UNIVERSIDADE FEDERAL DE PELOTAS

Instituto de Física e Matemática Programa de Pós-Graduação em Modelagem Matemática

Dissertação

Solução das Equações da Cinética Pontual de Nêutrons com e sem Retroalimentação de Temperatura pelo Método da Aproximação Polinomial

Fernanda Tumelero

Fernanda Tumelero

Solução das Equações da Cinética Pontual de Nêutrons com e sem Retroalimentação de Temperatura pelo Método da Aproximação Polinomial

> Dissertação apresentada ao Programa de Pós-Graduação em Modelagem Matemática da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Mestre em Modelagem Matemática

Orientador: Prof. Dr. Claudio Zen Petersen Coorientador: Prof. Dr. Glênio Aguiar Gonçalves Dados de catalogação na fonte: Ubirajara Buddin Cruz – CRB-10/901 Biblioteca de Ciência & Tecnologia - UFPel

T925s Tumelero, Fernanda

Solução das equações da cinética pontual de nêutrons com e sem retroalimentação de temperatura pelo método da aproximação polinomial / Fernanda Tumelero. – 106f. : il. – Dissertação (Mestrado). Programa de Pós-Graduação em Modelagem Matemática. Universidade Federal de Pelotas. Instituto de Física e Matemática. Pelotas, 2015. – Orientador Claudio Zen Petersen ; coorientador Glênio Aguiar Gonçalves.

1.Cinética pontual de nêutrons. 2.Método de aproximação polinomial. 3.Continuação analítica. 4.Efeitos de temperatura. I.Petersen, Claudio Zen. II.Gonçalves, Glênio Aguiar. III.Título.

CDD: 003.3

Banca examinadora:

Prof. Dr. Marco T. M. B. Vilhena (UFRGS)

Prof. Dr. Bardo E. J. Bodmann (UFRGS)

Prof^a. Dr^a. Celina Ceolin (UFSM)

Prof^a. Dr^a. Daniela Buske (UFPel)

RESUMO

TUMELERO, Fernanda. Solução das Equações da Cinética Pontual de Nêutrons com e sem Retroalimentação de Temperatura pelo Método da Aproximação Polinomial. 2015. 106 f. Dissertação (Mestrado em Modelagem Matemática) – Programa de Pós-Graduação em Modelagem Matemática, Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2015.

Nesta dissertação, apresenta-se a solução das Equações da Cinética Pontual de Nêutrons aplicando o Método da Aproximação Polinomial. Para a resolução consideram-se um e seis grupos de precursores de nêutrons atrasados com e sem efeitos de temperatura para reatividades do tipo: constante, rampa, quadrática, senoidal, zig-zag e fonte pulsada. O objetivo deste trabalho é apresentar resultados precisos com baixo custo computacional através de um método de estrutura híbrida relativamente simples. A ideia principal é expandir a densidade de nêutrons, a concentração de precursores de nêutrons atrasados e a temperatura como séries de potências considerando a reatividade como uma função constante em um intervalo de tempo relativamente pequeno, em torno de um ponto ordinário. No primeiro intervalo de tempo aplicam-se as condições iniciais do problema e utiliza-se a continuação analítica para determinar as soluções dos próximos intervalos. Com a aplicação do Método da Aproximação Polinomial, é possível superar o problema de rigidez das equações. Compara-se o método com diferentes tipos de aproximações (linear, quadrática e cúbica). Os resultados obtidos através das simulações numéricas com aproximação linear são comparados aos encontrados na literatura. Desenvolve-se o controle do erro local através do Estimador de Lagrange utilizando o Teorema do Enésimo Resto e realiza-se o cálculo do erro global baseando-se no Teorema da Estabilidade e critério de Lipschitz. Além disso, efetua-se a análise da convergência e inclui-se uma perturbação tanto na reatividade, como na condição inicial, com o intuito de estudar o comportamento do sistema.

Palavras-chave: Cinética Pontual de Nêutrons, Método da Aproximação Polinomial, Continuação Analítica, Efeitos de Temperatura.

ABSTRACT

TUMELERO, Fernanda. Solution of the Neutron Point Kinetics Equations with and without Temperature Feedback by Polynomial Approach Method. 2015. 106 f. Dissertação (Mestrado em Modelagem Matemática) – Programa de Pós-Graduação em Modelagem Matemática, Instituto de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2015.

In this dissertation, we report a solution to solve the Neutron Point Kinetics Equations applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutron precursors with and without temperature feedback effects, and for the following types of reactivity: constant, ramp, guadratic, sinusoidal, zig-zag and pulsed source. The objective of this work is to present accurate results with low computational cost using a simple method of hybrid structure. The main idea is to expand the neutron density, delayed neutron precursor concentrations and temperature as a power series considering the reactivity as an arbitrary function of time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. We compare the method with different types of approaches (linear, quadratic and cubic). The results obtained by numerical simulations with linear approximation are compared with results in the literature. We develop the control of the local error by Lagrange Estimator using the Rest Theorem and we perform the calculation of the global error based on the Stability Estimate and Lipschitz criterion. Furthermore, we perform convergence analysis and a perturbation is included in both reactivity as in the initial condition, in order to study the system behavior.

Keywords: Point Kinetics Equations, Polynomial Approximation Method, Analytic Continuation, Temperature Feedback.

LISTA DE FIGURAS

Figura 1	Densidade de nêutrons para os sistemas crítico, subcrítico e supercrítico.	31
Figura 2 Figura 3	Fluxograma do Método da Aproximação Polinomial	41 46
Figura 4 Figura 5 Figura 6 Figura 7 Figura 8 Figura 9	Densidade de nêutrons para aproximação linear, quadrática e cúbica utilizando PAM com $\rho = -1\beta$ Densidade de nêutrons para reatividade constante com $\rho = -0, 5\beta$. Densidade de nêutrons para reatividade constante com $\rho = 0, 5\beta$. Densidade de nêutrons para reatividade constante com $\rho = 1\beta$ de 0 a 10 segundos Densidade de nêutrons para reatividade rampa de 0 a 8 segundos. Densidade de nêutrons para reatividade rampa de 0 a 8 segundos.	56 57 57 58 60 63
Figura 10 Figura 11	Densidade de nêutrons para reatividade zig-zag de 0 a 2 segundos. Densidade de nêutrons para reatividade senoidal $\rho(t) = 0.0053333 \operatorname{com}(\pi t/50)$	65 67
Figura 12 Figura 13 Figura 14	Densidade de nêutrons para reatividade senoidal $\rho(t) = 0,00073sen(t)$. Densidade de nêutrons para reatividade fonte pulsada.	68 71
Figura 15	tante $\rho = -1\beta$	74 74
Figura 16	Densidade de nêutrons com e sem perturbação na reatividade do tipo quadrática.	75
Figura 17	Densidade de nêutrons com e sem perturbação na reatividade do tipo zig-zag.	75
Figura 18	tipo senoidal com 6 grupos de precursores.	76
Figura 20	tipo fonte pulsada.	76
Figura 21	para reatividade de neutrons com e sem perturbação na condição inicial para reatividade senoidal	79
Figura 22	$0,25\beta$ com retroalimentação de temperatura	79
	$0,5\beta$ com retroalimentação de temperatura	80

Figura 23	Densidade de nêutrons para inserção de reatividade constante $\rho_0 = 0.75\beta$ com retroalimentação de temperatura.	80
Figura 24	Temperatura para inserção de reatividade constante $\rho_0 = 0,25\beta$, $\rho_0 = 0,5\beta$ e $\rho_0 = 0,75\beta$ com retroalimentação de temperatura.	84
Figura 25	Reatividade para inserção de reatividade $\rho_0 = 0,25\beta$, $\rho_0 = 0,5\beta$ e $\rho_0 = 0,75\beta$ com retroalimentação de temperatura	84
Figura 26	Densidade de nêutrons para inserção de reatividade constante $\rho_0 = 1\beta$ com retroalimentação de temperatura	87
Figura 27	Temperatura para inserção de reatividade constante ($\rho_0 = 1\beta$, $\rho_0 = 1$	07
Figura 28	$1, 5\beta \in p_0 = 2\beta$) contretroalmentação de temperatura. \dots \dots \dots \dots \square Densidade de nêutrons para inserção de reatividade rampa	92
Figura 29	$ \rho_0(t,T) = 0, 1\beta t $ com retroalimentação de temperatura	93
Figura 30	retroalimentação de temperatura	94
Figura 31	tante $\rho_0 = 0,25\beta$ com retroalimentação de temperatura Densidade de nêutrons com e sem perturbação na reatividade cons-	96
Figura 32	tante $\rho_0 = 1\beta$ com retroalimentação de temperatura	97
	rampa $\rho_0(t,T) = 0, 1\beta t.$	97
Figura 33	Resposta da temperatura com e sem perturbação na realividade constante $\rho_0 = 0,25\beta$ com retroalimentação de temperatura.	98
Figura 34	Resposta da temperatura com e sem perturbação na reatividade constante $\rho_0 = 1\beta$ com retroalimentação de temperatura.	98
Figura 35	Resposta da temperatura com e sem perturbação na reatividade rampa $\rho_0(t,T) = 0.1\beta t$.	99
Figura 36	Densidade de nêutrons com e sem perturbação na condição inicial	100
Figura 37	Densidade de nêutrons com e sem perturbação na condição inicial para reatividade rampa com retroalimentação de temperatura.	100

