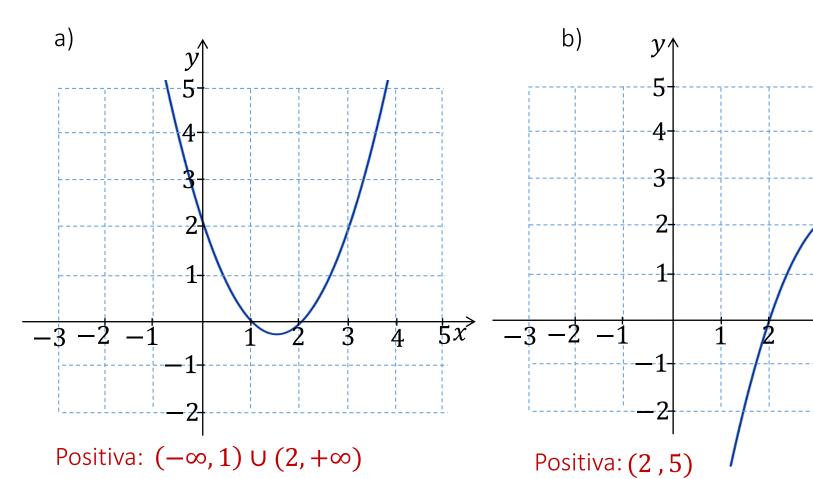
b)
$$y = \frac{2}{5}x + \frac{2}{5}$$



b)
$$y = -\frac{3}{2}x + 4$$



Exercício 7:

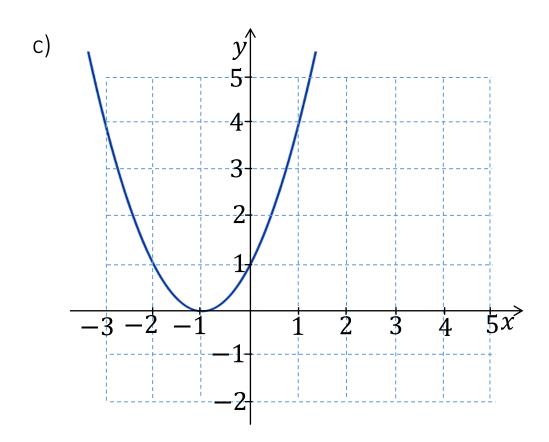


Negativa: (1,2)

Negativa: $(-\infty, 2) \cup (5, +\infty)$

CAMA Gye n n n

Respostas



Positiva: $(-\infty, -1) \cup (-1, +\infty)$

Não esqueça de procurar os monitores do GAMA para melhor esclarecer suas dúvidas!!

Os horários e locais de monitorias podem se encontrados na página do Projeto:

http://wp.ufpel.edu.br/projetogama/monitorias

Não deixe de visitar e se inscrever em nosso canal no YouTube para ter acesso às nossas vídeo-aulas:

http://l.ufpel.edu.br/YouTubeGAMA

O GAMA possui monitorias de:

- ☐ Matemática Elementar, Cálulo 1, Cálculo 1A e Cálculo I (e equivalentes)
 - ☐ ALGA Álgebra Linear e Geometria Analítica (e disciplinas equivalentes)
 - ☐ Cálculo A e B, Cálculo 2, Cálculo II e Cálculo 3 (e equivalentes)

Certificado de 20 horas para quem procurar a monitoria do GAMA por pelo menos 15 vezes dentro do mesmo semestre letivo.

Universidade Federal de Pelotas

Instituto de Física e Matemática Pró-Reitoria de Ensino

Atividades de Revisão em Matemática

Módulo de

Funções

Aula 03

C A TO THE STATE OF THE STATE O

Funções definidas por várias sentenças

Frequentemente utilizam-se funções definidas por sentenças diferentes em determinados intervalos do seu domínio.

$$f(x) = \begin{cases} x+3, & \text{se } x < 0 \\ x^2 - 2x + 1, & \text{se } x \ge 0 \end{cases}$$

- é definida pela sentença y = x + 3 no intervalo $(-\infty, 0)$;
- e pela sentença $y = x^2 2x + 1$ no intervalo $[0, +\infty)$.

Este tipo de função é chamada de **função definida por várias sentenças**.

Gráfico

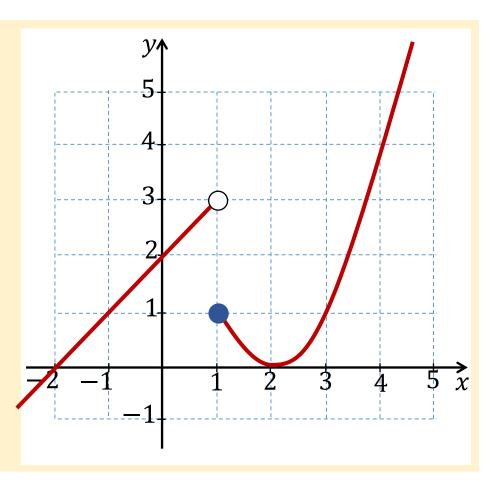
O gráfico de uma função definida por várias sentenças é obtido ao esboçar o gráfico de cada sentença, no seu respectivo intervalo de definição.

1) Esboce o gráfico da função
$$f(x) = \begin{cases} x+2, & \text{se } x < 1 \\ x^2 - 4x + 4, & \text{se } x \ge 1 \end{cases}$$

Solução:

A função dada é definida pela sentença y = x + 2, no intervalo $(-\infty,1)$.

E definida pela sentença y = $x^2 - 4x + 4$, no intervalo $[1, +\infty)$.



2) Esboce o gráfico da função f(x) = |x|.

Solução:

Como o módulo de x é dado por:

$$|x| = \begin{cases} -x, & \text{se } x < 0 \\ x, & \text{se } x \ge 0 \end{cases}$$

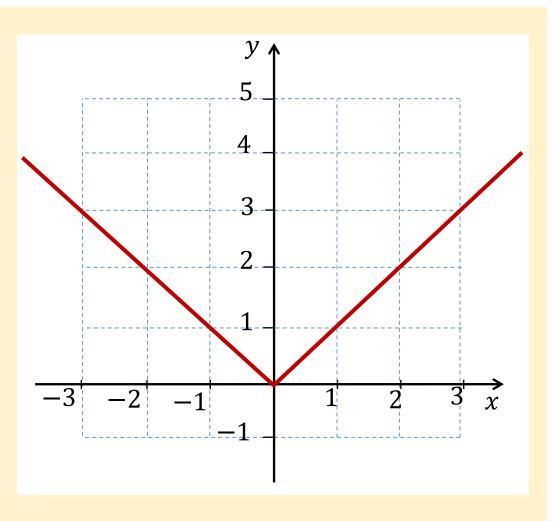
tem-se,

$$f(x) = \begin{cases} -x, & \text{se } x < 0 \\ x, & \text{se } x \ge 0 \end{cases}$$

O gráfico de f, portanto, será dado por:

$$y = -x$$
, no intervalo $(-\infty, 0)$.

$$y = x$$
, no intervalo $[0, +\infty)$.



3) Esboce o gráfico da função f(x) = |x + 1|.

Solução:

Como o módulo de x é dado por:

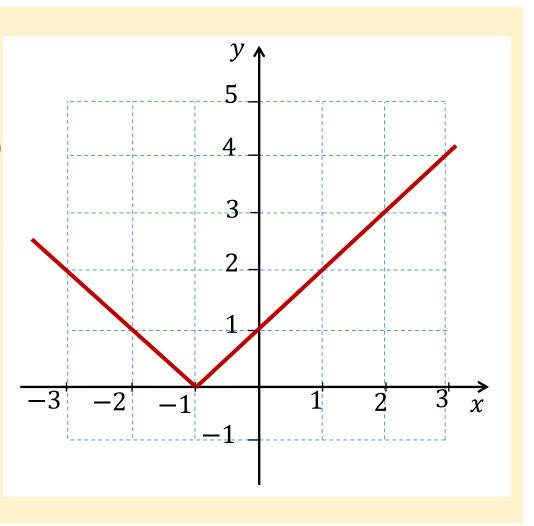
$$|x+1| = \begin{cases} -(x+1), \text{ se } x+1 < 0\\ x+1, \text{ se } x+1 \ge 0 \end{cases}$$

tem-se,

$$f(x) = \begin{cases} -x - 1, & \text{se } x < -1\\ x + 1, & \text{se } x \ge -1 \end{cases}$$

O gráfico de f, portanto, será dado por:

$$y = -x - 1$$
, em $(-\infty, -1)$.
 $y = x + 1$, em $[-1, +\infty)$.



Control of the state of the st

Exemplos

4) Esboce o gráfico da função
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & \text{se } x \neq 1 \\ 3, & \text{se } x = 1 \end{cases}$$

Solução:

Note que, para $x \neq 1$, a função f pode ser escrita como:

$$y = \frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} = x + 1$$

Portanto, a função dada pode escrita como:

$$f(x) = \begin{cases} x+1, & \text{se } x \neq 1 \\ 3, & \text{se } x = 1 \end{cases}$$

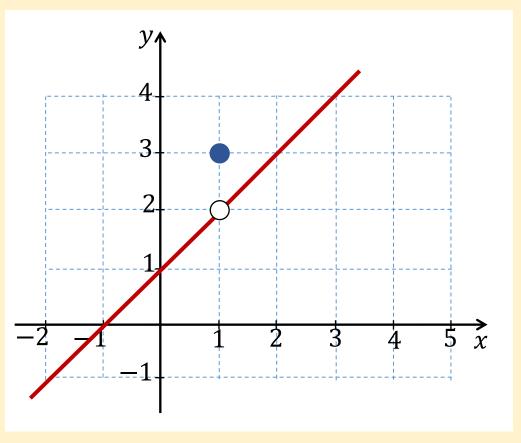
Control of the state of the st

Exemplos

4) Esboce o gráfico da função
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & \text{se } x \neq 1 \\ 3, & \text{se } x = 1 \end{cases}$$

Solução:

$$f(x) = \begin{cases} x+1, & \text{se } x \neq 1 \\ 3, & \text{se } x = 1 \end{cases}$$



Função potência e função raiz

Definição: Dado $n \in \mathbb{N}^*$, a função $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^n$ é chamada de **função potência enésima.**

GAMA GYO WARDON MARKET

Exemplos

São exemplos de funções potências:

5)
$$y = x$$
 (função identidade)

6)
$$y = x^2$$
 (função quadrática)

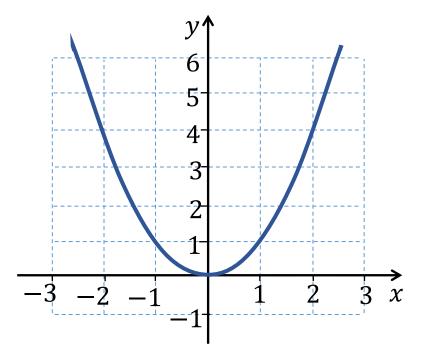
7)
$$y = x^3$$
 (função cúbica)

Gráfico da função potência

Os gráficos das funções potência $y=x^n$ para n par, são semelhantes ao gráfico da função $y=x^2$, mas não são chamados de parábolas.

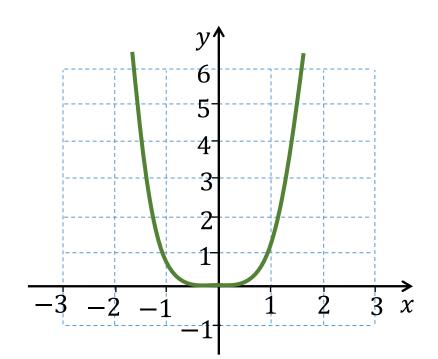
$$f(x) = x^2$$

$$D(f) = \mathbb{R}$$
 $Im(f) = \mathbb{R}_+$



$$f(x) = x^4$$

$$D(f) = \mathbb{R}$$
 $Im(f) = \mathbb{R}_+$



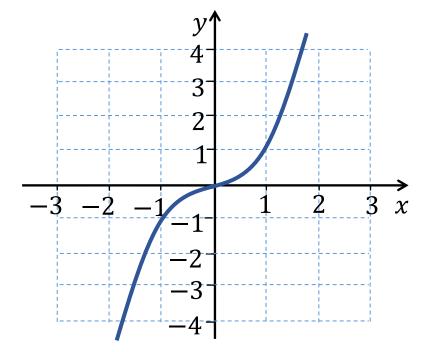
CAM ππ α Apoio em Market

Gráfico da função potência

Os gráficos das funções potência $y=x^n$ para n ímpar, são semelhantes ao gráfico da função $y=x^3$.

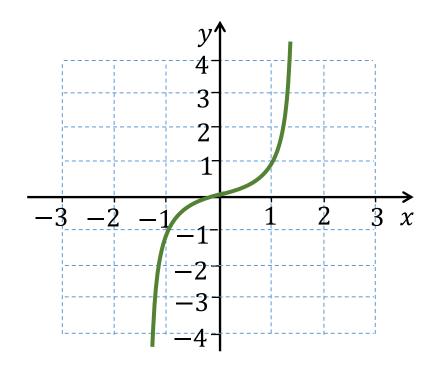
$$f(x) = x^3$$

$$D(f) = \mathbb{R}$$
 $Im(f) = \mathbb{R}$



$$f(x) = x^5$$

$$D(f) = \mathbb{R}$$
 $Im(f) = \mathbb{R}$



GAM α Θηθο α Apoio em Market

Função potência e função raiz

Definição: Dado $n \in \mathbb{N}$ $(n \ge 2)$, a função $f: A \longrightarrow \mathbb{R}$ dada por $f(x) = \sqrt[n]{x}$ é chamada de **função raiz enésima.**

Obs.: $A = \mathbb{R}_+$ se n é par e $A = \mathbb{R}$ se n é impar

São exemplos de funções raízes:

8)
$$y = \sqrt{x}$$
 (função raiz quadrada)

9)
$$y = \sqrt[3]{x}$$
 (função raiz cúbica)

10)
$$y = \sqrt[4]{x}$$
 (função raiz quarta)

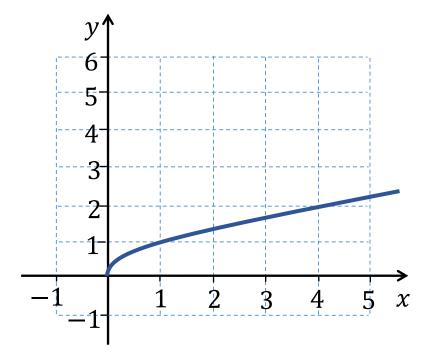
Q Apolo em Mark

Gráfico da função raiz

Os gráficos das funções $y = \sqrt[n]{x}$ para n par, são semelhantes ao de $y = \sqrt{x}$.

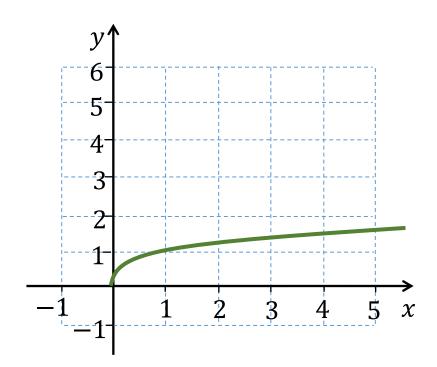
$$f(x) = \sqrt{x}$$

$$D(f) = \mathbb{R}_+ \quad Im(f) = \mathbb{R}_+$$



$$f(x) = \sqrt[4]{x}$$

$$D(f) = \mathbb{R}_+ \quad Im(f) = \mathbb{R}_+$$



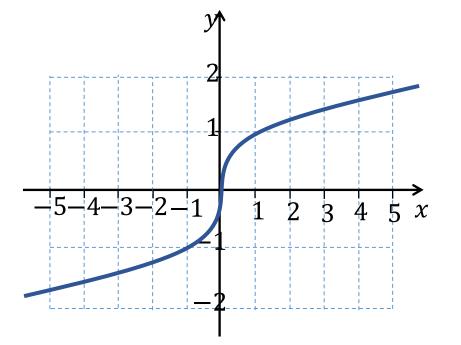
GAMA THE TENTH OF THE TENTH OF

Gráfico da função raiz

Os gráficos das funções $y = \sqrt[n]{x}$ para n ímpar, são semelhantes ao de $y = \sqrt[3]{x}$.