LISTA DE TABELAS

Tabela 1	Unidades e reatividade correspondente	32
Tabela 2 Tabela 3 Tabela 4 Tabela 5	Parâmetros cinéticos para um reator térmico I com $\Lambda = 5 \cdot 10^{-4}s.$. Parâmetros cinéticos para um reator térmico II com $\Lambda = 2 \cdot 10^{-5}s.$ Parâmetros cinéticos para um reator com $\Lambda = 3 \cdot 10^{-5}s.$. Parâmetros cinéticos para um reator térmico III com $\Lambda = 5 \cdot 10^{-5}s.$	52 52 52 52
Tabela 6	Densidade de nêutrons em cm^{-3} e tempo computacional em <i>s</i> para inserção de reatividade constante $\rho = -1\beta \operatorname{com} \Delta t = 0,001s$ fixo e variando as aproximações.	55
Tabela 7	Densidade de nêutrons em cm^{-3} e tempo computacional em <i>s</i> para inserção de reatividade constante $a = -1\beta$ com Δt adaptativo	55
Tabela 8	Densidade de nêutrons em cm^{-3} para inserção de reatividade cons- tante	56
Tabela 9 Tabela 10	Tempo computacional para inserção de reatividade constante.	58
Tabela 11	com diferentes passos de tempo para o caso $\rho = -1\beta$	60
	$\rho = -1\beta$	60
	rampa com $\rho = 0, 1\beta t$.	61
Tabela 13 Tabela 14	Erros relativos entre as aproximações cúbica, quadrática e linear	01
Tabela 15	com diferentes passos de tempo para a reatividade do tipo rampa Erro global e maior erro local variando Δt para o caso de reatividade	61
Tabela 16	rampa	61 63
Tabela 17	Erros relativos entre as aproximações cúbica, quadrática e li- near com diferentes passos de tempo para o caso de reatividade	
Tabela 18	quadrática	63
Tabela 19	quadrática	63 65
Tabela 20 Tabela 21	Tempo computacional para inserção de reatividade zig-zag Erros relativos entre as aproximações cúbica, quadrática e linear	65
Tabela 22	com diferentes passos de tempo para a reatividade zig-zag. \ldots Erro global e maior erro local variando Δt para o caso de reatividade	67
	zig-zag	67

Tabela 23	Densidade de nêutrons em cm^{-3} para inserção de reatividade se-	68
Tabela 24	Densidade de nêutrons em cm^{-3} para inserção de reatividade se-	00
Table of	noidal com sels grupos de precursores de neutrons atrasados.	69
Tabela 25	Iempo computacional para inserção de reatividade senoidal.	69
	com diferentes passos de tempo para o caso de reatividade senoidal	
	com seis grupos de precursores de nêutrons atrasados	71
Tabela 27	Erro global e maior erro local variando Δt para o caso de reatividade	
Tabala 00	senoidal com seis grupos de precursores de nêutrons atrasados.	71
Tabela 28	pulsada	72
Tabela 29	Tempo computacional para inserção de reatividade fonte pulsada.	72
Tabela 30	Erros relativos entre as aproximações cúbica, guadrática e linear	
	com diferentes passos de tempo para o caso de reatividade fonte	
	pulsada	72
Tabela 31	Variância entre as soluções perturbadas e não-perturbadas.	77
Tabela 32	Erros relativos entre as soluções não-perturbadas e perturbadas.	77
Tabela 33	Densidade de nêutrons em cm^{-3} para inserção de reatividades	
	constantes subcríticas.	81
Tabela 34	Tempo Computacional para inserção de reatividade constante	82
Tabela 35	Temperatura em K para inserção de reatividade constante	83
Tabela 36	Valor da reatividade (\$) para inserção de reatividade constante	85
Tabela 37	Densidade de nêutrons em cm^{-3} para inserção de reatividade cons-	
	tante ($ ho_0 = 1eta$ e $ ho_0 = 1, 5eta$) com retroalimentação de temperatura.	88
Tabela 38	Densidade de nêutrons em cm^{-3} para inserção de reatividade cons-	
	tante ($\rho_0 = 2\beta$) com retroalimentação de temperatura	89
Tabela 39	Tempo computacional para inserção de reatividade constante ($ ho_0=$	
	1 β , $\rho_0 = 1, 5\beta$ e $\rho_0 = 2\beta$) com retroalimentação de temperatura	91
Tabela 40	Erros relativos entre as aproximações cúbica, quadrática e linear	
	com diferentes passos de tempo para o caso de inserção de reativi-	
	dade constante $\rho_0 = 1\beta$ com retroalimentação de temperatura.	92
Tabela 41	Densidade de neutrons em cm^{-3} para inserção de reatividade	~ ~
T 1 (0	rampa $\rho_0(t,T) = 0, 1\beta t$ com retroalimentação de temperatura.	93
Tabela 42	Tempo computacional para inserção de reatividade rampa com	~ 4
Tabala 10		94
Tabela 43	Erros relativos entre as aproximações cubica, quadratica e linear	
	com unerentes passos de tempo para o caso de inserção de reativi-	00
Tabola 11	Variônaia optro as coluções porturbadas o pão porturbadas.	90
Tabola 44	Fros rolativos optro as soluções per urbadas e nacturbadas o porturbadas	90
iaucia 40		33

LISTA DE ABREVIATURAS E SIGLAS

- AL Aproximação Linear
- AQ Aproximação Quadrática
- AC Aproximação Cúbica
- BEFD Backward Euler Finite Difference
- EPCA Enhanced Piecewise Constant Approximation
- ECPN Equações da Cinética Pontual de Nêutrons
- NAM New Analytic Method
- *PAM* Método da Aproximação Polinomial

LISTA DE SÍMBOLOS

V	Volume arbitrário, cm^3
S	Área de superfície do volume V , cm^2
E	Energia de nêutrons, MeV
r	Vetor posição espacial, cm
$n(\mathbf{r}, E, t)$	Densidade de nêutrons na posição r, com energia E e no tempo t, cm^{-3}
$\Sigma(\mathbf{r}, E, t)$	Seção de choque macroscópica na posição r, com energia E e no tempo t,cm^{-1}
v(E)	Velocidade do nêutron com energia E , cm/s
$F(\mathbf{r}, E, t)$	Densidade da taxa de interação na posição r, com energia E e no tempo t
$\Phi(\mathbf{r},E,t)$	Fluxo escalar de nêutrons na posição r , com energia E e no tempo $t,cm^{-2}s^{-1}$
$\Phi({\bf r},E',t)$	Fluxo escalar de nêutrons na posição r, com energia E^\prime e no tempo $t,cm^{-2}s^{-1}$
$\mathbf{J}(\mathbf{r}, E, t)$	Densidade de corrente de nêutrons na posição r , com energia E e no tempo $t,cm^{-2}s^{-1}$
$D(\mathbf{r}, E, t)$	Coeficiente de Difusão na posição r , com energia E e no tempo $t, \ cm$
$\Sigma_{tr}(\mathbf{r}, E, t)$	Seção de choque macroscópica de transporte na posição r , com energia E e no tempo t , cm^{-1}
$\Sigma_a(\mathbf{r}, E, t)$	Seção de choque macroscópica de absorção na posição r, com energia E e no tempo t,cm^{-1}
$Q(\mathbf{r}, E, t)$	Fonte de nêutrons na posição r , com energia E e no tempo $t,$ $cm^{-3}s^{-1}$
$\chi(E)$	Probabilidade que um nêutron pronto apresente energia entre E e $E + dE$ como resultado de uma fissão
ν	Número médio de nêutrons produzidos na fissão
$\Sigma_f(\mathbf{r}, E', t)$	Seção de choque macroscópica de fissão na posição r, com energia E^\prime e no tempo t,cm^{-1}

$Q_{ext}(\mathbf{r}, E, t)$	Fonte externa de nêutrons na posição r , com energia E e no tempo $t, cm^{-3}s^{-1}$
$\Sigma_s(\mathbf{r}, E, t)$	Seção de choque macroscópica de espalhamento na posição r, com energia E e no tempo t,cm^{-1}
$\Sigma_s(\mathbf{r}, E' \to E, t)$	Seção de choque macroscópica de espalhamento na posição r , passando da energia E' para E e no tempo t , cm^{-1}
$\Sigma_T(\mathbf{r}, E, t)$	Seção de choque macroscópica total na posição r, com energia E e no tempo t,cm^{-1}
eta	Fração de nêutrons atrasados
eta_i	Fração de nêutrons atrasados para o grupo i de precursores
λ	Constante de decaimento, s^{-1}
λ_i	Constante de decaimento para o grupo i de precursores, s^{-1}
$C_i(\mathbf{r},t)$	Concentração de precursores de nêutrons atrasados para o grupo i de precursores na posição ${\bf r}$ e no tempo t, cm^{-3}
$C_i(t)$	Concentração de precursores de nêutrons atrasados para o grupo i de precursores no tempo t, cm^{-3}
$C_i(0)$	Concentração de precursores de nêutrons atrasados para o grupo i de precursores no tempo $t=0s, cm^{-3}$
$f_i(E)$	Probabilidade de um nêutron atrasado apresentar energia entre E e $E + dE$ como resultado do decaimento do i-ésimo emissor
$\Phi(\mathbf{r}, E, t_1)$	Fluxo escalar de nêutrons na posição r , com energia E e no tempo $t_1,cm^{-2}s^{-1}$
$\Phi(\mathbf{r}, E, t_2)$	Fluxo escalar de nêutrons na posição r , com energia E e no tempo $t_1, \ cm^{-2}s^{-1}$
$\Psi_0(\mathbf{r}, E)$	Função forma na posição r , com energia E e no tempo $t = 0$
$\Psi(\mathbf{r},E,t)$	Função forma na posição r , com energia E e no tempo t
k_{eff}	Coeficiente de multiplicação efetivo
n(t)	Densidade de nêutrons no tempo t, cm^{-3}
n(0)	Densidade de nêutrons no tempo $t = 0s, cm^{-3}$
$n(t_1)$	Densidade de nêutrons no tempo t_1, cm^{-3}
$n(t_2)$	Densidade de nêutrons no tempo t_2, cm^{-3}
t	Tempo, s
Λ	Tempo médio de geração entre o nascimento do nêutron e posterior absorção, <i>s</i>
ho(t)	Reatividade no instante t
P(t)	Potência no instante t, MW
$ ho_0$	Reatividade no instante $t = 0$

$\rho(t,T)$	Reatividade no instante t e na temperatura T
T(t)	Temperatura no instante t , K
T(0)	Temperatura no instante $t = 0, K$
Н	Constante de proporcionalidade entre temperatura e potência, $rac{K}{MWs}$
α	Coeficiente de temperatura da reatividade, $1/K$
Ι	Intervalo de tempo, s
I_0	Primeiro intervalo de tempo, s
I_{r+1}	Intervalo $r+1$ de tempo, s
t_0	Ponto ordinário do intervalo I, s
a_r	Coeficiente da expansão da densidade de nêutrons em série de potências
$b_{i,r}$	Coeficiente da expansão da concentração do grupo <i>i</i> de precursores de nêutrons atrasados em série de potências
c_r	Coeficiente da expansão da temperatura em série de potências
r	Ordem da expansão do Método de Aproximação Polinomial
$T_r(t)$	Enésimo Polinômio de Taylor
$R_r(t)$	Enésimo Resto da Série de Taylor de $f(t)$
M	Estimador de Lagrange
p	Ordem do método numérico
C	Constante que depende das derivadas da função que define a equação diferencial
e_l	Erro local
e_s	Erro estimado
v	Solução exata
u	Solução proveniente do método
l	Constante de Lipschitz
h	Passo de tempo
d	Distância entre a solução exata e a proveniente do método
n	Número de iterações
e_g	Erro global
B_R	Disco de convergência
ξ	Precisão prescrita
Δt	Passo de tempo, s
R	Raio de Convergência
δ	Perturbação

τConstante que controla a ordem de grandeza da perturbaçãoγPerturbação na condição inicial, cm^{-3}

SUMÁRIO

1 INTRODUÇÃO 16
2 CINÉTICA DE REATORES NUCLEARES 20 2.1 Importância dos nêutrons atrasados 25 2.2 As Equações da Cinética Pontual de Nêutrons 26 2.3 Equações da Cinética Pontual de Nêutrons com Retroalimentação de Temperatura 34
3 METODOLOGIA DE SOLUÇÃO DAS EQUAÇÕES DA CINÉTICA PON-
IUAL DE NEUTRONS 30 2.1 0 Métada da Anrayimação Delinamial 30
3.2.1 Erro Local
3.2.3 Elfo Giobal
3.2.4 Analise de Convergencia
4 RESULTADOS
4.1 Inserção de Reatividade Constante
4.2 Inserção de Reatividade Rampa
4.3 Inserção de Reatividade Quadrática
4.4 Inserção de Reatividade Zig-Zag
4.5 Inserção de Reatividade Senoidal
4.6 Inserção de Reatividade Fonte Pulsada
4.7 Perturbação na Reatividade 70
4.8 Perturbação na Condição Inicial
4.9 Inserção de Reatividade Constante com Retroalimentação de Tempe-
ratura
4.10 Inserção de Reatividade Rampa com Retroalimentação de Temperatura 90
4.11 Perturbação na Reatividade Dependente do Tempo e Temperatura . 90 4.12 Perturbação na Condição Inicial para os Casos com
Retroalimentação de Temperatura
5 CONCLUSÕES E PERSPECTIVAS FUTURAS
REFERÊNCIAS

1 INTRODUÇÃO

A energia nuclear tem um espaço importante na matriz energética mundial devido a crescente demanda de energia e as inúmeras vantagens proporcionadas. Dentre as mais relevantes, vale destacar a sua aplicação na área da medicina e indústria com a produção de radioisótopos por reatores de pesquisa. Além disso, os reatores nucleares de potência, que geram energia elétrica, utilizam pouco material para produzir grandes quantidades de energia e atendem aos objetivos do Protocolo de Kyoto por não emitir dióxido de carbono (CO₂), provocando pouco ou quase nenhum impacto sobre a biosfera.

Para suprir este aumento do consumo de energia elétrica, evitando impactos ambientais causados pelo emprego de combustíveis fósseis, é de suma importância promover estudos no campo da física de reatores nucleares. Uma das questões imprescindíveis é dispor de segurança e controle dos reatores. Para tanto, necessita-se compreender todos os parâmetros que envolvem as reações no núcleo do reator para então constituir um balanço entre as perdas e produções de nêutrons.

A Equação de Transporte de Boltzmann dependente do tempo que leva em conta além dos nêutrons prontos também os nêutrons atrasados (DUDERSTADT; HAMIL-TON, 1976) (KEEPIN; COX, 1960) define de forma íntegra a população de nêutrons, mas possui o obstáculo de ser uma equação de difícil resolução devido ao número de variáveis independentes que definem o problema. Uma aproximação usada é a Equação de Difusão de Nêutrons que é adequada quando ocorrem mudanças espaciais e temporais na distribuição de nêutrons, porém possui certa complexidade na resolução com tratamento analítico puro. As Equações da Cinética Pontual são modelos aproximativos mais simples que determinam o comportamento da amplitude do fluxo de nêutrons com o tempo, admitindo total separabilidade no tempo e espaço, na qual a forma espacial do fluxo de nêutrons é conhecida, tornando essas equações dependentes unicamente do tempo (PETERSEN, 2011).

As Equações da Cinética Pontual de Nêutrons são de grande importância na física de reatores, pois possibilitam uma previsão da potência do reator em tempo real, fornecendo informações sobre a dinâmica do reator quando, por exemplo, ocorre o ajuste

17

das barras de controle no núcleo do reator durante a partida ou desligamento. Essas equações levam em conta nêutrons prontos emitidos imediatamente após a fissão (na ordem de 10^{-4} a 10^{-5} segundos¹) e nêutrons atrasados provenientes do decaimento radioativo dos produtos de fissão (na ordem de 10^{-1} a 10 segundos¹). Isso confere a característica de rigidez (*stiffness*) para as equações, tornando-as de difícil resolução e exigindo, ao resolver numericamente, incrementos bastante pequenos no passo de tempo.

Deste modo, muitos trabalhos vêm sendo publicados sobre as Equações da Cinética Pontual de Nêutrons, através de abordagens analíticas, numéricas e híbridas. Dentre os inúmeros estudos são citados alguns trabalhos: (CHAO; ATTARDT, 1985) desenvolveram o Método do Confinamento da Rigidez que desacopla a rigidez das equações diferenciais para precursores e confina para uma de nêutrons prontos que pode ser resolvida analiticamente; (VILHENA, 1988) realiza a inversão numérica das equações matriciais de ordem elevada, juntamente com o método de expansão em série de Taylor; o Método Generalizado de Runge-Kutta de Quarta Ordem foi utilizado por (SANCHEZ, 1989) para solucionar o problema de rigidez por ser um método Aestável; (ABOANBER; NAHLA, 2002a) (ABOANBER; NAHLA, 2002b) elaboraram o Método da Inversão Analítica baseado nas aproximações de Padé com um tratamento explícito das raízes da fórmula de Inhour e a inversão analítica aplicada permite a inversão rápida dos polinômios da matriz de Cinética Pontual considerando efeitos de retroalimentação de temperatura; o Algoritmo CORE de (QUINTERO-LEYVA, 2008) usa transformada de Laplace e Teorema de expansão de Heaviside com as raízes da equação de Inhour; em (NAHLA, 2008) apresenta-se o Método Exponencial Analítico Generalizado que baseia-se nos autovalores e autovetores da matriz dos coeficientes; no Método Numérico Integral de (LI et al., 2009) utilizando a Melhor Função Base (BBF) é feita a integração exata nas equações para a densidade de nêutrons em cada passo de tempo, e a rigidez é superada pela formulação totalmente implícita; em (TASHAKOR; JAHANFARNIA; HASHEMI-TILEHNOEE, 2010) é feita uma solução numérica que considera efeitos de *feedback* de temperatura com um grupo de precursores de nêutrons atrasados; (NAHLA, 2011) apresenta o método New Analytic Method (NAM) baseado nas raízes da Equação de Inhour usando o Método da Eliminação Gaussiana para resolver as Equações da Cinética Pontual de Nêutrons com reatividades do tipo constante, rampa e retroalimentação de temperatura; o Método da Decomposição de (PETERSEN et al., 2011a) para reatividade dependente do tempo é um método analítico que separa a matriz dos coeficientes em duas, uma com a dependência temporal e a outra com as constantes, transformando as equações em um conjunto de problemas recursivos semelhantes as equações com reatividade constante; (ABOANBER; NAHLA; AL-MALKI, 2012) utilizam o método Analytical Per-

¹Escalas de tempo para um reator térmico.

turbation para um grupo de precursores de nêutrons atrasados com retroalimentação de temperatura baseado em aproximações com pequenos parâmetros para a densidade de nêutrons; em (GANAPOL, 2009) (GANAPOL; PICCA, 2010) (GANAPOL et al., 2012) apresenta-se a Técnica de Alta Precisão baseada na aproximação constante por partes (KINARD; ALLEN, 2004) e a alta precisão é alcançada pela introdução de uma submalha para a avaliação numérica das integrais, corrigindo o termo fonte; (GA-NAPOL, 2013) realiza um procedimento numérico que usa o método de Euler implícito e o esquema de Diferenças Finitas; (PICCA; FURFARO; GANAPOL, 2013) desenvolvem a Aproximação Constante por Partes Melhorado (EPCA) baseada em (KINARD; ALLEN, 2004), mas com a vantagem que possibilita, através de um ciclo iterativo, a correção do pressuposto básico do método PCA; no Método ITS2 de (SILVA et al., 2014) aplicou-se o procedimento semelhante à (PETERSEN, 2011), mas a solução é não progressiva no tempo, pode ser determinada sem a dependência de tempos anteriores.