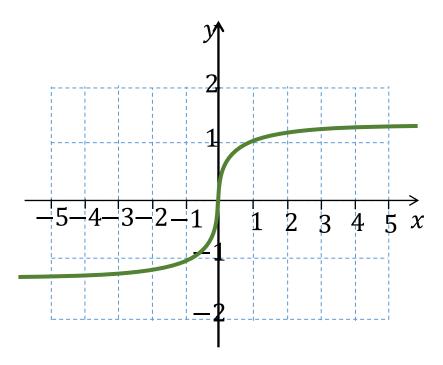
$$f(x) = \sqrt[3]{x}$$

$$D(f) = \mathbb{R}$$
 $Im(f) = \mathbb{R}$



$$f(x) = \sqrt[5]{x}$$

$$D(f) = \mathbb{R}$$
 $Im(f) = \mathbb{R}$

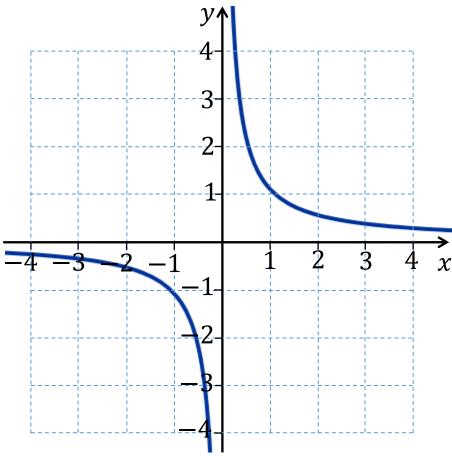


CAM Θηθο ππ π ο α Apoio em Market

Função recíproca

Definição: A função $f: \mathbb{R}^* \to \mathbb{R}^*$ dada por $f(x) = \frac{1}{x}$ é chamada de **função** recíproca.

O gráfico da função recíproca é chamado de hipérbole.



Exercícios Propostos

Exercícios

1) Esboce o gráfico das seguintes funções.

(a)
$$f(x) = \begin{cases} x + 2, & \text{se } x < 0 \\ 2, & \text{se } x \ge 0 \end{cases}$$

(e)
$$f(x) = \begin{cases} -x + 2, & \text{se } x < -1 \\ x^3, & \text{se } -1 \le x < 1 \\ \sqrt{x}, & \text{se } x > 1 \end{cases}$$

(b)
$$f(x) = \begin{cases} -2, & \text{se } x < -2 \\ x^2, & \text{se } -2 \le x < 0 \\ x, & \text{se } x \ge 0 \end{cases}$$

(f)
$$f(x) = \begin{cases} \frac{x-2}{x^2 - 2x}, & \text{se } x \neq 0 \\ 2, & \text{se } x = 0 \end{cases}$$

(c)
$$f(x) = \begin{cases} 4, & se \ x < -1 \ ou \ x > 3 \\ x^2 - 2x + 1 \ se \ -1 \le x \le 3 \end{cases}$$

(d)
$$f(x) = \begin{cases} \sqrt{x}, & se \ x \ge 0 \\ x^2 - 2, & se \ x < 0 \end{cases}$$

Exercícios

2) Na função real

$$f(x) = \begin{cases} x^2 + x - 2, & \text{se } x > -2 \\ -\frac{x}{2} + 1, & \text{se } x \le -2 \end{cases}$$

determine os valores do domínio que tem imagem 4.

3) Considere a função y = f(x) definida por:

$$\begin{cases} y = 4x & \text{se } 0 \le x \le 2 \\ y = -x^2 + 6x & \text{se } 2 < x \le 6 \end{cases}$$

- (a) Esboce o gráfico de y = f(x) no intervalo $0 \le x \le 6$.
- (b) Para quais valores de x temos f(x) = 5?

Exercícios

4) Esboce o gráfico da função:

$$f(x) = \begin{cases} x^{-1} & \text{se } x \ge 2\\ x^2 - 1 & \text{se } 0 \le x < 2\\ |x| & \text{se } x < 0 \end{cases}$$

5) Construa os gráficos das seguintes funções reais:

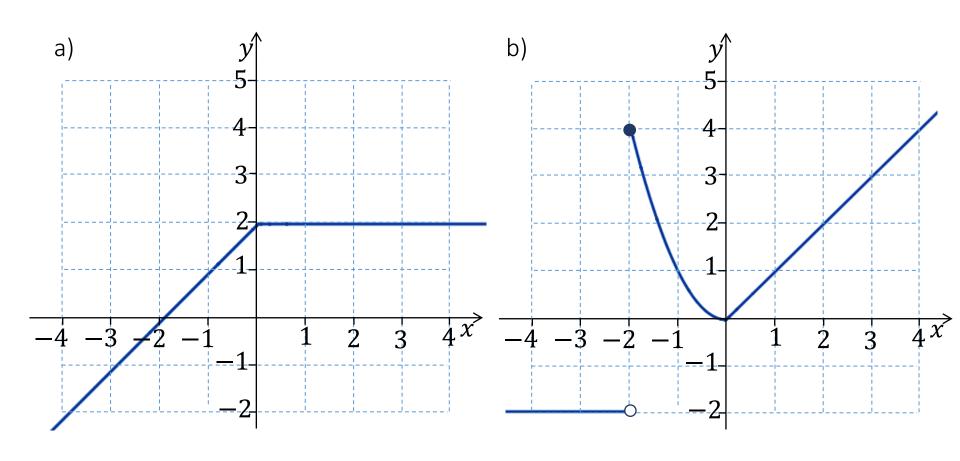
(a)
$$f(x) = |2x - 1|$$

(b)
$$f(x) = |2 - 3x|$$

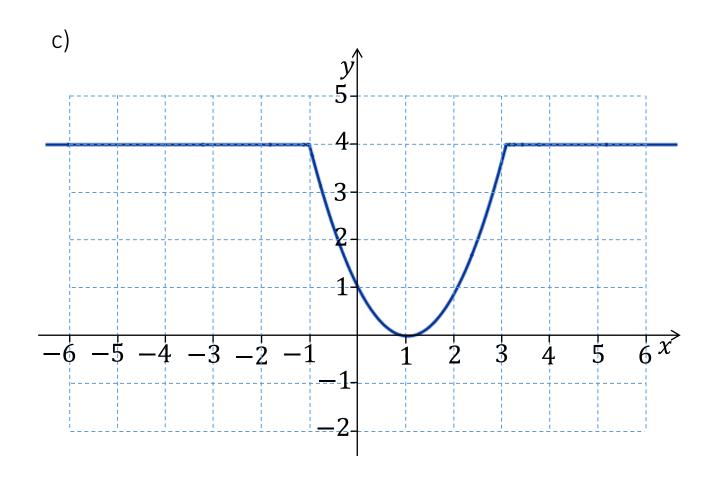
GAMON MARKET

Respostas

Exercício 1:

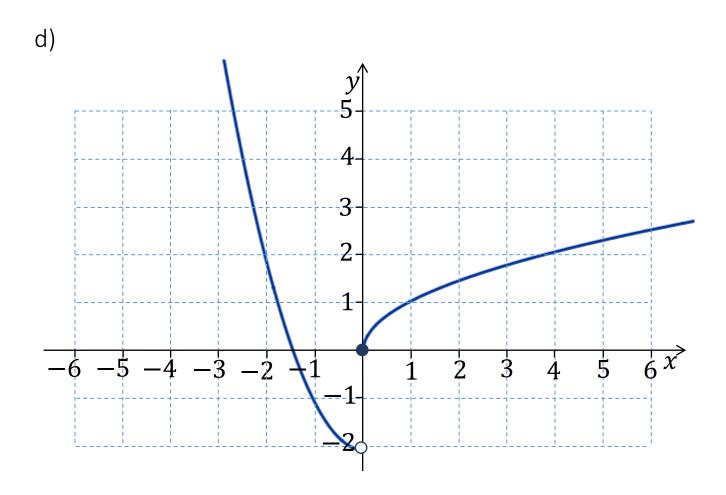


Respostas



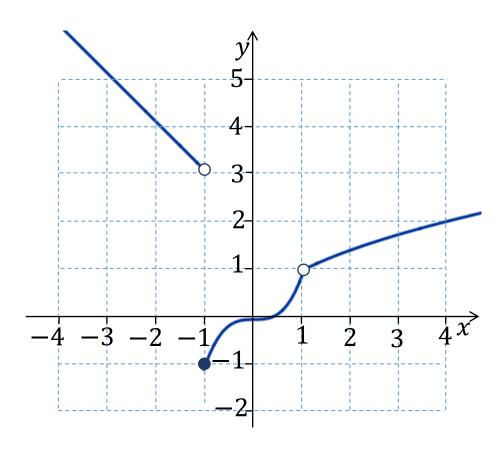
Q Apojo em Marte

Respostas



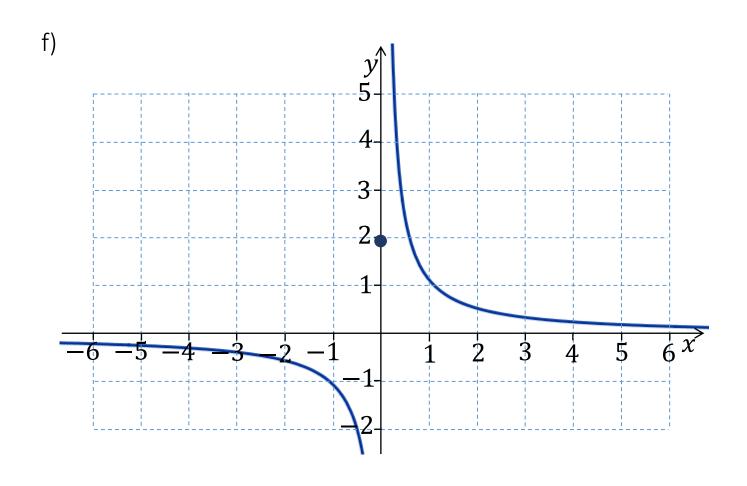
Respostas

e)



Care Apolo em Marke

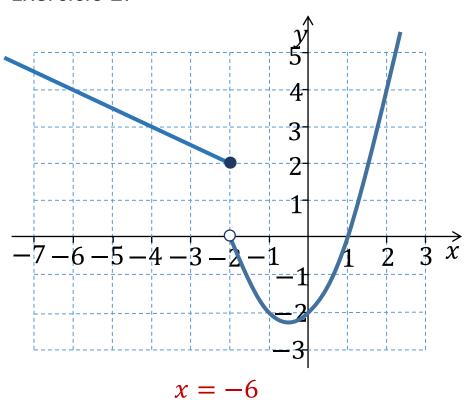
Respostas



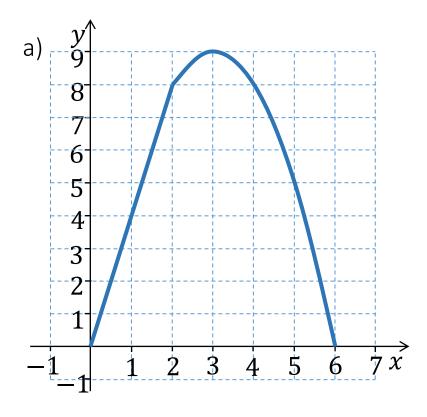
Q Apojo em Marke

Respostas

Exercício 2:



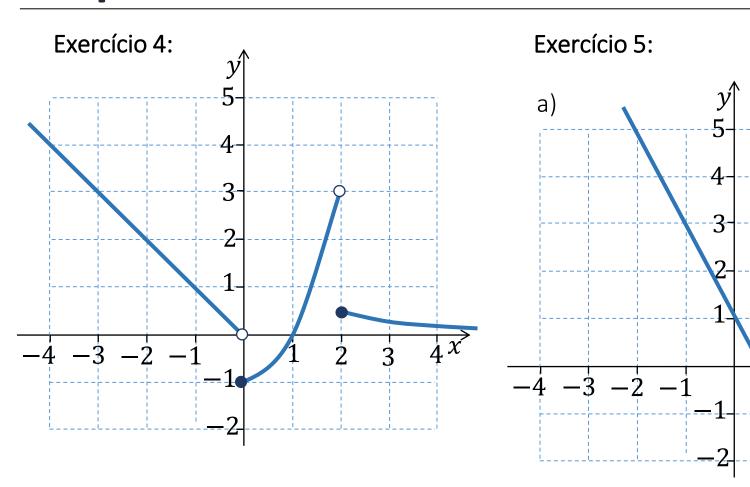
Exercício 3:



b)
$$f(x) = 5 \text{ para } x = \frac{5}{4} \text{ ou } x = 5$$

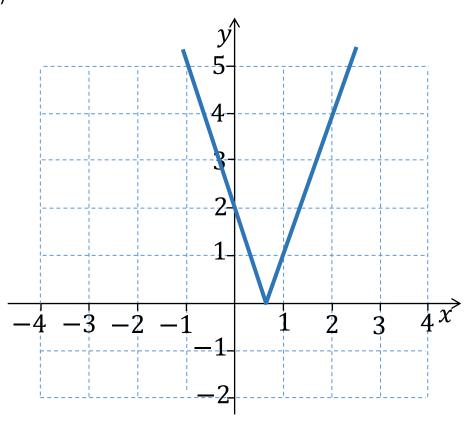
CAMPOIO em Marco

Respostas



Respostas

b)



Não esqueça de procurar os monitores do GAMA para melhor esclarecer suas dúvidas!!

Os horários e locais de monitorias podem se encontrados na página do Projeto:

http://wp.ufpel.edu.br/projetogama/monitorias

Não deixe de visitar e se inscrever em nosso canal no YouTube para ter acesso às nossas vídeo-aulas:

http://l.ufpel.edu.br/YouTubeGAMA

O GAMA possui monitorias de:

- Matemática Elementar, Cálulo 1, Cálculo 1A e Cálculo I (e equivalentes)
 - ☐ ALGA Álgebra Linear e Geometria Analítica (e disciplinas equivalentes)
 - ☐ Cálculo A e B, Cálculo 2, Cálculo II e Cálculo 3 (e equivalentes)

Certificado de 20 horas para quem procurar a monitoria do GAMA por pelo menos 15 vezes dentro do mesmo semestre letivo.

Universidade Federal de Pelotas

Instituto de Física e Matemática Pró-Reitoria de Ensino

Atividades de Revisão em Matemática

Módulo de

Funções

Aula 04

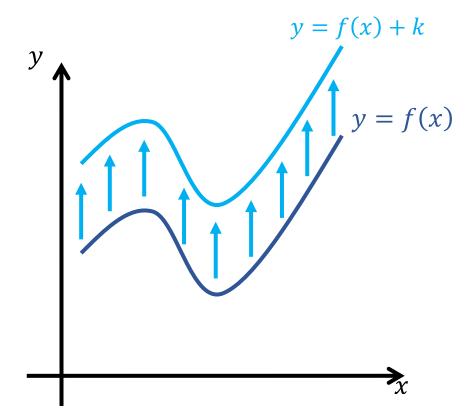
GAMA O A A Polo em Marte

Translações verticais

Utiliza-se **translações verticais** quando se tem o objetivo de esboçar o gráfico da função $y = f(x) \pm k$, onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

O gráfico da função y = f(x) + k, é obtido deslocando-se o gráfico da função f em k unidades para cima.