No presente trabalho, obtém-se a solução das Equações da Cinética Pontual de Nêutrons utilizando o Método da Aproximação Polinomial em conjunto com a continuação analítica. Consideram-se um e seis grupos de precursores de nêutrons atrasados com e sem efeitos de retroalimentação de temperatura para reatividades do tipo: constante, rampa, quadrática, zig-zag, senoidal e fonte pulsada. O método consiste em expandir as variáveis em séries de potências, procurando uma solução em torno de um ponto ordinário t_0 . Desta maneira, encontra-se a relação de recorrência para geração dos coeficientes da série. Considerando a reatividade como uma função constante em um pequeno intervalo de tempo, aplica-se a condição inicial no primeiro intervalo e a continuação analítica para os próximos, ou seja, a solução encontrada em cada intervalo de tempo é a condição inicial para o seguinte. No decorrer desse trabalho, determina-se o erro local através do estimador de Lagrange utilizando o Teorema do Enésimo Resto e realiza-se o controle do erro global baseando-se no critério de Lipschitz e no Teorema da Estabilidade. Além disso, efetua-se a análise da convergência e inclui-se uma perturbação tanto na reatividade, como na condição inicial, com o intuito de estudar o comportamento do sistema. Neste contexto, vale destacar que recentemente (CEOLIN, 2014) apresenta as soluções baseadas na expansão em série de Taylor da Equação de Difusão de Nêutrons estacionária em geometria unidimensional cartesiana multi-região, considerando o modelo de multigrupos de energia, e das Equações Cinéticas de Difusão incluindo os nêutrons atrasados.

A presente dissertação está organizada da seguinte maneira: no capítulo 2, apresentam-se conceitos de física de reatores juntamente com a derivação das Equações da Cinética Pontual de Nêutrons, a ser estudada nos capítulos posteriores, através da Equação de Difusão de Nêutrons. No capítulo 3, mostra-se o desenvolvimento do Método da Aproximação Polinomial aplicado nas Equações da

Cinética Pontual de Nêutrons com e sem efeitos de temperatura, controle do erro local e global, passo adaptativo de tempo, análise de convergência e perturbação. No capítulo 4, expõem-se e analisam-se os resultados obtidos com simulações numéricas e comparam-se com resultados disponíveis na literatura, para um e seis grupos de precursores com e sem efeitos de retroalimentação de temperatura e reatividades do tipo: constante, rampa, quadrático, zig-zag, senoidal e fonte pulsada. Além disso, apresentam-se resultados incluindo uma perturbação na condição inicial e na reatividade. No capítulo 5, apresentam-se as conclusões e perspectivas para trabalhos futuros.

2 CINÉTICA DE REATORES NUCLEARES

Esta seção trata-se de uma análise detalhada sobre a distribuição de nêutrons no reator, identificando como as várias reações nucleares acontecem. Os nêutrons podem penetrar/interagir em qualquer núcleo por serem eletricamente neutros, sofrendo vários tipos de reações dentro do reator nuclear que envolvem perdas e produções, compondo um balanço. Desta maneira, é construída a equação de balanço de nêutrons, considerando efeitos de fuga e isótopos fissionáveis, com a finalidade de descrever fenômenos de criticalidade em sistemas multiplicativos de dimensões finitas (LEWIS, 2008).

Considerando um volume arbitrário V de área de superfície S localizado no interior de um reator, deve-se examiná-lo para determinar como a população de nêutrons varia. Para tanto, é necessário conhecer a velocidade com que os nêutrons se movem e suas interações com outros núcleos presentes no reator. Primeiramente, utilizando a teoria estatística na qual a média dos valores são calculados, define-se a densidade de nêutrons para descrever a distribuição dos nêutrons no reator:

Número esperado de nêutrons
em
$$d^3 \mathbf{r}$$
 na posição \mathbf{r} , em dE
com energia E e no instante t = $n(\mathbf{r}, E, t)d^3\mathbf{r}$. (1)

A representação estatística completa da densidade exige sete variáveis, três para as coordenadas espaciais, representadas pelo vetor **r** (indicando a posição), duas angulares (direção do movimento), uma para a energia cinética (velocidade) e uma temporal (instante de observação).

Cabe ressaltar, que quando os nêutrons são produzidos, possuem energia cinética elevada (aproximadamente 1 até 10 *MeV*) e, devido a esse fato, são definidos como nêutrons rápidos. Através do processo de moderação, no qual cedem energia ao meio devido as colisões, atingem energias intermediárias (em torno de 1 até 1000 *keV*), passando a serem chamados de nêutrons intermediários. Quando alcançam energias baixas próximas a energia térmica (aproximadamente 0,025 *eV*), denominam-se nêutrons térmicos (DUDERSTADT; HAMILTON, 1976).

Para determinar a probabilidade na qual um nêutron vai atingir um núcleo e causar uma reação nuclear utiliza-se o conceito de seção de choque macroscópica (Σ), que é a área de alvo total disponível de todos os núcleos contidos em uma unidade de volume, e a velocidade de nêutrons (v), ou seja:

$$\begin{bmatrix} Frequência \\ da interação \end{bmatrix} = v(E)\Sigma(\mathbf{r}, E, t).$$
(2)

Multiplicando a frequência da interação pela densidade de nêutrons pode-se definir a densidade da taxa de interação como:

$$\begin{bmatrix} \text{Densidade da} \\ \text{taxa de interação} \end{bmatrix} = F(\mathbf{r}, E, t)d^3\mathbf{r}dE = v(E)\Sigma(\mathbf{r}, E, t)n(\mathbf{r}, E, t)d^3\mathbf{r}dE.$$
 (3)

Na teoria da difusão, outra grandeza importante é o fluxo escalar, que é obtido pela multiplicação da densidade de nêutrons pela sua velocidade, presente na equação acima. Então:

$$\begin{bmatrix} Fluxo escalar \\ de nêutrons \end{bmatrix} = \Phi(\mathbf{r}, E, t) = v(E)n(\mathbf{r}, E, t).$$
(4)

Por estimar a taxa na qual vários tipos de reações ocorrem entre nêutrons e núcleos por unidade de volume, através da multiplicação do fluxo pela seção de choque macroscópica correspondente, é mais adequado utilizar o fluxo de nêutrons. Vale destacar que neste presente trabalho, admite-se que o fluxo escalar de nêutrons leva em consideração nêutrons em todas as direções. Portanto, pode-se reescrever a Equação (3) como:

$$F(\mathbf{r}, E, t)d^{3}\mathbf{r}dE = \Sigma(\mathbf{r}, E, t)\Phi(\mathbf{r}, E, t)d^{3}\mathbf{r}dE.$$
(5)

Diante disso, constrói-se uma equação para o fluxo de nêutrons utilizando a ideia de que a variação do número de nêutrons com o passar do tempo, no volume definido, vai ser determinada pela diferença entre a produção e a perda de nêutrons por volume unitário:

$$\begin{bmatrix} \text{Taxa de variação} \\ \text{do número de} \\ \text{nêutrons em } V \end{bmatrix} = \begin{bmatrix} \text{Produção} \\ \text{em } V \end{bmatrix} - \begin{bmatrix} \text{Perdas} \\ \text{em } V \end{bmatrix}.$$
(6)

A produção no volume V é constituída por fontes de nêutrons (por exemplo a

fissão), nêutrons que entram pela superfície S do volume V e nêutrons de diferentes energias que sofrem colisões de espalhamento para dentro do intervalo de energia de interesse. Já as perdas são advindas da saída dos nêutrons através da superfície S do volume V e de colisões, que removem um nêutron através da interação de absorção e através do espalhamento de nêutrons com energia E para outras energias. A contribuição sobre toda a superfície S comumente é tratada em apenas um termo, denotado perda por fuga, no qual são computados os nêutrons saindo subtraindo os que estão entrando pela superfície (DUDERSTADT; HAMILTON, 1976).

Diante desses conceitos, a equação de balanço de nêutrons deve ter a forma:

$$\begin{bmatrix} \text{Taxa de variação} \\ \text{do número de} \\ \text{nêutrons em } V \end{bmatrix} = -\begin{bmatrix} \text{Perda por} \\ \text{fuga} \end{bmatrix} - \begin{bmatrix} \text{Perda por} \\ \text{absorção} \end{bmatrix} + \begin{bmatrix} \text{Fonte de} \\ \text{nêutrons} \end{bmatrix}$$
$$-\begin{bmatrix} \text{Espalhamento de} \\ \text{nêutrons para} \\ \text{fora do intervalo} \\ \text{de energia} \\ E \in E + dE \end{bmatrix} + \begin{bmatrix} \text{Espalhamento de} \\ \text{nêutrons para} \\ \text{dentro do intervalo} \\ \text{de energia} \\ E \in E + dE \end{bmatrix} .$$
(7)

Portanto, a taxa de variação do número de nêutrons em *V* deve representar o número de nêutrons na posição **r**, no instante *t* e com energia no intervalo *E* e E + dE. Essa variação é nula no caso estacionário (sistema crítico). Assim, integrando essa quantidade no volume definido, obtém-se:

$$\begin{bmatrix} \text{Taxa de variação} \\ \text{do número de} \\ \text{nêutrons em } V \end{bmatrix} = \frac{\partial}{\partial t} \left[\int_{V} n(\mathbf{r}, E, t) d^{3}\mathbf{r} \right] dE.$$
(8)

Utilizando a Equação (4), pode-se reescrever a taxa de variação do número de nêutrons em V como:

$$\frac{\partial}{\partial t} \left[\int_{V} n(\mathbf{r}, E, t) d^{3}\mathbf{r} \right] dE = \frac{\partial}{\partial t} \left[\int_{V} \frac{1}{v(E)} \Phi(\mathbf{r}, E, t) d^{3}\mathbf{r} \right] dE = \left[\int_{V} \frac{1}{v(E)} \frac{\partial \Phi(\mathbf{r}, E, t)}{\partial t} d^{3}\mathbf{r} \right] dE,$$
(9)

onde v(E) é a velocidade de nêutrons e $\Phi(\mathbf{r}, E, t)$ é o fluxo escalar de nêutrons.

A fuga, como mencionado anteriormente, representa a taxa de nêutrons difundindo, ou seja, entrando ou saindo de um pequeno volume arbitrário sem a ocorrência de interações, na posição **r**, no instante *t* e energia no intervalo *E* e E + dE. Sendo $\mathbf{J}(\mathbf{r}, E, t)$ a densidade de corrente de nêutrons que está relacionada a um elemento de superfície, logo $\nabla \cdot \mathbf{J}(\mathbf{r}, E, t)$ relaciona-se ao seu volume. Para obter todos os termos da equação de balanço integradas sobre o volume V utiliza-se o Teorema de Gauss, obtendo-se:

$$\begin{bmatrix} \text{Perda por} \\ \text{fuga} \end{bmatrix} = \begin{bmatrix} \int_{S} \mathbf{J}(\mathbf{r}, E, t) dS \end{bmatrix} dE = \begin{bmatrix} \int_{V} \nabla \cdot \mathbf{J}(\mathbf{r}, E, t) d^{3}\mathbf{r} \end{bmatrix} dE.$$
(10)

Para relacionar a densidade de corrente com o gradiente espacial do fluxo escalar de nêutrons, emprega-se a aproximação estabelecida pela Lei de Fick. Apesar dessa teoria se tratar de uma aproximação, apresenta resultados satisfatórios em cálculos globais em física de reatores. Sua origem, na realidade, se deu para solucionar o problema da difusão química, onde mostra-se que um soluto sofre difusão de uma região de maior concentração para uma região de menor concentração. Pode-se dizer também que a taxa do fluxo do soluto é proporcional ao gradiente da concentração do soluto em sentido oposto (LAMARSH, 1966). Desta maneira, assume-se que os nêutrons tem um comportamento similar: se o fluxo de nêutrons é maior em uma parte do reator nuclear, ocorre difusão para uma região de menor densidade. Uma das aproximações feitas para se chegar ao modelo de difusão é considerar a taxa de variação da densidade de corrente muito mais lenta que a frequência de colisão, ou seja, $\frac{1}{J} \frac{dJ}{dt} << v\Sigma$. Então, considerando a Lei de Fick:

$$\mathbf{J}(\mathbf{r}, E, t) = -D(\mathbf{r}, E, t)\nabla\Phi(\mathbf{r}, E, t),$$
(11)

onde $D(\mathbf{r}, E, t)$ é o coeficiente de Difusão, que pode ser representado pela seguinte relação:

$$D(\mathbf{r}, E, t) = \frac{1}{3\Sigma_{tr}(\mathbf{r}, E, t)},$$
(12)

onde $\Sigma_{tr}(\mathbf{r}, E, t)$ é a seção de choque macroscópica de transporte, que pode ser definida como $\Sigma_{tr} = \Sigma_T - \bar{\mu}\Sigma_s$, onde $\bar{\mu}$ é o cosseno do ângulo médio de espalhamento. Então, a seção de choque macroscópica de transporte se reduz à seção de choque total, pois para espalhamento isotrópico $\bar{\mu} = 0$. Deste modo, obtém-se:

$$\begin{bmatrix} \operatorname{Perda por} \\ \operatorname{fuga} \end{bmatrix} = -\left[\int_{V} \nabla \cdot D(\mathbf{r}, E, t) \nabla \Phi(\mathbf{r}, E, t) d^{3}\mathbf{r} \right] dE.$$
(13)

Já a absorção é definida como a taxa de nêutrons absorvidos na posição r, tempo t e energia entre E e E + dE em um elemento de volume V:

$$\begin{bmatrix} \text{Perda por} \\ \text{absorção} \end{bmatrix} = \left[\int_{V} \Sigma_{a}(\mathbf{r}, E, t) \Phi(\mathbf{r}, E, t) d^{3}\mathbf{r} \right] dE,$$
(14)

onde $\Sigma_a(\mathbf{r}, E, t)$ é a seção de choque macroscópica de absorção, que representa a probabilidade por unidade de percurso para um nêutron sofrer a reação de absorção.

Define-se a fonte de nêutrons como a taxa de nêutrons produzidos na posição **r**, tempo *t* e energia entre *E* e E + dE.

$$\begin{bmatrix} \text{Fonte de} \\ \text{nêutrons} \end{bmatrix} = \left[\int_{V} Q(\mathbf{r}, E, t) d^{3}\mathbf{r} \right] dE.$$
(15)

A fonte de nêutrons também pode ser escrita separando-se em dois termos, um que representa as fissões e outro, uma fonte externa:

$$Q(\mathbf{r}, E, t) = \chi(E) \int \nu \Sigma_f(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' + Q_{ext}(\mathbf{r}, E, t),$$
(16)

onde $\nu \Sigma_f(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t)$ é a taxa de produção de nêutrons por fissão, $\chi(E)$ é a probabilidade que um nêutron pronto apresente energia entre E e E + dE como resultado de uma fissão, ν é o número médio de nêutrons produzidos por fissão, $\Sigma_f(\mathbf{r}, E', t)$ é a sessão de choque macroscópica de fissão e $Q_{ext}(\mathbf{r}, E, t)$ é a fonte externa.

Como o espalhamento é uma colisão mecânica do nêutron com o núcleo, sua energia pode mudar, ou seja, o nêutron pode ser removido do seu intervalo de energia ou ainda, espalhado para o mesmo intervalo (LAMARSH, 1966). Então, representa-se o espalhamento de nêutrons para fora do intervalo de energia E e E + dE como a taxa de nêutrons espalhados para energias diferentes da quantidade E e E + dE na posição **r**, instante *t* e energia entre E e E + dE.

$$\begin{bmatrix} \text{Espalhamento de} \\ \text{nêutrons para} \\ \text{fora do intervalo} \\ \text{de energia} \\ E \text{ e } E + dE \end{bmatrix} = \begin{bmatrix} \int_{V} \Sigma_{s}(\mathbf{r}, E, t) \Phi(\mathbf{r}, E, t) d^{3}\mathbf{r} \end{bmatrix} dE, \quad (17)$$

onde $\Sigma_s(\mathbf{r}, E, t)$ é a seção de choque macroscópica de espalhamento, que representa a probabilidade por unidade de percurso para um nêutron sofrer espalhamento para energias diferentes do intervalo E e E + dE.

Em seguida, estabelece-se o espalhamento de nêutrons para dentro da energia E e E + dE como a taxa de nêutrons espalhados para o intervalo E e E + dE na posição

r, instante t e energia entre $E' \in E' + dE'$.

Espalhamento de
nêutrons para
dentro do intervalo
de energia

$$E \in E + dE$$

$$= \left[\int_{V} \int \Sigma_{s}(\mathbf{r}, E' \to E, t) \Phi(\mathbf{r}, E', t) dE' d^{3}\mathbf{r} \right] dE.$$
(18)

Substituindo as Equações (9), (13), (14), (16), (17) e (18) na Equação de balanço (7), obtém-se:

$$\int_{V} d^{3}\mathbf{r} \left[\frac{1}{v(E)} \frac{\partial \Phi(\mathbf{r}, E, t)}{\partial t} - \nabla \cdot D(\mathbf{r}, E, t) \nabla \Phi(\mathbf{r}, E, t) + \Sigma_{T}(\mathbf{r}, E, t) \Phi(\mathbf{r}, E, t) - \int \Sigma_{s}(\mathbf{r}, E' \to E, t) \Phi(\mathbf{r}, E', t) dE' - \chi(E) \int \nu \Sigma_{f}(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' + Q_{ext}(\mathbf{r}, E, t) \right] dE = 0,$$
(19)

onde $\Sigma_T(\mathbf{r}, E, t) = \Sigma_a(\mathbf{r}, E, t) + \Sigma_s(\mathbf{r}, E, t)$, que representa a seção de choque macroscópica total.

Portanto, o integrando é nulo pois o volume V foi escolhido arbitrariamente. Assim, a equação da difusão dependente do tempo pode ser escrita como:

$$\frac{1}{v(E)} \frac{\partial \Phi(\mathbf{r}, E, t)}{\partial t} = \nabla \cdot D(\mathbf{r}, E, t) \nabla \Phi(\mathbf{r}, E, t) - \Sigma_T(\mathbf{r}, E, t) \Phi(\mathbf{r}, E, t) + \int \Sigma_s(\mathbf{r}, E' \to E, t) \Phi(\mathbf{r}, E', t) dE' + \chi(E) \int \nu \Sigma_f(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' + Q_{ext}(\mathbf{r}, E, t).$$
(20)

2.1 Importância dos nêutrons atrasados

Nem todos nêutrons são gerados simultaneamente com a fissão, há os nêutrons atrasados que surgem após a fissão nuclear, quando há a origem de fragmentos instáveis que decaem e os emitem. Esses nuclídeos que sofrem decaimento são chamados precursores de nêutrons atrasados. Quando esses nêutrons surgem, possuem energia baixa (aproximadamente 0,5 MeV enquanto que os nêutrons prontos gerados na fissão possuem aproximadamente 2 MeV) e percorrem uma distância mais curta comparados aos nêutrons rápidos, o que gera uma menor probabilidade de fuga do núcleo do reator. Outro fator importante a ser destacado, é que possuem uma probabilidade menor de provocar fissões rápidas do que os nêutrons rápidos por sua energia estar abaixo do mínimo necessário para essa reação. Vale destacar, que a fissão por bombardeamento com nêutrons acontece se um desses nêutrons for absorvido pelo núcleo e a soma da energia cinética do nêutron com a energia de ligação do núcleo for maior que o limiar de energia para a fissão.

O modelo proposto na seção anterior ainda não inclui a contribuição dos nêutrons atrasados para a geração de nêutrons no reator nuclear. Apesar de representar menos que 1% da população total de nêutrons no reator, eles exercem um papel muito importante no controle do núcleo, pois mudam drasticamente o comportamento do sistema.

Em estudos de física de reatores, percebeu-se que os fragmentos instáveis que emitem nêutrons atrasados podem ser reunidos em seis grupos de acordo com as escalas de tempo (meias-vidas) que os conferem propriedades semelhantes. Portanto, cada grupo *i* é caracterizado pelos seguintes parâmetros nucleares:

- β_i: fração de nêutrons atrasados no grupo i;
- λ_i : constante de decaimento radioativo do grupo *i* de precursores.