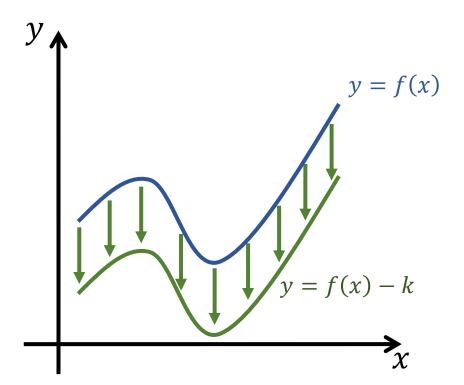
Appie cui Market

Translações verticais

Utiliza-se **translações verticais** quando se tem o objetivo de esboçar o gráfico da função $y = f(x) \pm k$, onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

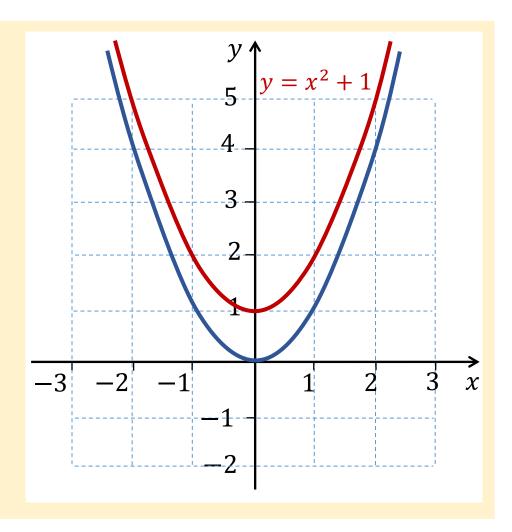
O gráfico da função y=f(x)-k, é obtido deslocando-se o gráfico da função f em k unidades para baixo.



1) Esboce o gráfico da função $y = x^2 + 1$.

Solução:

Utilizando translações verticais, desloca-se o gráfico da função $y=x^2$ em uma unidade para cima.



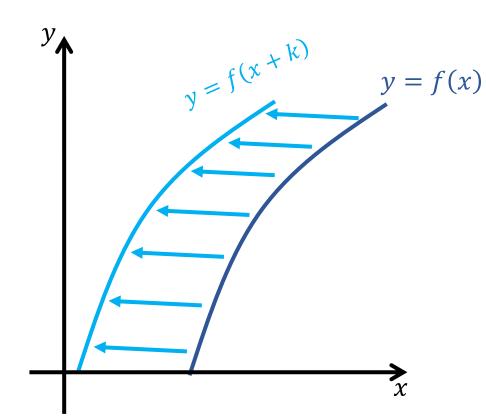
GAM

Translações horizontais

Utiliza-se **translações horizontais** quando se tem o objetivo de esboçar o gráfico da função $y = f(x \pm k)$, onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

O gráfico da função y = f(x+k), é obtido deslocando-se o gráfico da função f em k unidades para a esquerda.

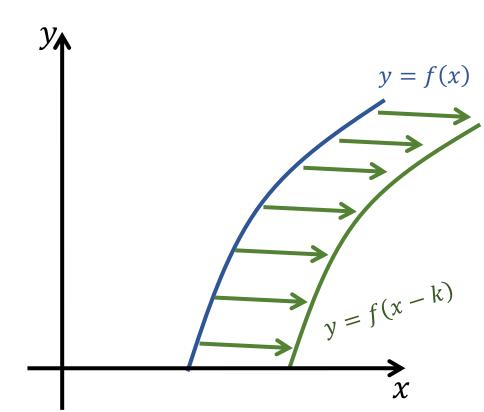


Translações horizontais

Utiliza-se **translações horizontais** quando se tem o objetivo de esboçar o gráfico da função $y = f(x \pm k)$, onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

O gráfico da função y=f(x-k), é obtido deslocando-se o gráfico da função f em k unidades para a direita.

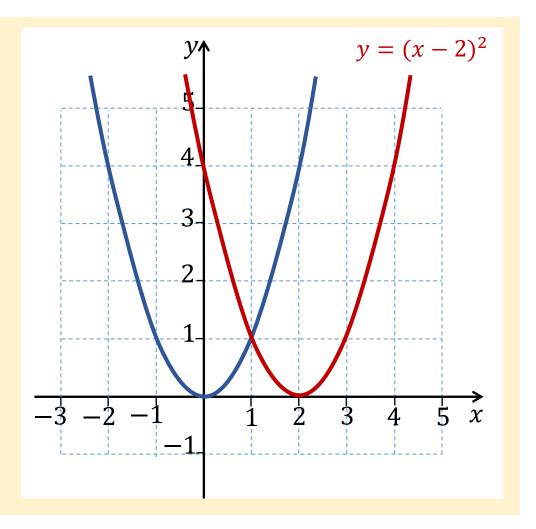


Exemplos

2) Esboce o gráfico da função $y = (x - 2)^2$.

Solução:

Utilizando translações horizontais, do gráfico da função $y=x^2$, desloca-se o gráfico da função em duas unidades para a direita.



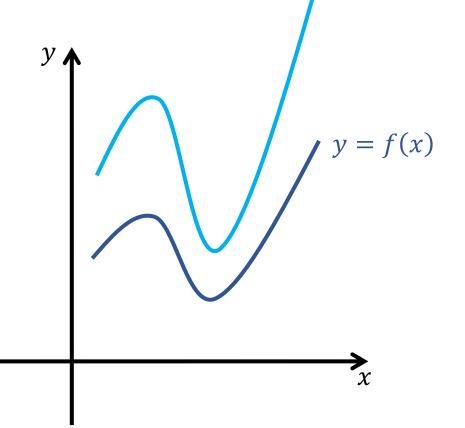
GAMA Oyo \(\text{T} \) \(\text{T} \) \(\text{T} \) \(\text{Appio cm Max } \)

Alongamentos/compressões verticais

Utiliza-se alongamentos (ou compressões) verticais quando se tem o objetivo de esboçar o gráfico da função y=kf(x), onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x). $\int_{-\infty}^{\infty} y = kf(x)$

Se k > 1: o gráfico da função y = kf(x), é obtido alongando verticalmente o gráfico da função f pelo fator k.



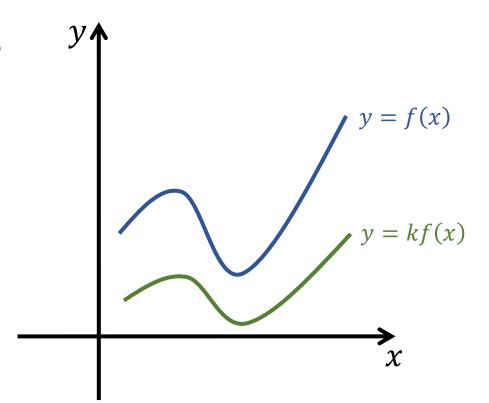
A Apoin out Market

Alongamentos/compressões verticais

Utiliza-se alongamentos (ou compressões) verticais quando se tem o objetivo de esboçar o gráfico da função y=kf(x), onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

Se 0 < k < 1: o gráfico da função y = kf(x) , é obtido comprimindo verticalmente o gráfico da função f pelo fator k.

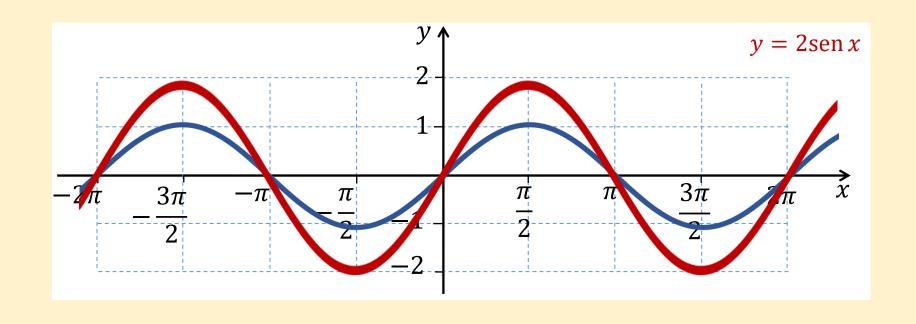


Exemplos

3) Esboce o gráfico da função $y = 2 \sin x$.

Solução:

Utilizando alongamentos e compressões verticais, alonga-se o gráfico da função y = sen x verticalmente em dobro.



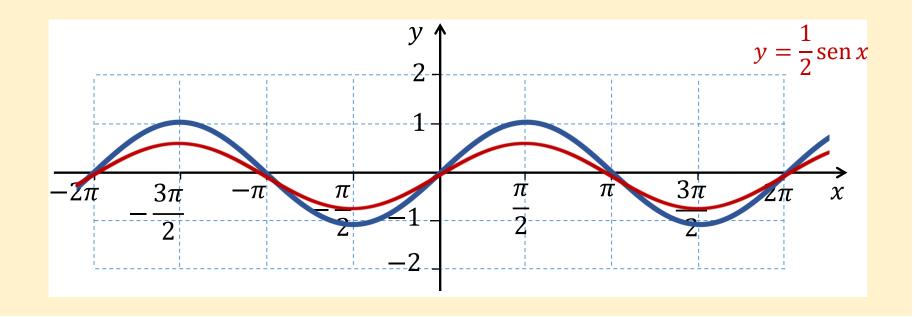
GAMA GYO MARON M

Exemplos

4) Esboce o gráfico da função $y = \frac{1}{2} \operatorname{sen} x$.

Solução:

Utilizando alongamentos e compressões verticais, comprime-se o gráfico da função y = sen x verticalmente pela metade.

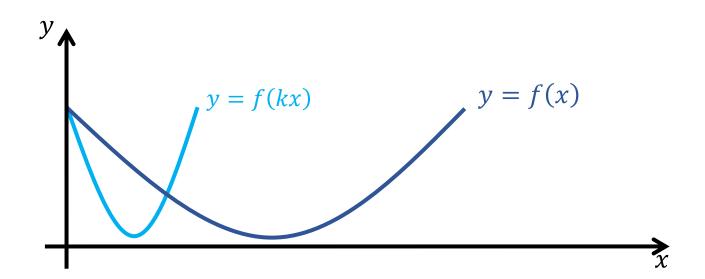


Alongamentos/compressões horizontais

Utiliza-se alongamentos (ou compressões) horizontais quando se tem o objetivo de esboçar o gráfico da função y = f(kx), onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

Se k > 1: o gráfico da função y = f(kx), é obtido comprimindo horizontalmente o gráfico da função f pelo fator k.

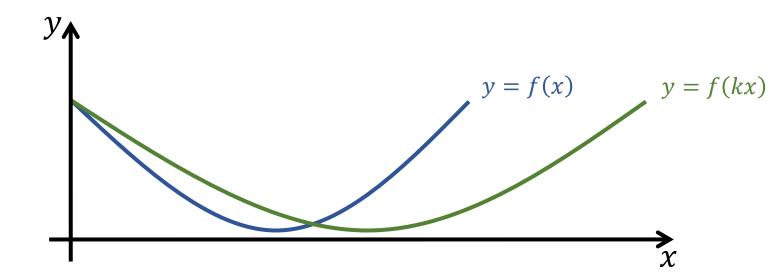


Alongamentos/compressões horizontais

Utiliza-se alongamentos (ou compressões) horizontais quando se tem o objetivo de esboçar o gráfico da função y = f(kx), onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

Se 0 < k < 1: o gráfico da função y = f(kx), é obtido alongando horizontalmente o gráfico da função f pelo fator k.



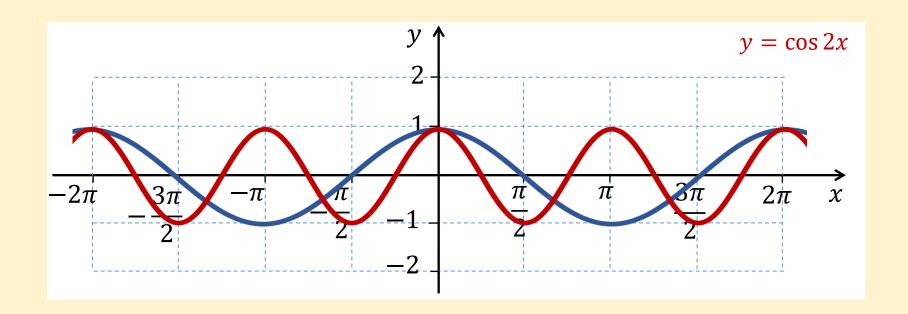
Q Apple on Mark

Exemplos

5) Esboce o gráfico da função $y = \cos 2x$.

Solução:

Utilizando alongamentos e compressões horizontais, comprime-se o gráfico da função $y = \cos x$ pelo fator 2.



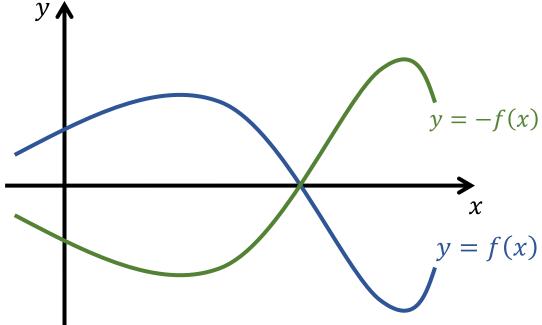
A Apoin on Market

Reflexão em relação ao eixo horizontal

Utiliza-se **reflexão em relação ao eixo horizontal** quando se tem o objetivo de esboçar o gráfico da função y = -f(x), onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

O gráfico da função y=-f(x), é obtido refletindo os pontos do gráfico da função f em relação ao eixo x.

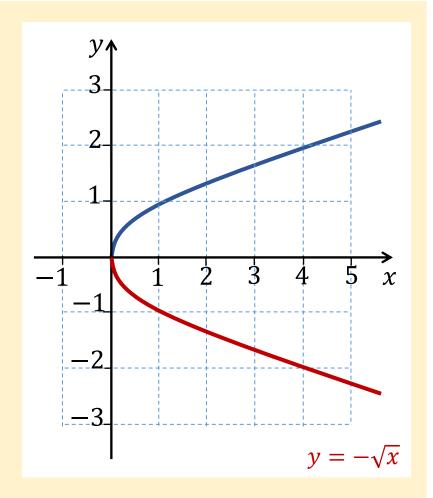


Exemplo

6) Esboce o gráfico da função $y = -\sqrt{x}$.

Solução:

Reflete - se o gráfico da função $y = \sqrt{x}$ em relação ao eixo horizontal.



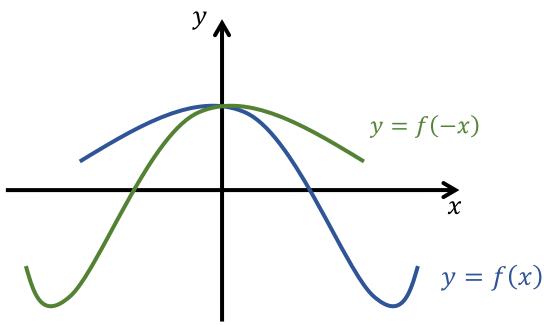
CAM TARRES ON MARKET

Reflexão em relação ao eixo vertical

Utiliza-se **reflexão em relação ao eixo vertical** quando se tem o objetivo de esboçar o gráfico da função y = f(-x), onde k é uma constante positiva.

Considerando o gráfico de uma função conhecida y = f(x).

O gráfico da função y=f(-x), é obtido refletindo os pontos do gráfico da função f em relação ao eixo y.

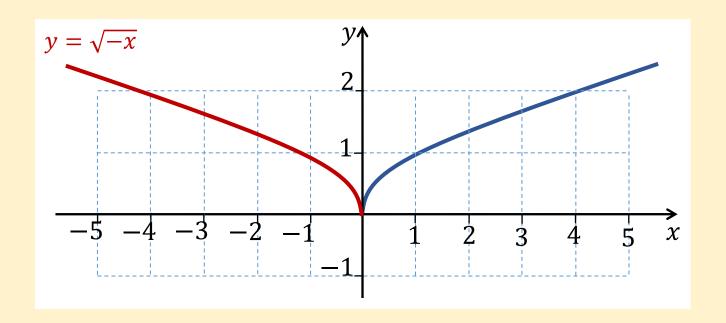


Exemplos

7) Esboce o gráfico da função $y = \sqrt{-x}$.

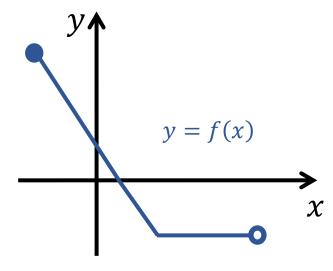
Solução:

Reflete o gráfico da função $y=\sqrt{x}$ em relação ao eixo vertical.



Transformação ocasionada pelo módulo

Considerando o gráfico de uma função conhecida y = f(x).



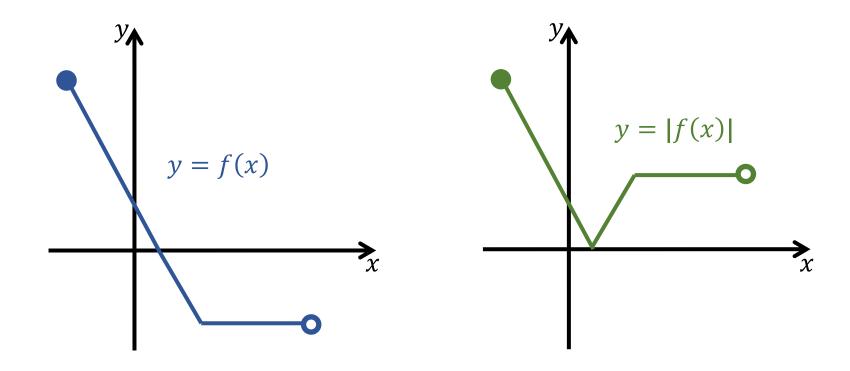
Ao considerar a função dada por y = |f(x)|, podem acontecer duas situações:

$$y = |f(x)| = f(x), \operatorname{se} f(x) \ge 0.$$

$$y = |f(x)| = -f(x)$$
, se $f(x) < 0$.

Transformação ocasionada pelo módulo

Assim, o gráfico da função y = |f(x)| é obtido refletindo, em relação ao eixo x, os pontos do gráfico da função f que possuem imagem negativa.

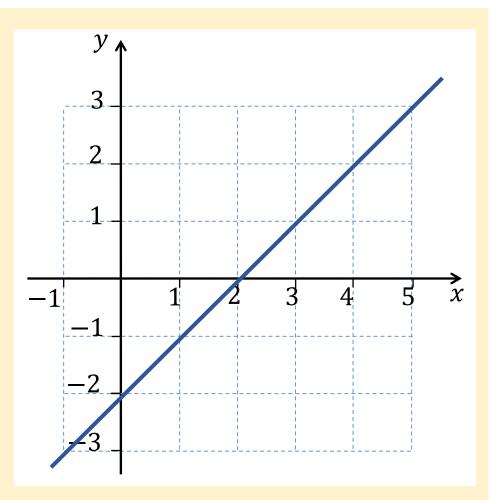


Exemplos

8) Esboce o gráfico da função y = |x - 2|.

Solução:

Reflete, em relação ao eixo x, todos os pontos do gráfico de y = x - 2 que possuem imagens negativas.

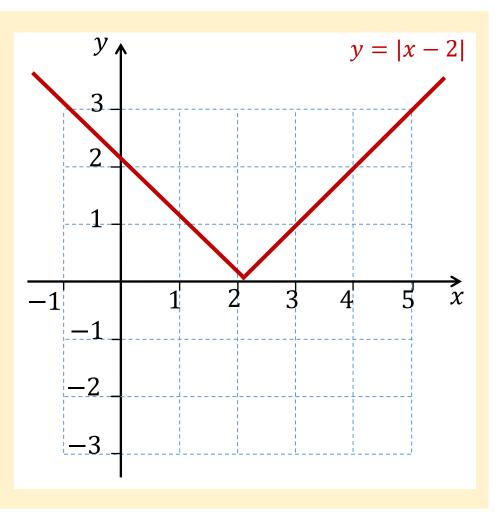


Exemplos

8) Esboce o gráfico da função y = |x - 2|.

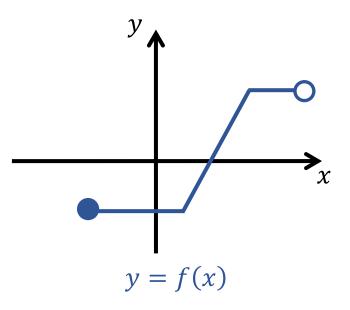
Solução:

Reflete, em relação ao eixo x, todos os pontos do gráfico de y = x — 2 que possuem imagens negativas.

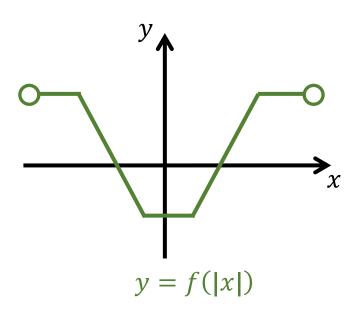


Transformação ocasionada pelo módulo

Considerando o gráfico de uma função conhecida y = f(x).

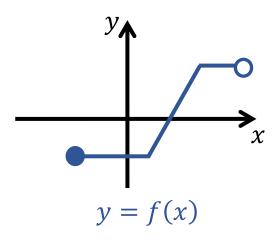


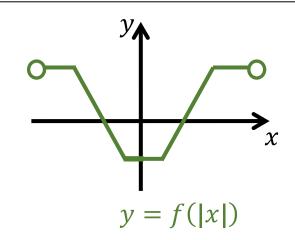
O gráfico da função dada por y=f(|x|), é obtido replicando os pontos do gráfico de f que estão do lado direito do plano $(x \ge 0)$ também no lado esquerdo do plano $(x \le 0)$, através de reflexão em relação ao eixo vertical.



ılo 🍕

Transformação ocasionada pelo módulo





Tendo em vista que o módulo de um número positivo é ele mesmo, conclui-se que o gráfico permanece inalterado para todos os pontos cujos domínios são positivos, ou seja,

$$y = f(|x|) = f(x)$$
, se $x \ge 0$.

Desta forma, o gráfico da função obtida fica simétrico em relação ao eixo vertical.

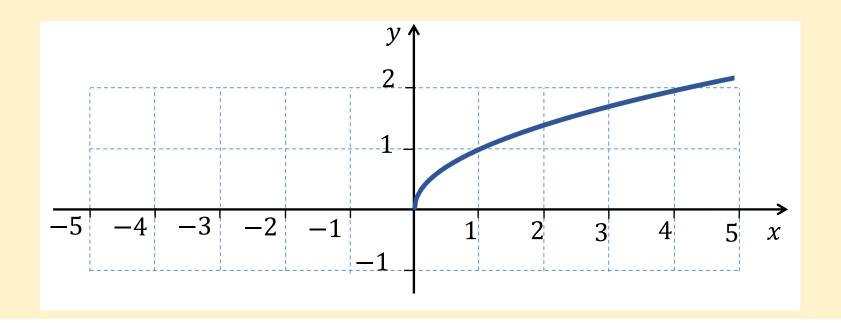
CAM Θγο π π α Apoio em Mar

Exemplos

9) Esboce o gráfico da função $y = \sqrt{|x|}$.

Solução:

Usando como base o gráfico da função $y=\sqrt{x}$, replica-se todos os pontos do gráfico de f do lado direito $(x \ge 0)$ no lado esquerdo $(x \le 0)$.



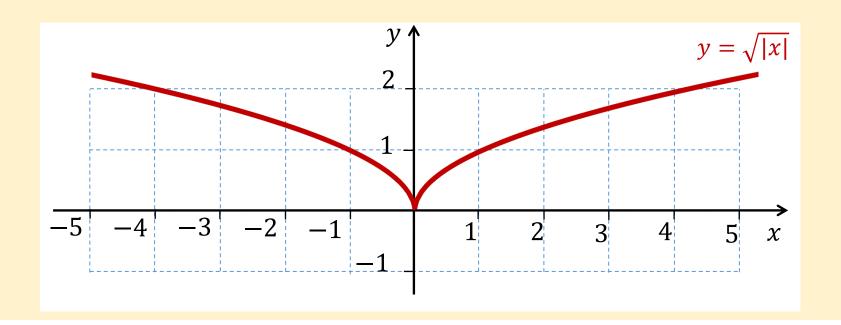
GAM OVE TARRESTOR

Exemplos

9) Esboce o gráfico da função $y = \sqrt{|x|}$.

Solução:

Usando como base o gráfico da função $y = \sqrt{x}$, replica-se todos os pontos do gráfico de f do lado direito $(x \ge 0)$ no lado esquerdo $(x \le 0)$.



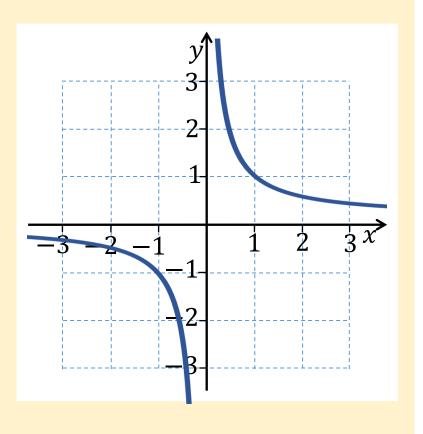
Q Apojo em Mart

Exemplos

10) Esboce o gráfico da função $y = \frac{1}{|x|}$.

Solução:

Usando como base o gráfico da função $y=\frac{1}{x'}$, replica-se todos os pontos do gráfico de f do lado direito $(x \ge 0)$ no lado esquerdo $(x \le 0)$.

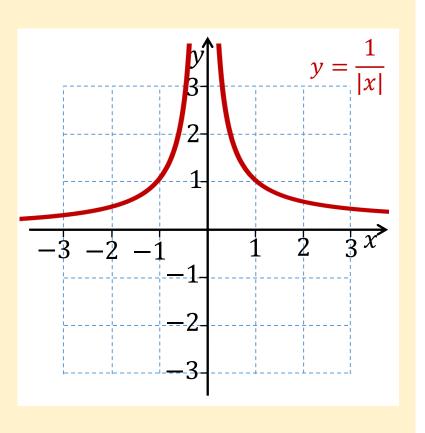


Exemplos

10) Esboce o gráfico da função $y = \frac{1}{|x|}$.

Solução:

Usando como base o gráfico da função $y=\frac{1}{x'}$, replica-se todos os pontos do gráfico de f do lado direito $(x \ge 0)$ no lado esquerdo $(x \le 0)$.



Exercícios Propostos

Exercícios

- 1) Considerando a função $f(x) = \sqrt{x+1} + 2$, determine:
 - (a) f(3)

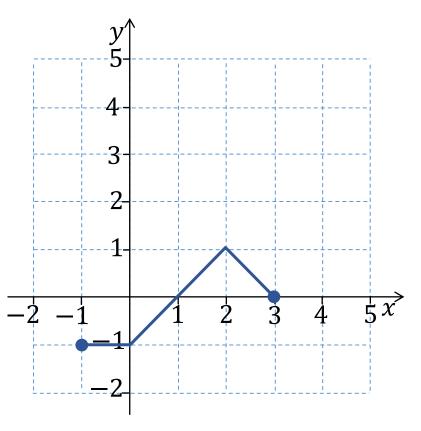
(b) $f(t^2 - 1)$

(c) Domínio de f.

- (d) Imagem de f.
- (e) Esboce o gráfico de f utilizando translações do gráfico da função $y=\sqrt{x}$.

Exercícios

2) Considere o gráfico de uma função f representado na figura a seguir.



- (a) Determine o domínio e a imagem de f.
- (b) Considerando como base o gráfico da função f, represente graficamente cada função a seguir, determinando o domínio e a imagem.

$$f_1(x) = f(x) - 1$$
 $f_5(x) = -f(x)$

$$f_2(x) = f(x-1)$$
 $f_6(x) = f(-x)$

$$f_3(x) = 2f(x)$$
 $f_7(x) = |f(x)|$

$$f_4(x) = f\left(\frac{x}{2}\right)$$
 $f_8(x) = f(|x|)$

Quantity of the state of the st

Exercícios

3) Esboce os gráficos das funções, por deslocamentos, alongamentos, compressões e reflexões do gráfico de $f(x) = x^2$ de maneira apropriada.

(a)
$$f(x) = (x+1)^2$$

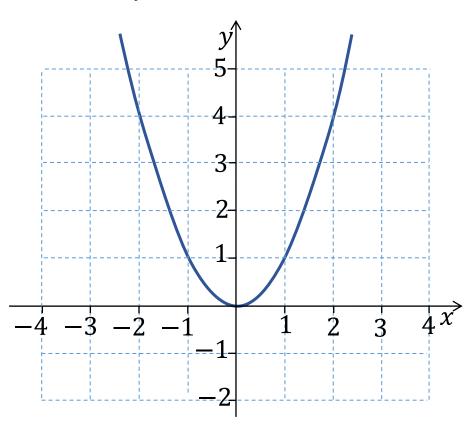
(b)
$$f(x) = (x-2)^2$$

(c)
$$f(x) = -x^2$$

(d)
$$f(x) = x^2 + 1$$

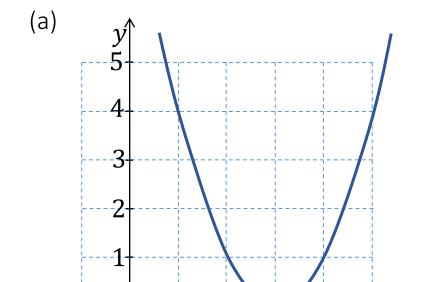
(e)
$$f(x) = x^2 - 2$$

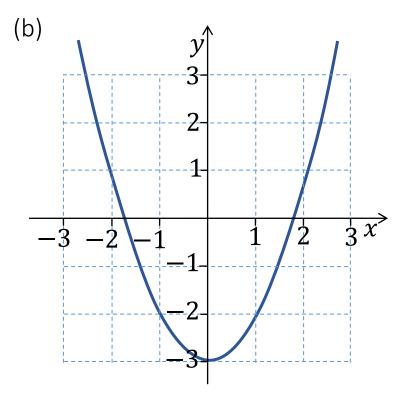
(f)
$$f(x) = (x+2)^2 - 1$$



Exercícios

4) Dados os gráficos de funções quadráticas, determinar a lei da função.

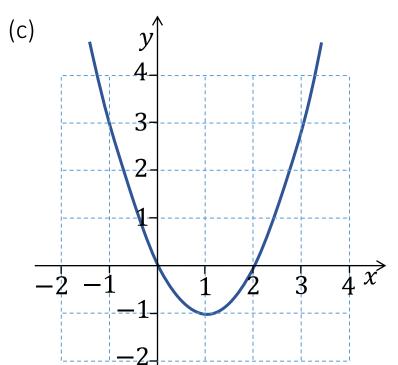


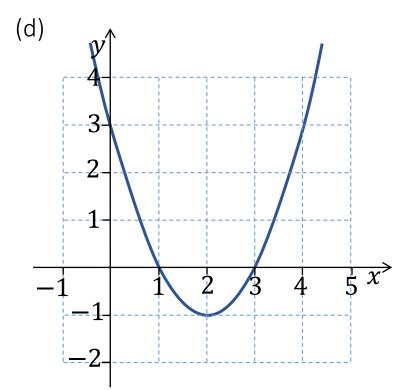


Q Anois en Merce

Exercícios

4) Dados os gráficos de funções quadráticas, determinar a lei da função.

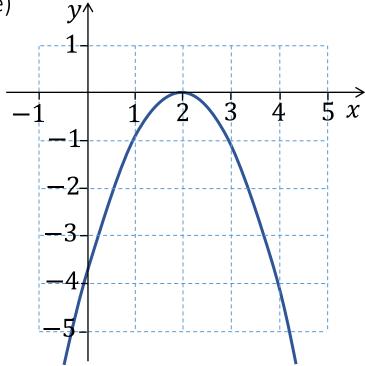




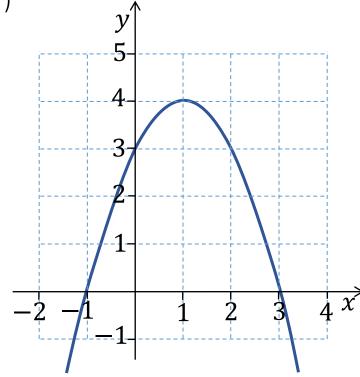
QAMA QADOIG ON MARKET

Exercícios

4) Dados os gráficos de funções quadráticas, determinar a lei da função.



(f)



Exercícios

- 5) Dada a função y = |2x + 2|, determine:
- (a) Domínio da função.
- (b) Imagem da função.
- (c) f(-4), f(-2), f(-1), f(0) e f(3).
- (d) Esboce o gráfico.
- 6) Esboce os gráficos das funções, por deslocamentos, alongamentos, compressões e reflexões de maneira apropriada.