Para relacionar um e seis grupos de precursores de nêutrons atrasados, pode-se utilizar a relação de equivalência ($\frac{1}{\lambda} = \sum_{i=1}^{6} \frac{1}{\lambda_i}$).

Primeiramente analisa-se a variação da concentração dos precursores de nêutrons atrasados no reator, após inclui-se no termo que representa as fissões a contribuição desses nêutrons na Equação da Difusão Dependente do Tempo (20).

Define-se a concentração dos precursores de nêutrons atrasados como:

 $\begin{bmatrix} Número esperado dos i-ésimos$ precursores em d³rem torno de r que sempre $emitem um nêutron atrasado \end{bmatrix} = C_i(\mathbf{r}, t)d^3\mathbf{r},$ (21)

para i = 1 : I. A expressão que determina a variação da concentração de emissores de nêutrons atrasados $C_i(\mathbf{r}, t)$ em uma posição \mathbf{r} e instante t, deve incluir perda e produção:

$$\int_{V} \frac{\partial C_{i}(\mathbf{r}, t) d^{3}\mathbf{r}}{\partial t} = \begin{bmatrix} \mathsf{N} \acute{\mathsf{u}} \mathsf{mero} \, \mathsf{esperado} \\ \mathsf{d} \mathsf{e} \, \mathsf{precursores} \, \mathsf{sendo} \\ \mathsf{produzidos} \, \mathsf{em} \, V \\ \mathsf{no} \, \mathsf{instante} \, t \end{bmatrix} - \begin{bmatrix} \mathsf{N} \acute{\mathsf{u}} \mathsf{mero} \, \mathsf{d} \mathsf{e} \\ \mathsf{precursores} \\ \mathsf{d} \mathsf{e} \mathsf{caindo} \, \mathsf{em} \, V \\ \mathsf{no} \, \mathsf{instante} \, t \end{bmatrix}, \quad (22)$$

para i = 1 : I. A produção dos precursores ocorre através da fissão, que pode

ser contabilizada pela multiplicação da fração de nêutrons atrasados pela taxa de produção de nêutrons por fissão:

Número esperado
de precursores sendo
produzidos em V
no instante t
$$= \int_{V} \left[\int \beta_{i} \nu \Sigma_{f}(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' \right] d^{3}\mathbf{r}, \quad (23)$$

para i = 1 : I. Já a perda é ocasionada pelo decaimento radioativo, que pode ser determinada pela multiplicação da concentração do precursor $C_i(\mathbf{r}, t)$ e sua constante de decaimento λ_i correspondente:

Número de
precursores
decaindo em
$$V$$

no instante t

$$= \int_{V} [C_{i}(\mathbf{r}, t)\lambda_{i}]d^{3}\mathbf{r}, \qquad (24)$$

para i = 1 : I. Substituindo as Equações (23) e (24) na Equação (22):

$$\int_{V} d^{3}\mathbf{r} \left[\frac{\partial C_{i}(\mathbf{r},t)}{\partial t} - \int \beta_{i} \nu \Sigma_{f}(\mathbf{r},E',t) \Phi(\mathbf{r},E',t) dE' + \lambda_{i} C_{i}(\mathbf{r},t) \right] = 0,$$
(25)

para i = 1 : I. Deste modo, o integrando é nulo pois o volume foi escolhido arbitrariamente. Assim, a equação que expressa a variação da concentração dos precursores em um reator nuclear é dada por:

$$\frac{\partial C_i(\mathbf{r},t)}{\partial t} = \int \beta_i \nu \Sigma_f(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' - \lambda_i C_i(\mathbf{r}, t),$$
(26)

para i = 1 : I.

Agora, acrescenta-se na Equação (20) a contribuição dos nêutrons atrasados. Primeiramente, o número de precursores de nêutrons atrasados que decaem e contribuem para a fissão:

$$\begin{bmatrix} \mathsf{Produ} \varphi \tilde{\mathsf{a}} \circ \mathsf{dos} \\ \mathsf{n} \hat{\mathsf{e}} \mathsf{u} \mathsf{trons} \ \mathsf{a} \mathsf{trasados} \end{bmatrix} = \sum_{i} f_i(E) \lambda_i C_i(\mathbf{r}, t), \tag{27}$$

para i = 1: I, onde $f_i(E)$ representa a probabilidade de um nêutron atrasado apresentar energia entre E e E + dE como resultado do decaimento do i-ésimo emissor. Em seguida, define-se o número de nêutrons produzidos pela fissão subtraído da contribuição dos nêutrons oriundos de decaimentos dos produtos de fissão, ou seja, somente os nêutrons prontos:

$$\begin{bmatrix} \operatorname{Produ} \tilde{\mathsf{qao}} & \mathsf{dos} \\ \operatorname{neutrons \ prontos} \end{bmatrix} = \int (1-\beta)\chi(E)\nu\Sigma_f(\mathbf{r}, E', t)\Phi(\mathbf{r}, E', t)dE'.$$
(28)

Portanto, a Equação da Difusão Dependente do Tempo, acrescentando-se a contribuição dos nêutrons atrasados, pode ser escrita como:

$$\frac{1}{v(E)} \frac{\partial \Phi(\mathbf{r}, E, t)}{\partial t} = \nabla \cdot D(\mathbf{r}, E, t) \nabla \Phi(\mathbf{r}, E, t) - \Sigma_T(\mathbf{r}, E, t) \Phi(\mathbf{r}, E, t) + \int (1 - \beta) \chi(E) \nu \Sigma_f(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' + \int \Sigma_s(\mathbf{r}, E' \to E, t) \Phi(\mathbf{r}, E', t) dE' + \sum_i f_i(E) \lambda_i C_i(\mathbf{r}, t) + Q_{ext}(\mathbf{r}, E, t),$$
(29)

para i = 1 : I.

Para a resolução das Equações (26) e (29) é necessário conhecer as condições iniciais e de contorno espacial. Sabendo que o núcleo do reator é heterogêneo, ou seja, apresenta regiões distintas (combustível, barras de controle, refrigerante, entre outros), é preciso também impor uma condição de continuidade entre as interfaces de regiões distintas para o fluxo e para a corrente de nêutrons.

2.2 As Equações da Cinética Pontual de Nêutrons

A Equação (29) para o fluxo escalar de nêutrons pode ser de difícil resolução tanto analiticamente como numericamente, causada pela dependência de espaço, energia e tempo dos parâmetros nucleares. Devido a este fato, faz-se simplificações espaciais visando facilitar sua resolução, proporcionando, assim, prever o comportamento, suficientemente preciso para situações práticas, da população de nêutrons no reator nuclear em função do tempo.

Em situações reais, a razão entre o fluxo em um instante $t_1(\Phi(\mathbf{r}, E, t_1))$ e outro instante $t_2(\Phi(\mathbf{r}, E, t_2))$ é semelhante para toda posição e energia. Assim, considera-se que o formato do fluxo escalar em relação à variável energia e distribuição espacial mantêm-se constante durante um determinado intervalo de tempo.

Desta forma, levando em consideração que o reator deve compor um balanço em que as perdas e a produção tenham valores semelhantes o que significa que não existe nenhuma perturbação grande (devido a fatores internos ou externos no reator), pode-se assumir que em um transiente:

$$\Phi(\mathbf{r}, E, t) \propto \Psi_0(\mathbf{r}, E) n(t), \tag{30}$$

onde $\Psi_0(\mathbf{r}, E)$ é a função forma. Vale destacar que a função forma é estimada conforme a geometria e composição do núcleo do reator.

Logo:

$$\frac{\Phi(\mathbf{r}, E, t_1)}{\Phi(\mathbf{r}, E, t_2)} = \frac{\Psi_0(\mathbf{r}, E)n(t_1)}{\Psi_0(\mathbf{r}, E)n(t_2)} = \frac{n(t_1)}{n(t_2)}.$$
(31)

O comportamento de um reator nuclear em que a densidade varia com o tempo pode ser determinado pelas Equações da Cinética Pontual de Nêutrons. Para isso, é necessário que a função forma seja estimada, reduzindo o problema a encontrar a densidade de nêutrons dependente do tempo.

Desta forma, para encontrar as Equações da Cinética Pontual de Nêutrons são feitas as simplificações que seguem. Primeiramente, integra-se as Equações dos precursores de nêutrons atrasados (26) em d^3 **r**:

$$\frac{\partial}{\partial t} \int C_i(\mathbf{r}, t) d^3 \mathbf{r} = \int \int \beta_i \nu \Sigma_f(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' d^3 \mathbf{r} - \lambda_i \int C_i(\mathbf{r}, t) d^3 \mathbf{r},$$
(32)

para i = 1 : I.