(a)
$$f(x) = |2x - 1| + 1$$

(d)
$$f(x) = \sqrt{x+3} - 2$$

(b)
$$f(x) = |x + 2| + 2$$

(e)
$$f(x) = 2 \sin 2x$$

(c)
$$f(x) = \sqrt{x-1} + 3$$

$$(f) f(x) = -\cos(x + \frac{\pi}{2})$$

QAMA QAApojo em Marke

Respostas

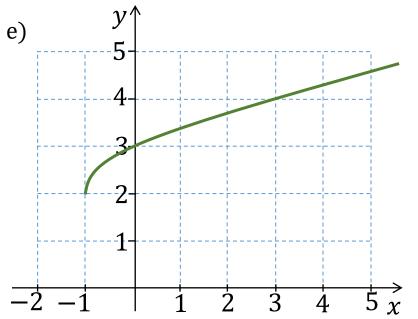
Exercício 1:

a)
$$f(3) = 4$$

b)
$$f(t^2 - 1) = |t| + 2$$

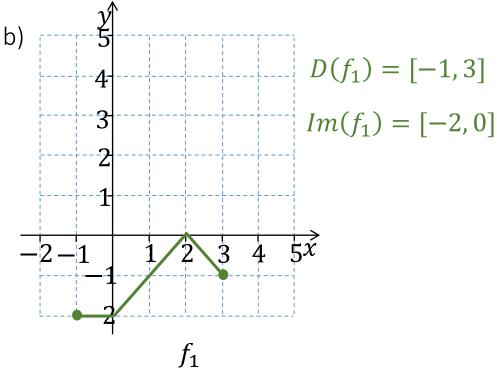
c)
$$D(f) = [-1; +\infty)$$

d)
$$Im(f) = [2; +\infty)$$



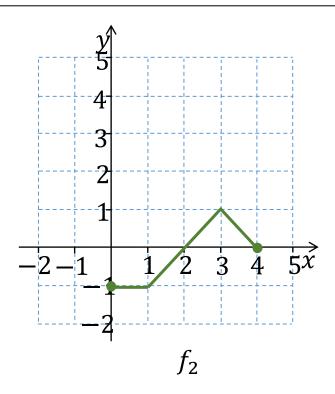
Exercício 2:

a)
$$D(f) = [-1, 3]$$
 $Im(f) = [-1, 1]$



Deslocamento vertical do gráfico de f em uma unidade para baixo.

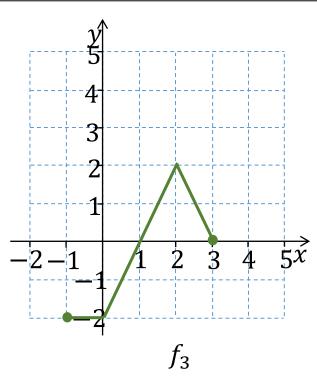
Respostas



Deslocamento horizontal do gráfico de f em uma unidade para a direita.

$$D(f_2) = [0, 4]$$

$$Im(f_2) = [-1, 1]$$

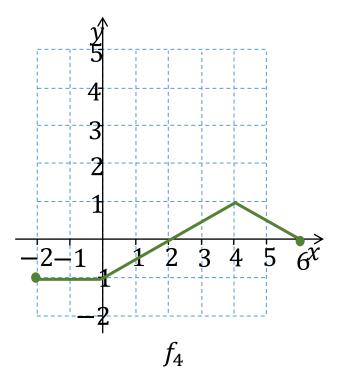


Alongamento vertical do gráfico de f pelo fator 2.

$$D(f_3) = [-1, 3]$$

$$Im(f_3) = [-2, 2]$$

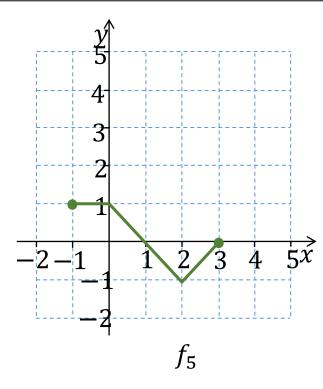
Respostas



$$D(f_4) = [-2, 6]$$

$$Im(f_4) = [-1, 1]$$

Alongamento horizontal do gráfico de f pelo fator 2.

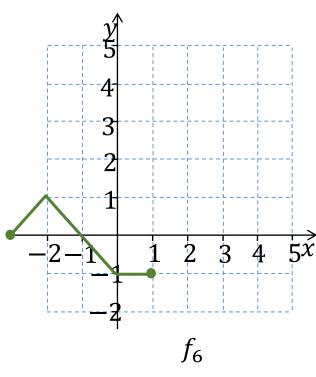


$$D(f_5) = [-1, 3]$$

$$Im(f_5) = [-1, 1]$$

Reflexão do gráfico de f em relação ao eixo horizontal.

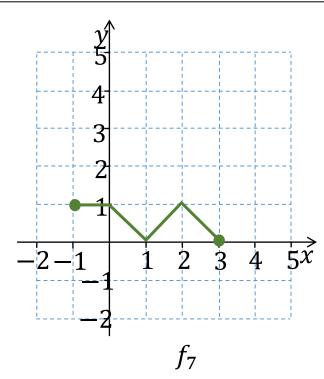
Respostas



$$D(f_6) = [-3, 1]$$

$$Im(f_6) = [-1, 1]$$

Reflexão do gráfico de *f* em relação ao eixo horizontal.



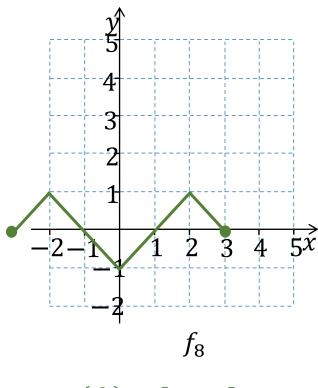
$$Im(f_7) = [0, 1]$$

 $D(f_7) = [-1, 3]$

Reflexão, em relação ao eixo horizontal os pontos do gráfico de f que possuem ordenada negativa.

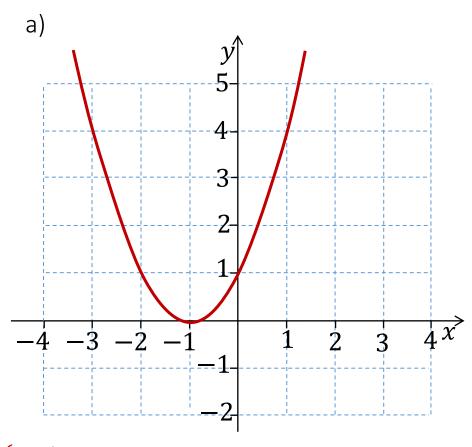
Canada Apoio em Marria

Respostas

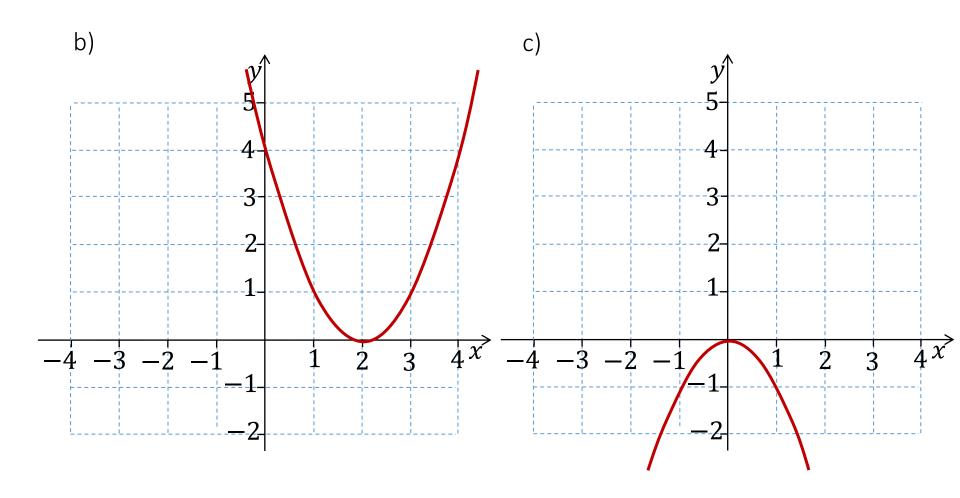


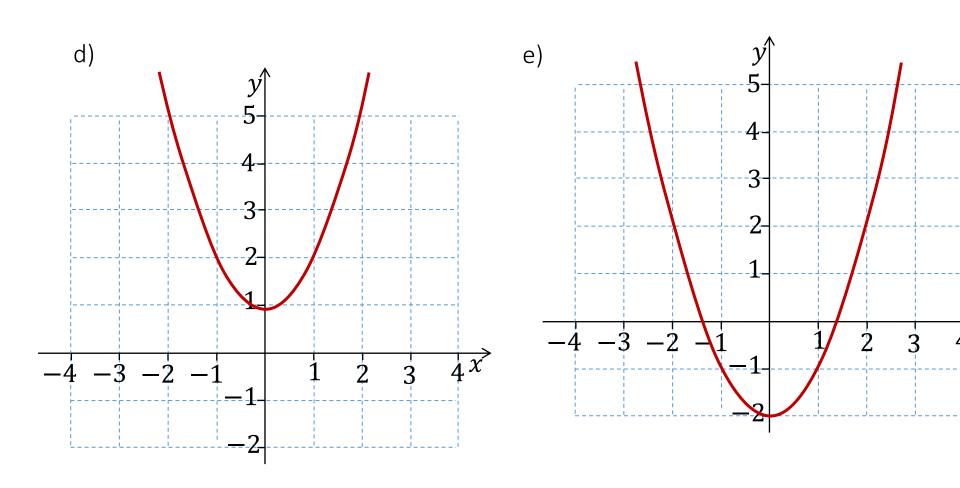
$$D(f_8) = [-3, 3]$$

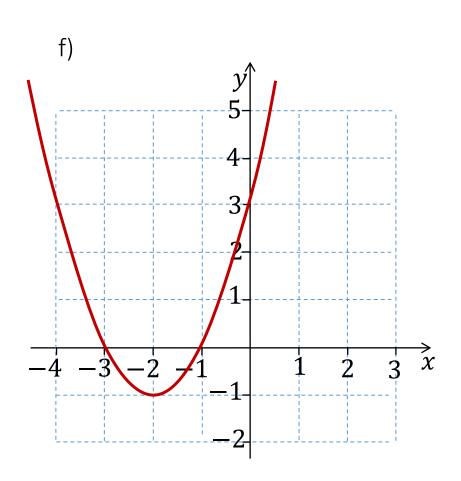
$$Im(f_8) = [-1, 1]$$



Replica do lado esquerdo do pano $(x \le 0)$ o gráfico do lado direito $(x \ge 0)$, na forma de uma reflexão em relação ao eixo vertical.







Exercício 4:

a)
$$y = (x - 3)^2$$

b)
$$y = x^2 - 3$$

c)
$$y = (x-1)^2 - 1$$

d)
$$y = (x-2)^2 - 1$$

e)
$$y = -(x-2)^2$$

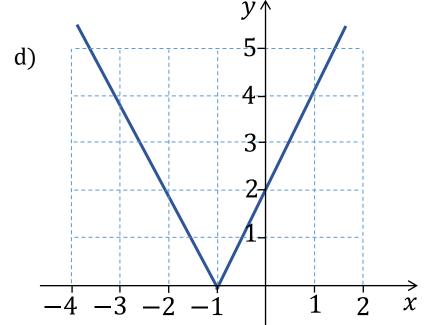
$$y = -(x-1)^2 + 4$$

Exercício 5:

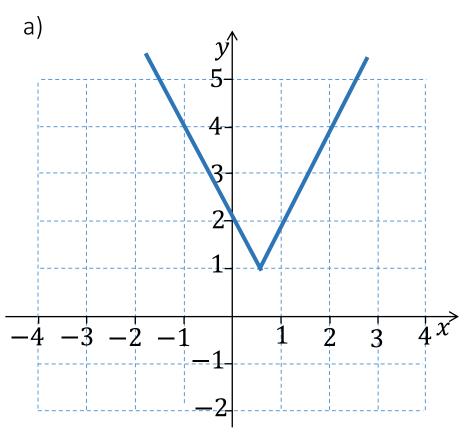
a)
$$D(f) = \mathbb{R}$$

b)
$$Im(f) = [0, +\infty)$$

c)
$$f(-4) = 6$$
 $f(-1) = 0$ $f(3) = 8$
 $f(-2) = 2$ $f(0) = 2$

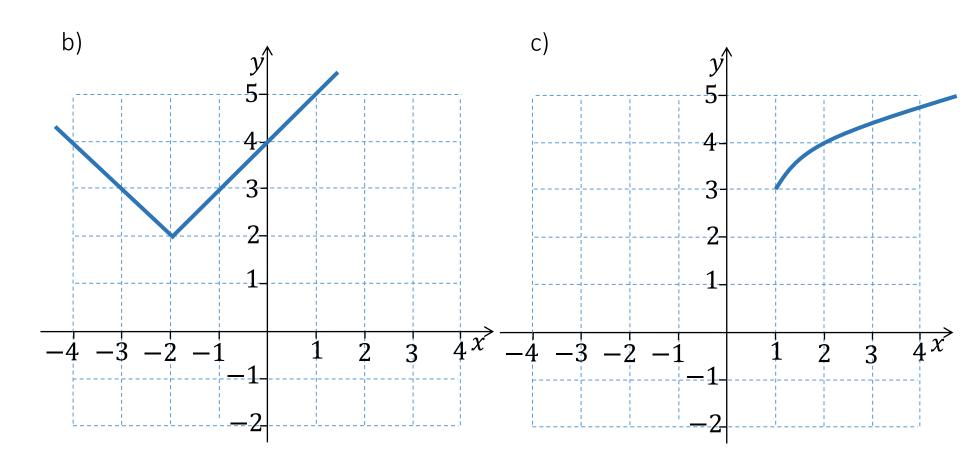


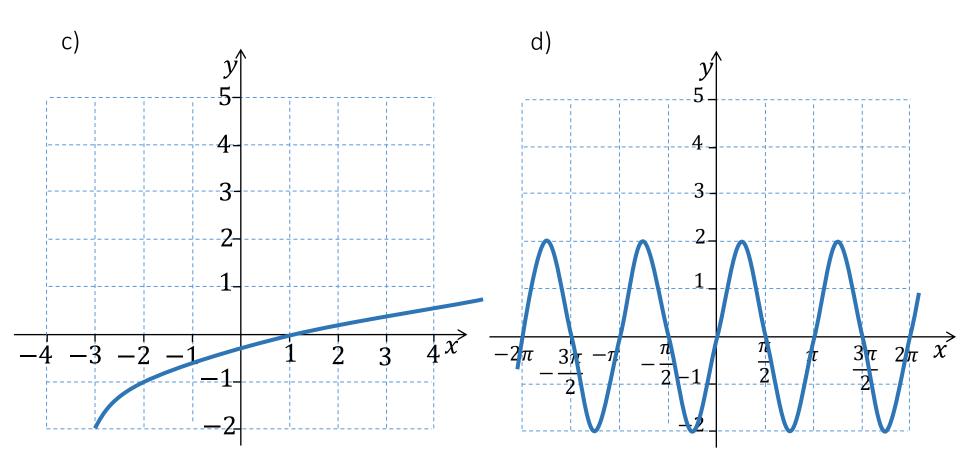
Exercício 6:



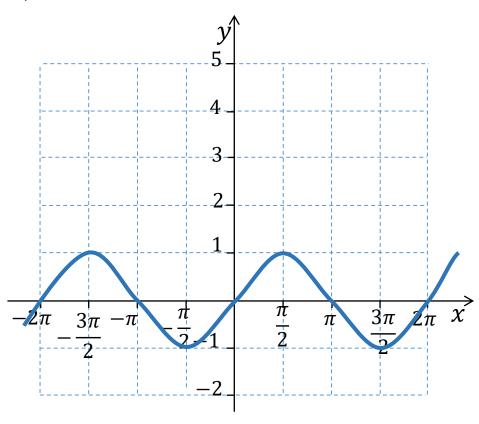
C_{Amon} Apolo em Marke

Respostas





e)



Não esqueça de procurar os monitores do GAMA para melhor esclarecer suas dúvidas!!

Os horários e locais de monitorias podem se encontrados na página do Projeto:

http://wp.ufpel.edu.br/projetogama/monitorias

Não deixe de visitar e se inscrever em nosso canal no YouTube para ter acesso às nossas vídeo-aulas:

http://l.ufpel.edu.br/YouTubeGAMA

O GAMA possui monitorias de:

- Matemática Elementar, Cálulo 1, Cálculo 1A e Cálculo I (e equivalentes)
 - ☐ ALGA Álgebra Linear e Geometria Analítica (e disciplinas equivalentes)
 - ☐ Cálculo A e B, Cálculo 2, Cálculo II e Cálculo 3 (e equivalentes)

Certificado de 20 horas para quem procurar a monitoria do GAMA por pelo menos 15 vezes dentro do mesmo semestre letivo.

Universidade Federal de Pelotas

Instituto de Física e Matemática Pró-Reitoria de Ensino

Atividades de Revisão em Matemática

Módulo de

Funções

Aula 05

GAMA GAMA GAPojo em Market

Função composta

De forma simplificada, suponha que seja necessário realizar dois cálculos, onde o resultado do segundo cálculo depende do resultado encontrado no primeiro.

A ideia de função composta é **acoplar** ou **compor** os dois cálculos em uma única fórmula.

1) A incidência de *Dengue* é dada em função da proliferação do mosquito *Aedes aegypti,* que é o transmissor desta doença.

Contudo, a proliferação do referido mosquito é dada em função do número de criadouros do mesmo.

Solução:

Portanto, pode-se dizer que a incidência desta doença pode ser dada em função do número de criadouros.



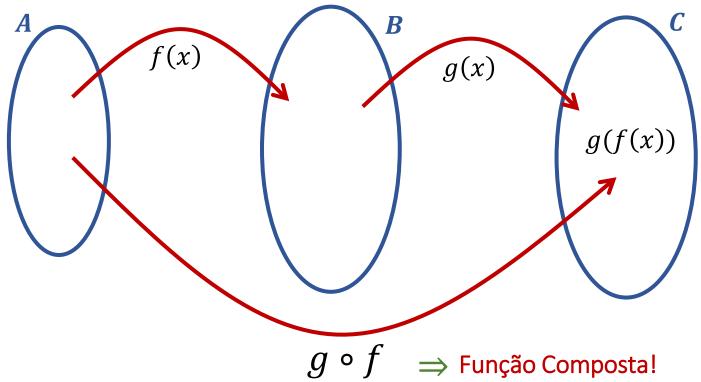
Canal Apolo em Marce

Função composta

Definição: Dadas as funções $f: A \to B \in g: B \to C$, a função $g \circ f: A \to C$, dada por $(g \circ f)(x) = g(f(x)) \ \forall x \in A$ é chamada de **função composta** de $f \in g$.

Observação: Na expressão $g \circ f$.

- f é chamada de função de dentro;
- g é chamada de função de fora.



2) Uma determinada empresa fabrica placas de trânsito (quadradas) de vários tamanhos, a um custo de R\$ 25,00 o metro quadrado da placa

Determine a lei da função que estabelece:

- (a) a área de uma placa em função do comprimento do lado do quadrado;
- (b) o custo de uma placa em função de sua área, em metros quadrados;
- (c) o custo final de uma placa em função do comprimento do seu lado.

Solução:

(a) x: comprimento do lado de cada placa;

f(x): área de uma placa de lado x;

$$f(x) = x^2$$

2) Uma determinada empresa fabrica placas de trânsito (quadradas) de vários tamanhos, a um custo de R\$ 25,00 o metro quadrado da placa

Determine a lei da função que estabelece:

- (a) a área de uma placa em função do comprimento do lado do quadrado;
- (b) o custo de uma placa em função de sua área, em metros quadrados;
- (c) o custo final de uma placa em função do comprimento do seu lado.

Solução:

(b) y: área do lado de cada placa;

g(y): custo para fabricação de uma placa de área y;

$$g(y) = 25.y$$

2) Uma determinada empresa fabrica placas de trânsito (quadradas) de vários tamanhos, a um custo de R\$ 25,00 o metro quadrado da placa

Determine a lei da função que estabelece:

- (a) a área de uma placa em função do comprimento do lado do quadrado;
- (b) o custo de uma placa em função de sua área, em metros quadrados;
- (c) o custo final de uma placa em função do comprimento do seu lado.

Solução:

(c) x: comprimento do lado de cada placa;

h(x): custo para fabricação de uma placa de lado x;

$$h(x) = 25.x^2$$

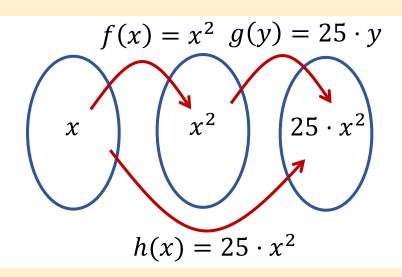
2) Uma determinada empresa fabrica placas de trânsito (quadradas) de vários tamanhos, a um custo de R\$ 25,00 o metro quadrado da placa

Determine a lei da função que estabelece:

- (a) a área de uma placa em função do comprimento do lado do quadrado;
- (b) o custo de uma placa em função de sua área, em metros quadrados;
- (c) o custo final de uma placa em função do comprimento do seu lado.

Solução:

Representação na forma de diagrama.



Note que h(x) = g(f(x)) é a função composta, que "acopla" as duas informações anteriores.

CAM Ω π π π π α α α Α Αροίο em Market

Exemplos

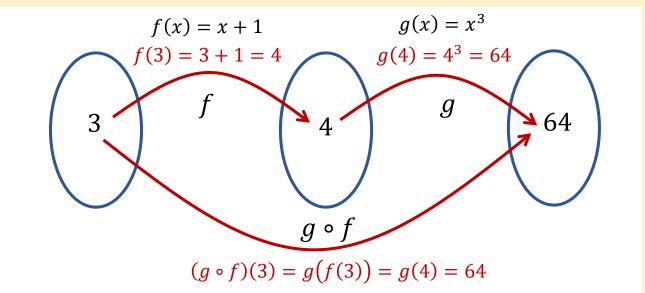
3) Dadas as funções f(x) = x + 1 e $g(x) = x^3$, calcule $(g \circ f)(3)$.

Solução:

$$(g \circ f)(3) = g(f(3)) = g(4) = (4)^3 = 64.$$

 $f(3) = 3 + 1 = 4$

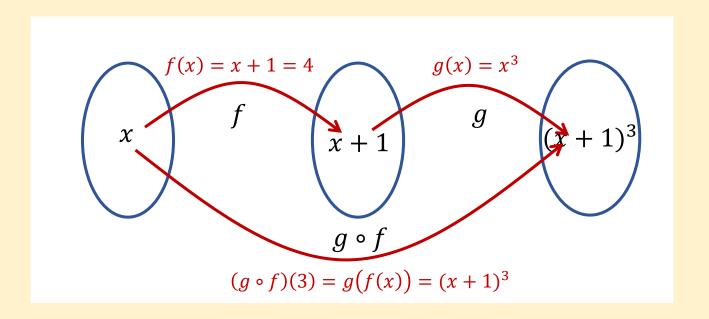
Representação na forma de diagrama:



3) Dadas as funções f(x) = x + 1 e $g(x) = x^3$, calcule $(g \circ f)(3)$.

Solução:

Note que a função de dentro (neste caso, f) é a primeira função que age quando se substitui o valor de x.



4) Dadas as funções $f(x) = 3x + 2 e g(x) = x^2 - 5$, calcule:

(a)
$$(g \circ f)(x)$$

(b)
$$(g \circ f)(2)$$

(c)
$$(f \circ g)(x)$$
 (d) $(f \circ g)(2)$

(d)
$$(f \circ g)(2)$$

Solução:

$$(g \circ f)(x) = g(f(x)) = g(3x + 2) = (3x + 2)^{2} - 5$$
$$= 9x^{2} + 12x + 4 - 5$$
$$= 9x^{2} + 12x - 1.$$

$$(g \circ f)(2) = 9(2)^2 + 12(2) + 4 - 1 = 36 + 24 - 1 = 59.$$

4) Dadas as funções $f(x) = 3x + 2 e g(x) = x^2 - 5$, calcule:

(a)
$$(g \circ f)(x)$$

(b)
$$(g \circ f)(2)$$

(c)
$$(f \circ g)(x)$$
 (d) $(f \circ g)(2)$

(d)
$$(f \circ g)(2)$$

Solução:

$$(f \circ g)(x) = f(g(x)) = f(x^2 - 5) = 3(x^2 - 5) + 2$$
$$= 3x^2 - 15 + 2$$
$$= 3x^2 - 13.$$

$$(f \circ g)(2) = 3(2)^2 - 13 = 12 - 13 = -1.$$

Q Apojo em Mande

Exemplos

5) Em cada caso, encontre duas funções $h \in g$ tais que $f = h \circ g$:

(a)
$$f(x) = \sqrt{5x + 6}$$

(b)
$$f(x) = \frac{1}{x^2 + 1}$$

Solução:

(a)
$$f(x) = \sqrt{5x + 6}$$

$$g(x) = 5x + 1$$

$$h(x) = \sqrt{x}$$

Função de dentro

Função de fora

"Prova real"

$$(h \circ g)(x) = h(g(x)) = h(5x + 1) = \sqrt{5x + 6} = f(x)$$

CA THE TOTAL OF TH

Exemplos

5) Em cada caso, encontre duas funções $h \in g$ tais que $f = h \circ g$:

(a)
$$f(x) = \sqrt{5x + 6}$$

(b)
$$f(x) = \frac{1}{x^2 + 1}$$

Solução:

(b)
$$f(x) = \frac{1}{x^2 + 1}$$

$$g(x) = x^2 + 1$$

Função de dentro

$$h(x) = \frac{1}{x}$$

Função de fora

"Prova real"

$$(h \circ g)(x) = h(g(x)) = h(x^2 + 1) = \frac{1}{x^2 + 1} = f(x)$$

Exercícios Propostos

Exercícios

- 1) Sabendo que $h(x) = x^2 + 3x 1$ e i(x) = -12x + 2, determine:
- (a) $h \circ i$
- (b) $i \circ h$
- (c) $i \circ i$
- (d) $h \circ h$
- 2) Sejam $f:[0,+\infty)\to\mathbb{R}, g:\mathbb{R}\to\mathbb{R}$, e $h:\mathbb{R}^*\to\mathbb{R}^*$ dadas por

$$f(x) = \sqrt{x}$$

$$g(x) = x^2 + 1$$

$$f(x) = \sqrt{x}$$
 $g(x) = x^2 + 1$ $h(x) = \frac{1}{x}$

Obtenha:

(a)
$$f \circ g$$

(d)
$$f \circ g \circ h$$

(b)
$$g \circ h$$

(e)
$$f \circ h \circ f$$

(c)
$$f \circ f \circ g$$

Exercícios

3) Em cada caso, expresse a função dada em uma composta de duas funções mais simples.

(a)
$$f(x) = \sqrt{x+1}$$

(b)
$$f(x) = \frac{2}{2 - 3x}$$

$$(c) f(x) = \sin(2x + 1)$$

$$(d) f(x) = \tan(x^2 - x)$$

- 4) Sejam as funções reais f e g, definidas por $f(x) = x^2 + 4x 5$ e g(x) = 2x 3.
- (a) Obtenha as leis que definem $f \circ g \in g \circ f$.
- (b) Calcule $(f \circ g)(2)$ e $(g \circ f)(2)$.
- (c) Determine os valores do domínio da função $(f \circ g)(x)$ que produzem imagem 16.

THE STATE OF MARKET

Exercícios

- 5) Dadas as funções reais definidas por f(x) = 3x + 2 e g(x) = 2x + a, determine o valor de a de modo que se obtenha $f \circ g = g \circ f$.
- 6) Considerando a função em reais definida por $f(x) = x^3 3x^2 + 2x 1$. Quais as leis que definem f(-x), $f\left(\frac{1}{x}\right)$ e f(x-1)?
- 7) Sejam as funções reais f(x) = 3x 5 e $(f \circ g)(x) = x^2 3$. Determine a lei da g.
- 8) Dadas $f(x) = 3 e g(x) = x^2$. Determine f(g(x)).
- 9) Se $f(x) = \frac{1}{1-x}$, Determine $(f \circ (f \circ f))(x)$.

Exercício 1:

a)
$$(h \circ i)(x) = 144x^2 - 84x + 9$$

b)
$$(i \circ h)(x) = -12x^2 - 36x + 14$$

c)
$$(i \circ i)(x) = 144x - 22$$

$$(h \circ h)(x) = x^4 + 6x^3 + 10x^2 + 2$$

Exercício 2:

a)
$$(f \circ g)(x) = \sqrt{x^2 + 1}$$

b)
$$(g \circ h)(x) = \frac{1+x^2}{x^2}$$

c)
$$(f \circ f \circ g)(x) = \sqrt[4]{x^2 + 1}$$

d)
$$(f \circ g \circ h)(x) = \frac{\sqrt{1+x^2}}{x}$$

e)
$$(f \circ h \circ f)(x) = \frac{1}{\sqrt[4]{x}}$$

Exercício 3:

a)
$$h(x) = x + 1$$
 $g(x) = \sqrt{x}$

b)
$$h(x) = 2 - 3x$$
 $g(x) = \frac{2}{x}$

c)
$$h(x) = (2x + 1)$$
 $g(x) = \sin x$

d)
$$(h \circ h)(x) = x^4 + 6x^3 + 10x^2 + 3x - 3$$
 d) $h(x) = x^2 - x$ $g(x) = \tan x$

Exercício 4:

a)
$$(f \circ g)(x) = 4x^2 - 4x - 8$$

 $(g \circ f)(x) = 2x^2 + 8x - 13$

b)
$$(f \circ g)(2) = 0$$
 $(g \circ f)(2) = 11$

c)
$$(f \circ g)(x) = 16 \rightarrow x = 3 \text{ ou } x = -2$$

CAMO TO THE MAKE THE PARTY OF T

Respostas

Exercício 5:

$$a = 1$$

Exercício 6:

$$f(-x) = -x^3 - 3x^2 - 2x - 1$$

$$f\left(\frac{1}{x}\right) = \frac{1}{x^3} - \frac{3}{x^2} + \frac{2}{x} - 1$$

$$f(x-1) = x^3 - 6x^2 + 11x - 7$$

Exercício 7:

$$g(x) = \frac{x^2 + 2}{3}$$

Exercício 8:

$$f(g(x)) = 3$$

Exercício 9:

$$(f \circ (f \circ f))(x) = x$$

²⁰⁹Monitorias!!

Não esqueça de procurar os monitores do GAMA para melhor esclarecer suas dúvidas!!

Os horários e locais de monitorias podem se encontrados na página do Projeto:

http://wp.ufpel.edu.br/projetogama/monitorias

Não deixe de visitar e se inscrever em nosso canal no YouTube para ter acesso às nossas vídeo-aulas:

http://l.ufpel.edu.br/YouTubeGAMA

O GAMA possui monitorias de:

- Matemática Elementar, Cálulo 1, Cálculo 1A e Cálculo I (e equivalentes)
 - ☐ ALGA Álgebra Linear e Geometria Analítica (e disciplinas equivalentes)
 - ☐ Cálculo A e B, Cálculo 2, Cálculo II e Cálculo 3 (e equivalentes)

Certificado de 20 horas para quem procurar a monitoria do GAMA por pelo menos 15 vezes dentro do mesmo semestre letivo.

Universidade Federal de Pelotas

Instituto de Física e Matemática Pró-Reitoria de Ensino

Atividades de Revisão em Matemática

Módulo de

Funções

Aula 06

Funções injetoras

Definição: Uma função $f: A \to B$ é chamada de **função injetora** se não existem dois elementos do domínio com uma mesma imagem.