Integrando a Equação (29) em espaço e energia obtém-se:

$$\frac{\partial}{\partial t} \int \int \frac{1}{v(E)} \Phi(\mathbf{r}, E, t) dE d^{3}\mathbf{r} = \int \int \nabla \cdot D(\mathbf{r}, E, t) \nabla \Phi(\mathbf{r}, E, t) dE d^{3}\mathbf{r} - \int \int \Sigma_{T}(\mathbf{r}, E, t) \Phi(\mathbf{r}, E, t) dE d^{3}\mathbf{r} + \int \int [(1 - \beta)\chi(E)\nu\Sigma_{f}(\mathbf{r}, E', t)\Phi(\mathbf{r}, E', t)dE'] dE d^{3}\mathbf{r} + \int \int \int \sum_{s} (\mathbf{r}, E' \to E, t)\Phi(\mathbf{r}, E', t) dE' dE d^{3}\mathbf{r} + \int \int \sum_{i} f_{i}(E)\lambda_{i}C_{i}(\mathbf{r}, t) dE d^{3}\mathbf{r} + \int \int Q_{ext}(\mathbf{r}, E, t) dE d^{3}\mathbf{r}, \qquad (33)$$

para i = 1 : I, mas como:

$$\int \chi(E)dE = 1,$$

$$\int f_i(E)dE = 1,$$

$$\int \Sigma_s(\mathbf{r}, E' \to E, t)dE = \Sigma_T(\mathbf{r}, E', t) - \Sigma_a(\mathbf{r}, E', t),$$
(34)

para i = 1 : I, reescreve-se a Equação (33) como:

$$\frac{\partial}{\partial t} \int \int \frac{1}{v(E)} \Phi(\mathbf{r}, E, t) dE d^{3}\mathbf{r} = \int \int \nabla \cdot D(\mathbf{r}, E, t) \nabla \Phi(\mathbf{r}, E, t) dE d^{3}\mathbf{r} -
\int \int \Sigma_{T}(\mathbf{r}, E, t) \Phi(\mathbf{r}, E, t) dE d^{3}\mathbf{r} + \int \int (1 - \beta) \nu \Sigma_{f}(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' d^{3}\mathbf{r}
+ \int \int \Sigma_{T}(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' d^{3}\mathbf{r} - \int \int \Sigma_{a}(\mathbf{r}, E', t) \Phi(\mathbf{r}, E', t) dE' d^{3}\mathbf{r}
+ \int \sum_{i} \lambda_{i} C_{i}(\mathbf{r}, t) d^{3}\mathbf{r} + \int \int Q_{ext}(\mathbf{r}, E, t) dE d^{3}\mathbf{r},$$
(35)

para i = 1 : I. Simplificando e rearranjando os termos, tem-se:

$$\frac{\partial}{\partial t} \int \int \frac{1}{v(E)} \Phi(\mathbf{r}, E, t) dE d^{3}\mathbf{r} = \int \int [\nabla \cdot D(\mathbf{r}, E, t) \nabla \Phi(\mathbf{r}, E, t) + (\nu \Sigma_{f}(\mathbf{r}, E, t) - \Sigma_{a}(\mathbf{r}, E, t)) \Phi(\mathbf{r}, E, t)] dE d^{3}\mathbf{r} - \int \int \beta \nu \Sigma_{f}(\mathbf{r}, E, t) \Phi(\mathbf{r}, E, t) dE d^{3}\mathbf{r} + \int \sum_{i} \lambda_{i} C_{i}(\mathbf{r}, t) d^{3}\mathbf{r} + \int \int Q_{ext}(\mathbf{r}, E, t) dE d^{3}\mathbf{r},$$
(36)

para i = 1 : I. A partir dessa equação, pode-se identificar a quantidade que representa o número de nêutrons no reator nuclear em um instante t, ou seja, define-se a densidade de nêutrons como:

$$n(t) \equiv \int \int \frac{1}{v(E)} \Phi(\mathbf{r}, E, t) dE d^3 \mathbf{r}.$$
(37)

Como explicado anteriormente, é necessário que a função forma seja estimada, então supondo:

$$\Psi_0(\mathbf{r}, E) = \frac{\Phi(\mathbf{r}, E, t)}{n(t)}.$$
(38)

Substituindo $\Phi(\mathbf{r}, E, t)$ por $\frac{\Phi(\mathbf{r}, E, t)n(t)}{n(t)}$ nas Equações 32 e 36 e notando que:

$$\int \int \frac{1}{v(E)} \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r} = \int \int \frac{1}{v(E)n(t)} \Phi(\mathbf{r}, E, t) dE d^3 \mathbf{r},$$
(39)

e ainda lembrando da definição (37), pode-se concluir que:

$$\int \int \frac{1}{v(E)} \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r} = 1,$$
(40)

para todo *t*. Desta maneira, a função forma não é separável em espaço, energia e tempo, além de ser proporcional ao fluxo.

Tendo em vista posteriores alterações na derivação das Equações da Cinética Pontual, introduz-se novas definições:

$$C_i(t) = \frac{\int C_i(\mathbf{r}, t) d^3 \mathbf{r}}{\int \int \frac{1}{v(E)} \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r}},$$
(41)

para i = 1 : I, como sendo a população total no instante t do i-ésimo precursor de nêutrons atrasados e:

$$Q(t) = \frac{\int \int Q_{ext}(\mathbf{r}, E, t) dE d^3 \mathbf{r}}{\int \int \frac{1}{v(E)} \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r}},$$
(42)

como sendo a fonte total no instante t.

Desta forma, para reescrever as equações integradas utilizando os parâmetros cinéticos, é necessário definir a reatividade. Para tanto, é imprescindível lembrar que o processo multiplicativo de reações em cadeia não só pode aumentar o número de nêutrons, como também reduzi-lo ou mantê-lo. Assim, a razão entre o número de nêutrons de uma geração pelo da geração anterior é chamado de fator de multiplicação (k_{eff}) e é o que determina o comportamento da densidade de nêutrons no reator nuclear em função do tempo. Para uma reação em cadeia ser estacionária (sistema crítico) o k_{eff} deve ser exatamente igual a um, isto pode ser observado na Figura 1.

Figura 1: Densidade de nêutrons para os sistemas crítico, subcrítico e supercrítico.

O fator de multiplicação efetivo pode se afastar da criticalidade e essa distância pode ser medida pela reatividade, que é a taxa líquida instantânea de produção de nêutrons dividida pela taxa de produção instantânea devido a fissão. A reatividade pode assumir três casos: $\rho(t) < 0$, em que o sistema é subcrítico (o número de fissões e a população de uma geração é menor que a geração anterior); $\rho(t) = 0$, em que o sistema é crítico (o número de fissões e a população de uma geração é maior que a geração de uma geração é igual a geração anterior); e $\rho(t) > 0$, em que o sistema é supercrítico (o número de fissões e a população de uma geração é maior que a geração anterior). Dentro do caso supercrítico existem ainda outras três possibilidades: subpronto-crítico (quando $\rho(t) < \beta$), pronto-crítico (quando $\rho(t) = \beta$) e superpronto-crítico (quando $\rho(t) > \beta$). A reatividade pode estar relacionada a vários parâmetros, entre os quais, por exemplo, a temperatura que tem como consequência a inserção de um termo não linear nas Equações da Cinética Pontual para solucionar o sistema. São empregadas várias unidades para representá-la apesar de ser adimensional, como mostrado na Tabela 1.

Tabe	ela 1: Unida	ades e reatividade corresponde	ente.
	Unidade	Reatividade correspondente	
	1%	0,01	
	$1\Delta K$	0,0001	
	1\$	eta	
	1c	0,01\$	
	1pcm	0,00001	

Diante desses conceitos, define-se a reatividade como:

$$\rho(t) \equiv \frac{\int \int [\nabla \cdot D(\mathbf{r}, E, t) \nabla \Psi_0(\mathbf{r}, E) + (\nu \Sigma_f(\mathbf{r}, E, t) - \Sigma_a(\mathbf{r}, E, t)) \Psi_0(\mathbf{r}, E)] dE d^3 \mathbf{r}}{\int \int \nu \Sigma_f(\mathbf{r}, E, t) \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r}}.$$
 (43)

Outro parâmetro cinético a ser definido é o tempo médio de geração, que é o tempo de vida dos nêutrons prontos entre o seu surgimento e seu subsequente desaparecimento no reator nuclear, da seguinte maneira:

$$\Lambda(t) \equiv \frac{\int \int \frac{1}{\nu(E)} \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r}}{\int \int \nu \Sigma_f(\mathbf{r}, E, t) \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r}},$$
(44)

e por fim, as frações de nêutrons atrasados:

$$\beta_i(t) \equiv \frac{\int \int \beta_i \nu \Sigma_f(\mathbf{r}, E, t) \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r}}{\int \int \nu \Sigma_f(\mathbf{r}, E, t) \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r}},$$
(45)

$$\beta(t) = \sum_{i} \beta_i(t), \tag{46}$$

para i = 1 : I. Fazendo as seguintes divisões:

$$\frac{\rho(t)}{\Lambda(t)} = \frac{\int \int [\nabla \cdot D(\mathbf{r}, E, t) \nabla \Psi_0(\mathbf{r}, E) + (\nu \Sigma_f(\mathbf{r}, E, t) - \Sigma_a(\mathbf{r}, E, t)) \Psi_0(\mathbf{r}, E)] dE d^3 \mathbf{r}}{\int \int \frac{1}{v(E)} \Psi_0(\mathbf{r}, E) dE d^3 \mathbf{r}}, \quad (47)$$

e:

$$\frac{\sum_{i} \beta_{i}(t)}{\Lambda(t)} = \frac{\int \int \sum_{i} \beta_{i} \nu \Sigma_{f}(\mathbf{r}, E, t) \Psi_{0}(\mathbf{r}, E) dE d^{3} \mathbf{r}}{\int \int \frac{1}{v(E)} \Psi_{0}(\mathbf{r}, E) dE d^{3} \mathbf{r}}$$

$$= \frac{\int \int \beta \nu \Sigma_{f}(\mathbf{r}, E, t) \Psi_{0}(\mathbf{r}, E) dE d^{3} \mathbf{r}}{\int \int \frac{1}{v(E)} \Psi_{0}(\mathbf{r}, E) dE d^{3} \mathbf{r}},$$
(48)

para i = 1 : I, levando-se em consideração as definições (41) e (42), obtêm-se as Equações da Cinética Pontual de Nêutrons:

$$\frac{dn(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} n(t) + \sum_{i} \lambda_i C_i(t) + Q(t),$$
$$\frac{dC_i(t)}{dt} = \frac{\beta_i(t)}{\Lambda(t)} n(t) - \lambda_i C_i(t),$$
(49)

para i = 1 : I.

Essas equações constituem um conjunto de I + 1 equações diferenciais ordinárias acopladas. Para o modelo e análises realizadas nesta dissertação, admite-se a aproximação $\beta(t) = \beta$ e $\Lambda(t) = \Lambda$, ou seja, não se alteram significativamente em um espaço curto de tempo e, portanto, são consideradas constantes. Consequentemente, somente a reatividade e a fonte externa modificam a população de nêutrons e de precursores com o passar do tempo. A dependência da reatividade do tempo está relacionada a várias propriedades, tais como o histórico de potência, temperatura, entre outros.