Isto quer dizer que , para quaisquer $x_1, x_2 \in A$, é válido que, sempre que:

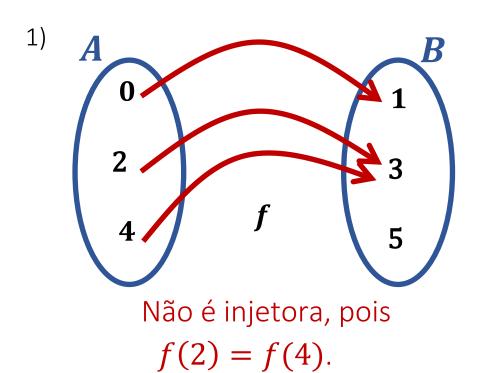
$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

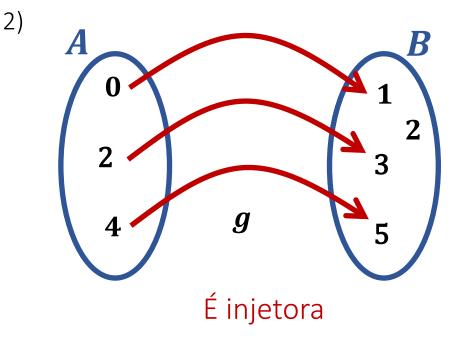
Elementos diferentes do domínio possuem imagens diferentes.

Ou, de forma equivalente,

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

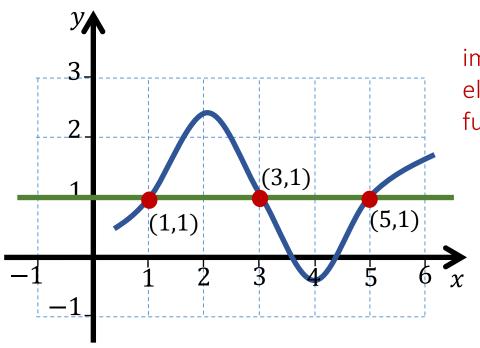
Se dois elementos do domínio possuem a mesma imagem, então eles são iguais.





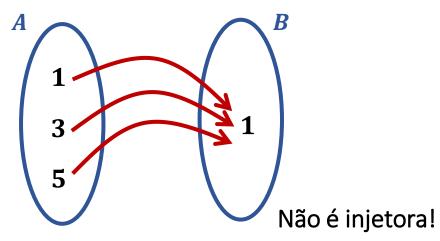
Teste da reta horizontal

Teste: Se alguma reta horizontal intercepta o gráfico da função em mais de um ponto, então esta função não é injetora.



Existe um mesmo elemento da imagem relacionado a mais de um elemento do domínio e, portanto, a função não é injetora!

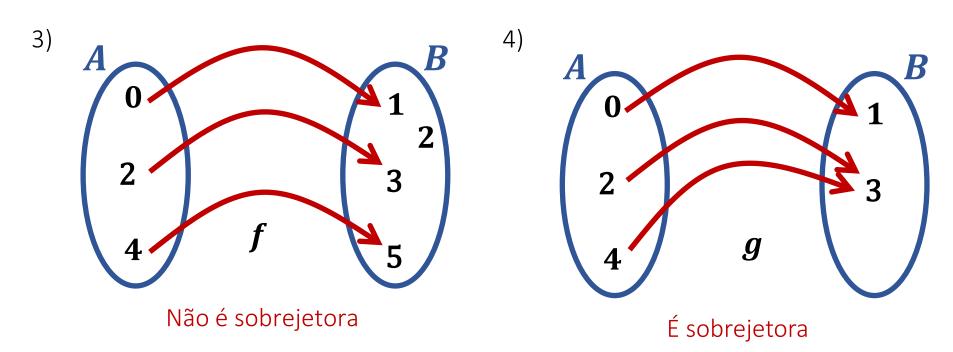
Três elementos diferentes do domínio com a mesma imagem!



Funções sobrejetoras

Definição: Uma função $f: A \to B$ é chamada de **função sobrejetora** se o contradomínio é igual a imagem, isto é, se Im(f) = B.

Isto quer dizer que , para cada $y \in B$, existe pelo menos um $x \in A$ tal que f(x) = y.

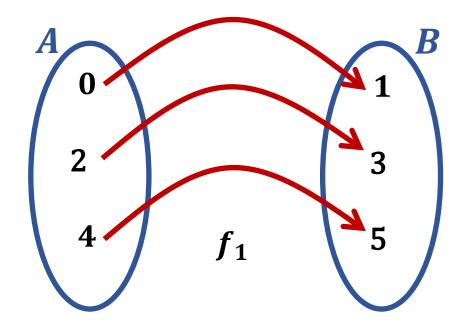


Funções bijetoras

Definição: Uma função $f \colon A \to B$ é chamada de **função bijetora** se ela é injetora e sobrejetora.

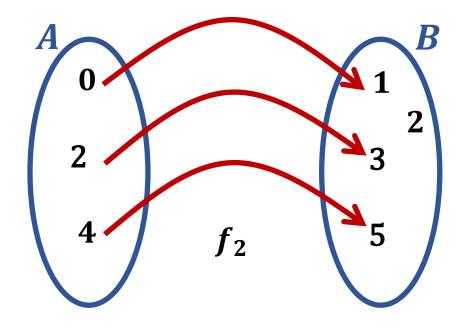
Isto quer dizer que , para cada $y \in B$, existe um único $x \in A$ tal que f(x) = y.

5) Determine se a função a seguir é bijetora.



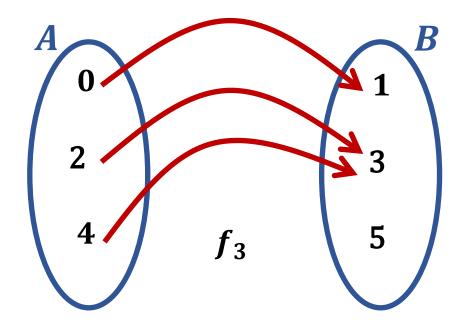
É bijetora, pois é injetora e sobrejetora.

6) Determine se a função a seguir é bijetora.



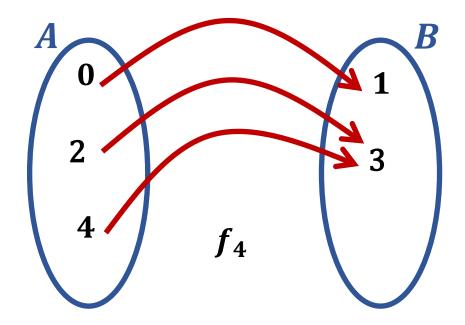
Não é bijetora, pois não é sobrejetora.

7) Determine se a função a seguir é bijetora.



Não é bijetora, pois não é injetora nem sobrejetora.

8) Determine se a função a seguir é bijetora.



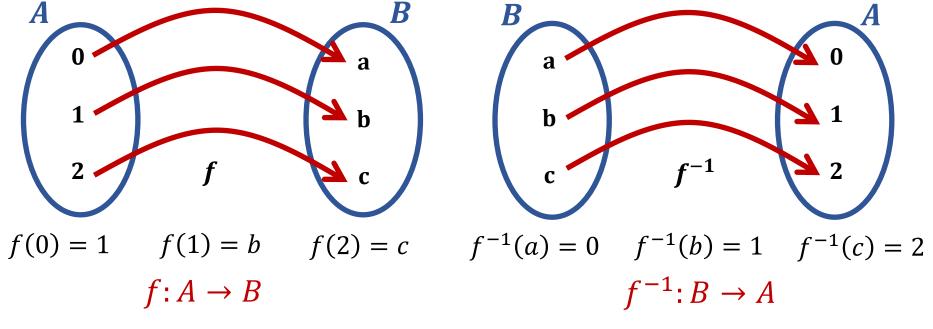
Não é bijetora, pois não é injetora.

GAM α ππ π α α Apoio em Mara

Função inversa

Em uma função bijetora se pode definir uma função g com domínio igual a B e contra domínio igual a A que faz as relações inversas das relações determinadas pela função f.

A função g acima é chamada de **função inversa** da função f, e é denotada por f^{-1} .



Domínio: *A* Imagem: *B*

Domínio: *B* Imagem: *A*

Função inversa

Observação: Note que f^{-1} possui domínio igual a B e contradomínio igual a A.

"o que era domínio vira imagem e o que era imagem vira domínio".

$$f^{-1}: B \to A$$

Observação: Somente funções bijetoras possuem inversa. Por este motivo, as funções bijetoras são ditas funções inversíveis.

Para determinar a lei de formação da função inversa de uma função bijetora, basta seguir os passos:

- Substitua x por y e y por x na lei de formação da função y = f(x).
- Isole a variável y na equação obtida no passo anterior. 2)
- O resultado obtido será a função inversa $y = f^{-1}(x)$. 3)

9) Determine a função inversa de f(x) = 2x + 4.

Solução:

Seguindo os passos para encontrar a função inversa, tem-se:

1) Substitua x por y e y por x na lei de formação da função y = f(x).

$$x = 2y + 4$$

2) Isole a variável y na equação obtida no passo anterior.

$$x = 2y + 4$$

$$2y = x - 4$$

$$y = \frac{x - 4}{2}$$

Portanto, a função inversa é dada por:

$$f^{-1}(x) = \frac{x-4}{2}.$$

10) Determine a função inversa de $f(x) = x^3 - 5$.

Solução:

Seguindo os passos para encontrar a função inversa, tem-se:

1) Substitua x por y e y por x na lei de formação da função y = f(x).

$$x = y^3 - 5$$

2) Isole a variável y na equação obtida no passo anterior.

$$x = y^3 - 5$$

$$y^3 = x + 5$$

$$y = \sqrt[3]{x+5}$$

Portanto, a função inversa é dada por:

$$f^{-1}(x) = \sqrt[3]{x+5}.$$

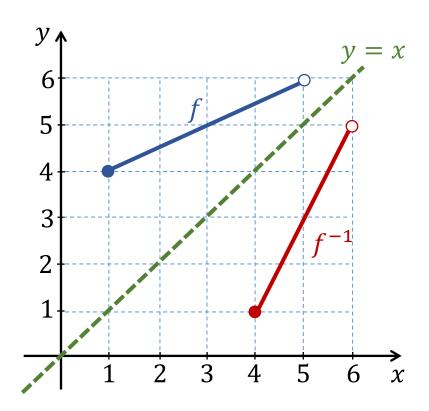
Q A Pojo em Marke

Gráfico da função inversa

Para obter a função inversa de uma função bijetora, o processo consiste em "inverter os papéis de x e y" na lei de formação da função.

Desta inversão, resulta que os gráficos das funções f e f^{-1} são simétricos em relação à reta y=x.

(y = x, bissetriz dos quadrantes ímpares).



- 11) Determine a função inversa de $f(x) = x^3$.
- (a) Determine a lei de formação de f^{-1} ;

(b) Esboce os gráficos de f e f^{-1} ;

Solução:

(a) Determinando a função f^{-1} :

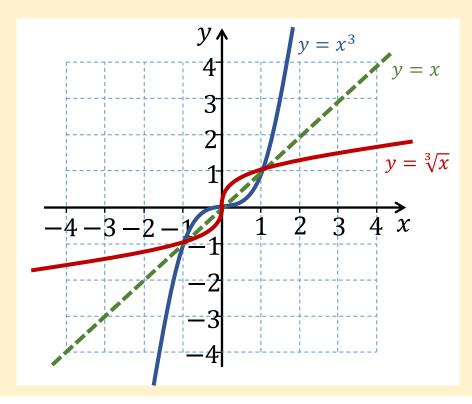
$$y = x^3$$

$$x = y^3$$

$$y = \sqrt[3]{x}$$

$$f^{-1}(x) = \sqrt[3]{x}$$

(b) Esboçando os gráficos:



Função logarítmica e função exponencial

Observação: A inversa da função exponencial de base α é a função logarítmica de mesma base.

Em outras palavras, função exponencial de base a

é bijetora, e sua função inversa é a função logarítmica de base a.

$$f(x) = a^x$$

$$f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$

$$f^{-1}(x) = \log_a x$$

$$f^{-1}: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

12) Em cada caso, determine a função inversa da função dada.

(a)
$$f(x) = \log_5 x$$

(b)
$$f(x) = 4^x$$

Solução:

(a)
$$f^{-1}(x) = 5^x$$

A inversa da função logarítmica de base 5 é a função exponencial de base 5.

(b)
$$f^{-1}(x) = \log_4 x$$

A inversa da função exponencial de base 4 é a função logarítmica de base 4.

GAMON A Apolo em Maria

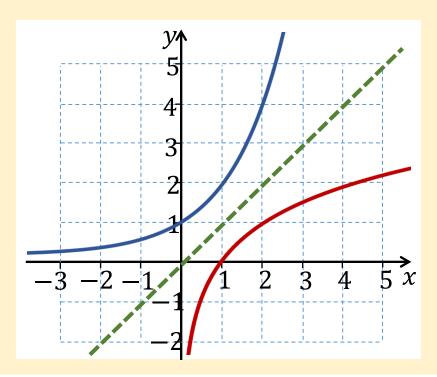
Exemplos

13) Determine a função inversa da função exponencial $f(x)=2^x$ e esboce os gráficos de f e f^{-1}

Solução:

A função inversa da função exponencial $f(x) = 2^x$ é a função $f^{-1}(x) = 2^x$

 $\log_2 x$.



Funções trigonométricas inversas

Observação: As funções trigonométricas não são bijetoras em todo os seus domínios.

O teste da reta horizontal comprova, por exemplo, que **a função seno não é bijetora em todo o seu domínio**, pois a reta intercepta o gráfico da função mais de uma vez.

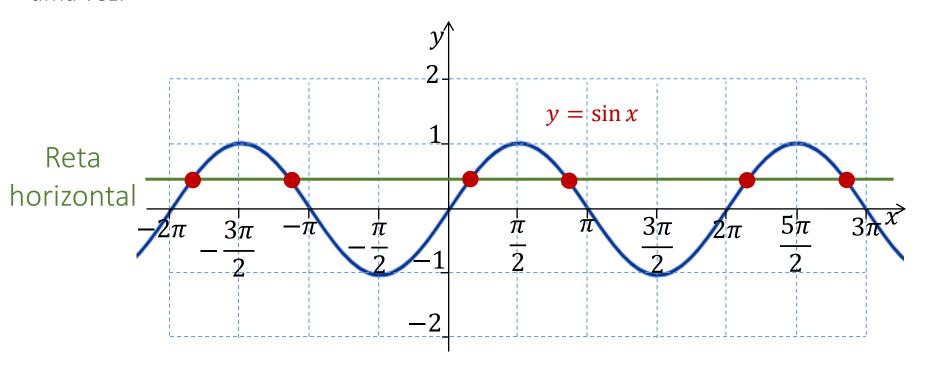


Gráfico da função seno

OAM OYO Apoio em Mare

Funções trigonométricas inversas

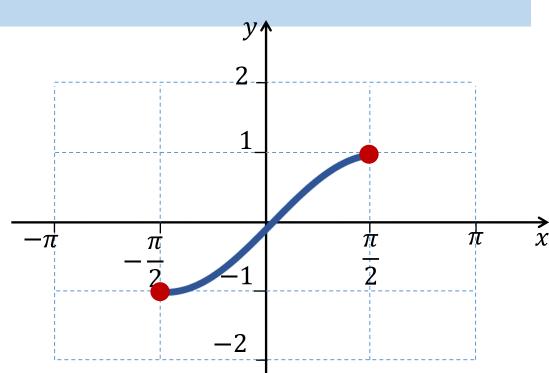
As **funções trigonométricas inversas** (arco seno, arco cosseno, arco tangente, arco cotangente, arco secante e arco cossecante) são as funções inversas de restrições convenientes das funções trigonométricas.

Definição: A função **arco seno** é a função inversa da restrição da função seno ao intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Restrição da função seno:

$$f(x) = \sin x$$
, $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

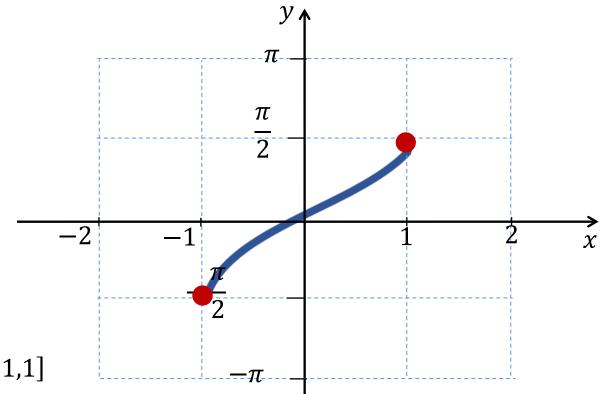
$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow [-1, 1]$$



CAMA COYOURANA

Funções trigonométricas inversas

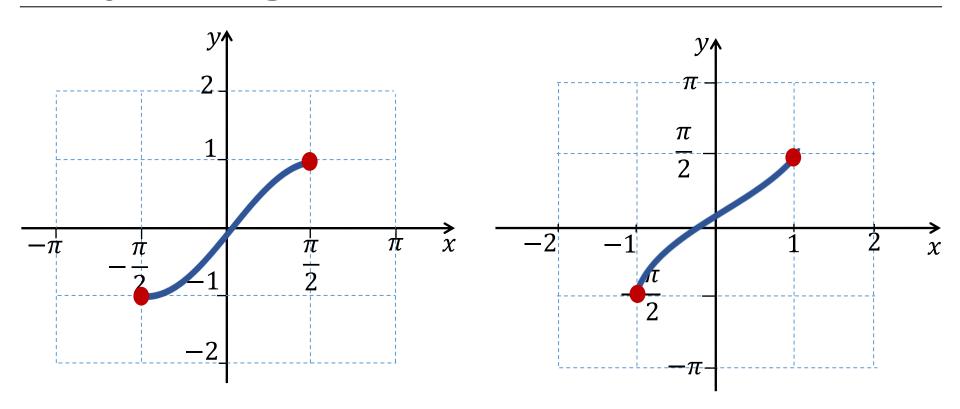
$$f^{-1}$$
: $\left[-1,1\right] \longrightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$



$$f^{-1}(x) = \arcsin x$$
, $\forall x \in [-1,1]$

O THE STATE OF THE

Funções trigonométricas inversas



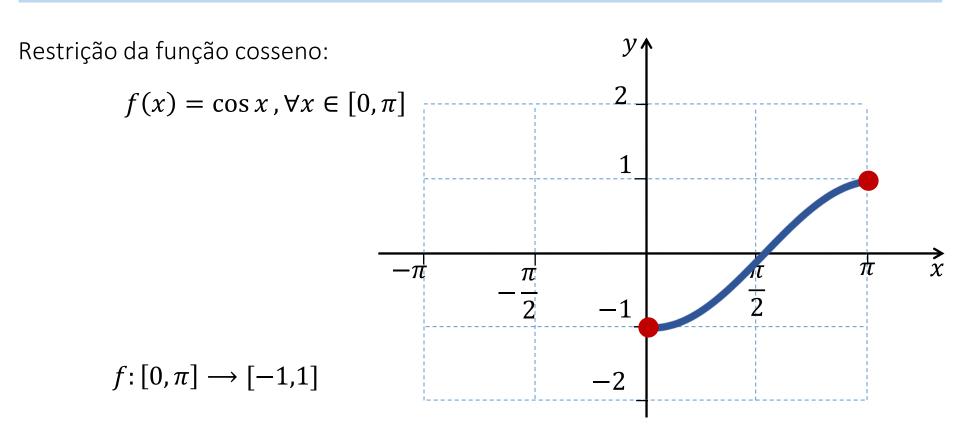
$$sin(arcsin x) = x, \forall x \in [-1,1]$$

$$\arcsin(\sin x) = x, \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

GAMANIA WAR

Funções trigonométricas inversas

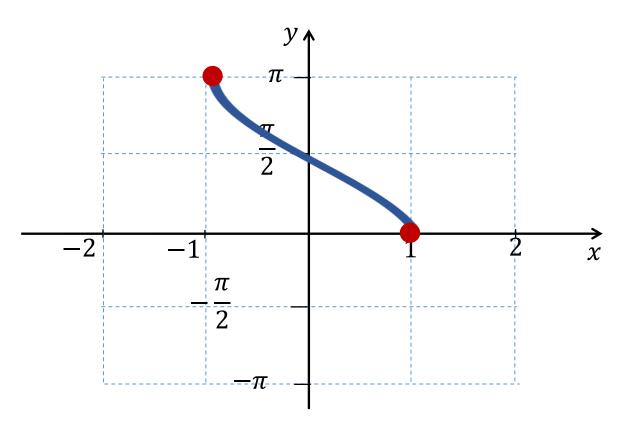
Definição: A função **arco cosseno** é a função inversa da restrição da função seno ao intervalo $[0, \pi]$.



Funções trigonométricas inversas

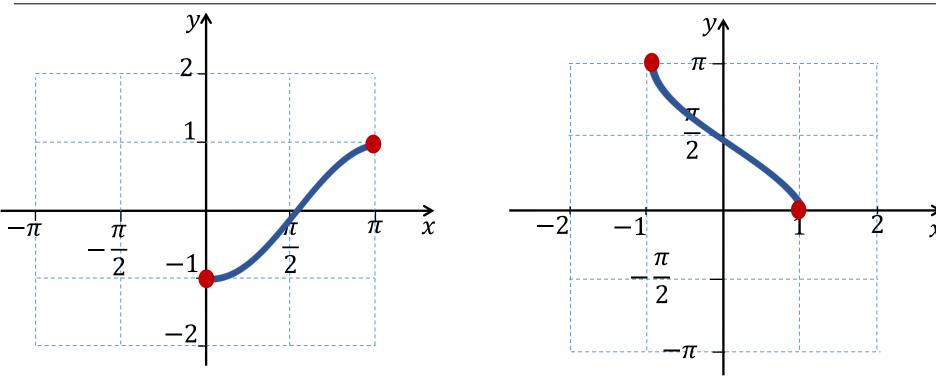
Função arco cosseno

$$f^{-1}: [-1,1] \to [0,\pi]$$



$$f^{-1}(x) = \arccos x$$
, $\forall x \in [-1,1]$

Funções trigonométricas inversas



$$\cos(\arccos x) = x, \forall x \in [-1,1]$$

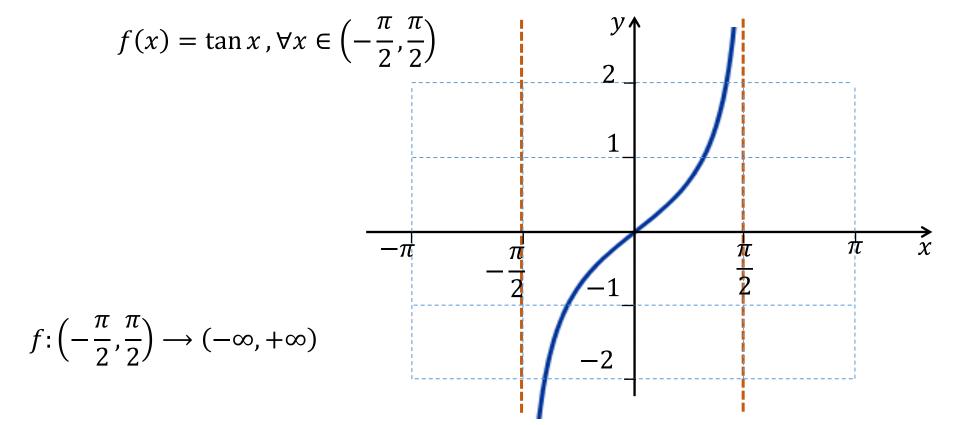
$$\arccos(\cos x) = x, \forall x \in [0, \pi]$$

GAMON MARKET

Funções trigonométricas inversas

Definição: A função **arco tangente** é a função inversa da restrição da função seno ao intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

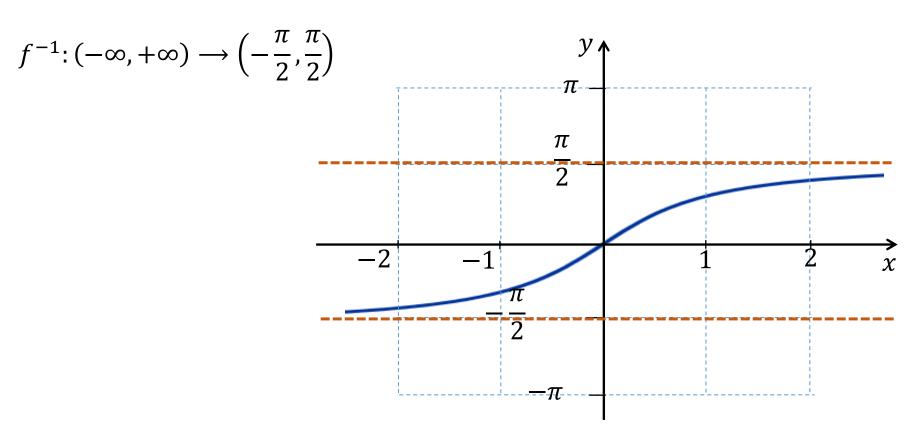
Restrição da função tangente:



GAMANIA MARIANA

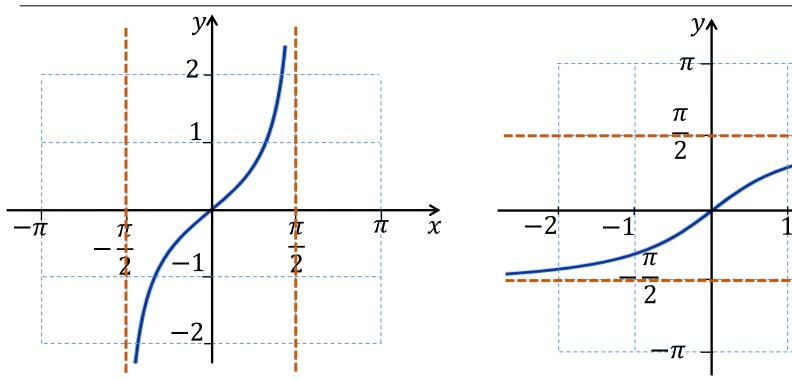
Funções trigonométricas inversas

Função arco tangente



$$f^{-1}(x) = \arctan x$$
, $\forall x \in (-\infty, +\infty)$

Funções trigonométricas inversas



$$tan(arctan x) = x, \forall x \in (-\infty, +\infty)$$

$$\arctan(\tan x) = x, \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Exercícios Propostos

Exercícios

1) Determine a lei da função inversa às seguintes funções:

(a)
$$y = x + 3$$

(b)
$$y = 6x$$

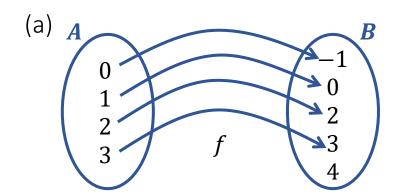
(c)
$$y = 2x - 1$$

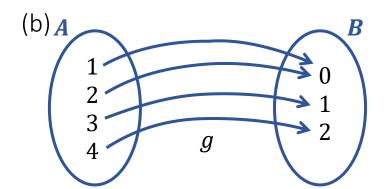
(d)
$$y = \frac{x+2}{x-2}$$
, $para \ x \neq 2$

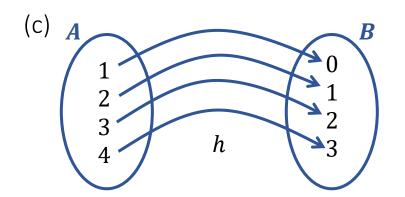
- 2) Dada a função f(x) = 5x + 11, calcule $f^{-1}(6)$.
- 3) Calcule $f^{-1}(2) + f^{-1}(3)$, sabendo que f(x) = 2x 2.

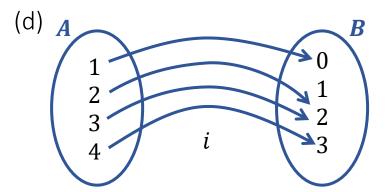
Exercícios

4) Indique quais das funções abaixo é injetora, sobrejetora ou bijetora:





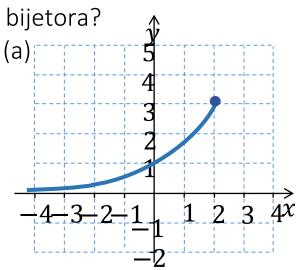


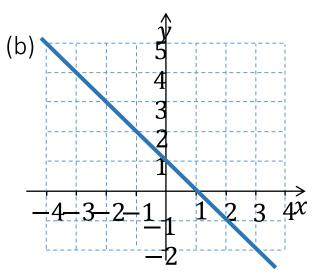


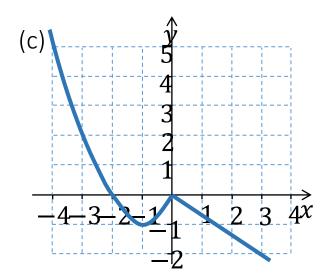
Q Apolo em Mark

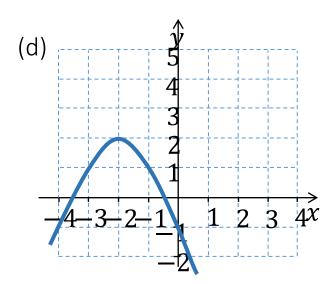
Exercícios

5) Para as funções em reais abaixo representadas, qual é injetora, sobrejetora e









GAMA

Exercícios

- 6) Nas funções seguintes classifique em:
- (I) Injetora,(II) Sobrejetora,(III) Bijetora,(IV) Não é sobrejetora nem injetora.
- a) f: $\mathbb{R} \to \mathbb{R}$ tal que f(x) = 2x + 1
- b) g: $\mathbb{R} \to \mathbb{R}_+$ tal que $g(x) = 1 x^2$
- c) h: $\mathbb{R} \to \mathbb{R}_+$ tal que h(x) = |x 1|
- d) m: $\mathbb{N} \to \mathbb{N}$ tal que m(x) = 3x + 2
- e) p: $\mathbb{R}^* \to \mathbb{R}^*$ tal que $p(x) = \frac{1}{x}$
- f) q: $\mathbb{R} \to \mathbb{R}$ tal que $q(x) = x^3$

Q Apolo em March

Exercícios

7) Nas funções bijetoras abaixo, de \mathbb{R} em \mathbb{R} , obtenha a lei de correspondência que define a função inversa.

(a)
$$g(x) = \frac{4x-1}{3}$$

(b)
$$h(x) = x^3 + 2$$

(c)
$$p(x) = (x-1)^3 + 2$$

$$(d) r(x) = \sqrt[3]{x-1}$$

(e)
$$s(x) = \sqrt[3]{1 - x^3}$$

Respostas

Exercício 1:

a)
$$y^{-1} = x - 3$$

b)
$$y^{-1} = \frac{x}{6}$$

c)
$$y^{-1} = \frac{x+1}{2}$$

d)
$$y^{-1} = \frac{2x^2 + 2}{x - 1}$$

Exercício 2:

$$f^{-1}(6) = -1$$

Exercício 3:

$$f^{-1}(2) + f^{-1}(3) = \frac{9}{2}$$

Exercício 4:

a) Injetora

Exercício 6:

d) (I)

e) (III)

d) Não é injetora nem sobrejetora.

Exercício 5:

a) Injetora

Exercício 7:

a)
$$g^{-1} = \frac{3x+1}{4}$$

b)
$$h^{-1} = \sqrt[3]{x-2}$$

c)
$$p^{-1} = 1 + \sqrt[3]{x-2}$$

d)
$$r^{-1} = x^3 + 1$$

e)
$$s^{-1} = \sqrt[3]{1 - x^3}$$

Não esqueça de procurar os monitores do GAMA para melhor esclarecer suas dúvidas!!

Os horários e locais de monitorias podem se encontrados na página do Projeto:

http://wp.ufpel.edu.br/projetogama/monitorias

Não deixe de visitar e se inscrever em nosso canal no YouTube para ter acesso às nossas vídeo-aulas:

http://l.ufpel.edu.br/YouTubeGAMA

O GAMA possui monitorias de:

- Matemática Elementar, Cálulo 1, Cálculo 1A e Cálculo I (e equivalentes)
 - ☐ ALGA Álgebra Linear e Geometria Analítica (e disciplinas equivalentes)
 - Cálculo A e B, Cálculo 2, Cálculo II e Cálculo 3 (e equivalentes)

Certificado de 20 horas para quem procurar a monitoria do GAMA por pelo menos 15 vezes dentro do mesmo semestre letivo.