Para a obtenção de uma solução única do problema, são aplicadas as seguintes condições iniciais:

$$n(0) = n_0,$$

$$C_i(0) = \frac{\beta_i}{\lambda_i \Lambda} n_0,$$
(50)

para i = 1 : I.

As Equações da Cinética Pontual são modelos matemáticos relativamente simples mas apurados para representar as situações dinâmicas em um reator nuclear. Essas situações podem envolver, por exemplo, o ligamento, controle e desligamento do reator, permitindo então prever o que pode acontecer com inserção de reatividades de diferentes tipos. Embora no sistema de Equações (49) não apareça explicitamente a potência nuclear (P(t)), ela está relacionada com a densidade de nêutrons. Sem perda de generalidade, pode-se substitur n(t) por P(t) quando a potência for a variável mais conveniente a ser avaliada.

O obstáculo em solucionar as Equações (49) está no fato de serem um problema de rigidez (*stifness*). A causa que explica essa dificuldade é a grande diferença entre os tempos de vidas dos nêutrons prontos e atrasados, pois os nêutrons atrasados apresentam um tempo de vida de no mínimo mil vezes maior que os nêutrons prontos.

2.3 Equações da Cinética Pontual de Nêutrons com Retroalimentação de Temperatura

Em geral, utiliza-se a reatividade $\rho(t)$ como uma função exclusivamente dependente do tempo fornecida para a resolução das Equações da Cinética Pontual de Nêutrons, mas existem efeitos da temperatura T do núcleo do reator que também influenciam sua variação. O mecanismo de retroalimentação (*feedback*) de temperatura pode ser entendido como um efeito físico em que a população de nêutrons sofre efeitos da temperatura.

A temperatura do reator geralmente é descrita em função da densidade de nêutrons. Assim, o sistema de Equações da Cinética definido em (49), incluindo o efeito de *feedback* de temperatura, é ampliado por uma equação que determina a taxa de variação de temperatura, definida por:

$$\frac{dT(t)}{dt} = Hn(t),$$
(51)

onde H é a constante de proporcionalidade entre densidade de nêutrons e temperatura, ou seja, representa um parâmetro ligado à influência da mudança de fluxo de calor na taxa de variação de temperatura. Deste modo, a variação de temperatura e a densidade de nêutrons estão relacionadas de forma linear.

Como o reator é composto por regiões heterogêneas, existe a temperatura do combustível, do moderador e do refrigerante, por exemplo. Para determinar a distribuição de temperatura durante uma operação de um reator nuclear são realizados cálculos detalhados de engenharia, que envolvem transferência de calor e fluxo de fluidos e a partir dessas temperaturas são feitas médias. Mudanças na temperatura desses componentes, portanto, conduzem a variações na reatividade, que determinam o coeficiente de temperatura de reatividade (α).

Assumindo-se que a temperatura é independente da posição, ou seja, o núcleo é caracterizado por uma temperatura única uniforme, pode-se então definir a relação:

$$\alpha = \frac{\partial \rho(t, T)}{\partial T}.$$
(52)

Se o coeficiente α for positivo, o aumento da temperatura causa um aumento na reatividade, aumentando a densidade de nêutrons, que por sua vez conduz a um aumento na temperatura novamente, e assim por diante. Nesse caso, os reatores são instáveis em relação a mudanças na temperatura. Se, por sua vez, o coeficiente for negativo, o aumento na temperatura reduz a reatividade, diminuindo a densidade de nêutrons, que por fim tende a retornar a temperatura a seu valor inicial. Os reatores com coeficientes negativos são estáveis com relação a temperatura.

Desta forma, a variação da reatividade com a temperatura, considerando uma perturbação de primeira ordem, pode ser expressa pela expressão:

$$\rho(t,T) = \rho_0 - \alpha [T(t) - T(0)],$$
(53)

onde ρ_0 é a reatividade inicial. Substituindo (53) em (49), desconsiderando a fonte externa, obtêm-se:

$$\frac{dn(t)}{dt} = \frac{\rho_0 - \alpha [T(t) - T(0)] - \beta}{\Lambda} n(t) + \sum_i \lambda_i C_i(t),$$

$$\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t),$$

$$\frac{dT(t)}{dt} = Hn(t),$$
(54)

para i = 1 : I, com as seguintes condições iniciais:

$$n(0) = n_0,$$

$$C_i(0) = \frac{\beta_i}{\lambda_i \Lambda} n_0,$$

$$T(0) = T_0,$$

(55)

para i = 1 : I.

Portanto, o sistema se torna não linear devido ao produto da temperatura pela densidade de nêutrons na primeira equação do sistema (54).

 $\langle \alpha \rangle$
3 METODOLOGIA DE SOLUÇÃO DAS EQUAÇÕES DA CINÉTICA PONTUAL DE NÊUTRONS

Muitos autores (EL_TOKHY; MAHMOUD, 2014) (HAMADA; ABOANBER, 2008) (NAHLA, 2011) (CHEN et al., 2013) (LEITE; PALMA; VILHENA, 2013) (GANAPOL, 2013) destacam que o sistema de Equações da Cinética Pontual de Nêutrons continua sendo objeto de estudo pela sua importância na física de reatores. Deste modo, continuam sendo desenvolvidos e aprimorados métodos tanto analíticos como numéricos. Neste capítulo, será apresentada a construção da solução das Equações da Cinética Pontual de Nêutrons com e sem efeitos de retroalimentação de temperatura, com seis grupos de precursores de nêutrons atrasados, através do Método da Aproximação Polinomial (PAM) usando a expansão em séries de potências em conjunto com a continuação analítica.

3.1 O Método da Aproximação Polinomial

Encontrar uma solução em forma de séries de potências é uma forma conveniente e útil devido ao fato de que, dentro de seu intervalo de convergência, se comportam semelhantemente a polinômios, sendo fáceis de manipular tanto analiticamente como numericamente. Além disso, uma solução obtida utilizando-se funções elementares, como exponenciais ou trigonométricas por exemplo, necessita de uma série de potências (série de Taylor) para calculá-la numericamente ou representá-la graficamente em um computador.

Para procurar a solução através do Método da Aproximação Polinomial, parte-se do problema de valor inicial dado pelas Equações da Cinética Pontual de Nêutrons com seis grupos de precursores de nêutrons atrasados, dadas por (49) desconsiderando a fonte externa e considerando que somente a reatividade varie com o tempo e outros parâmetros cinéticos sejam constantes:

$$\frac{dn(t)}{dt} = \frac{\rho(t) - \beta}{\Lambda} n(t) + \sum_{i=1}^{6} \lambda_i C_i(t),$$
$$\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t),$$
(56)

para i = 1:6, com as seguintes condições iniciais:

$$n(0) = n_0,$$

$$C_i(0) = \frac{\beta_i}{\lambda_i \Lambda} n_0 = C_0,$$
(57)

para i = 1 : 6.

Para aplicar o Método da Aproximação Polinomial, expande-se a densidade de nêutrons e a concentração dos precursores de nêutrons atrasados em séries de potências em torno de um ponto ordinário t_0 , centrado em um intervalo I_0 , supondo que as séries convergem no intervalo $|t - t_0| < \varepsilon$, para algum $\varepsilon > 0$. Portanto, a solução procurada tem a forma:

$$n(t) = a_0 + a_1(t - t_0) + a_2(t - t_0)^2 + \dots + a_r(t - t_0)^r + \dots = \sum_{r=0}^{\infty} a_r(t - t_0)^r,$$

$$C_i(t) = b_{i,0} + b_{i,1}(t - t_0) + b_{i,2}(t - t_0)^2 + \dots + b_{i,r}(t - t_0)^r + \dots =$$

$$\sum_{r=0}^{\infty} b_{i,r}(t - t_0)^r,$$
(58)

para i = 1 : 6.

Para substituir em (56), precisa-se também da derivada da solução em forma de séries de potências que pode ser obtida diferenciando-se (58) termo a termo, obtendo-se:

$$\frac{dn(t)}{dt} = a_1 + 2a_2(t - t_0) + \dots + ra_r(t - t_0)^{r-1} + \dots = \sum_{\substack{r=1\\r=1}}^{\infty} ra_r(t - t_0)^{r-1},$$

$$\frac{dC_i(t)}{dt} = b_{i,1} + 2b_{i,2}(t - t_0) + \dots + rb_{i,r}(t - t_0)^{r-1} + \dots = \sum_{\substack{r=1\\r=1}}^{\infty} rb_{i,r}(t - t_0)^{r-1},$$
(59)

para i = 1 : 6. Substituindo (58) e (59) em (56), têm-se:

$$\sum_{r=1}^{\infty} ra_r (t-t_0)^{r-1} - \left(\frac{\rho(t)-\beta}{\Lambda}\right) \sum_{r=0}^{\infty} a_r (t-t_0)^r - \sum_{i=1}^6 \lambda_i \sum_{r=0}^\infty b_{i,r} (t-t_0)^r = 0,$$

$$\sum_{r=1}^{\infty} rb_{i,r} (t-t_0)^{r-1} - \frac{\beta_i}{\Lambda} \sum_{r=0}^\infty a_r (t-t_0)^r + \lambda_i \sum_{r=0}^\infty b_{i,r} (t-t_0)^r = 0,$$
(60)

para i = 1 : 6.

Com o intuito de combinar as duas séries, reescrevem-se as séries derivadas para que tenham o mesmo termo geral, mudando o índice do somatório através da substituição de r por r + 1 e iniciando o somatório em zero:

$$\sum_{r=0}^{\infty} (r+1)a_{r+1}(t-t_0)^r - \left(\frac{\rho(t)-\beta}{\Lambda}\right) \sum_{r=0}^{\infty} a_r(t-t_0)^r - \sum_{i=1}^6 \lambda_i \sum_{r=0}^\infty b_{i,r}(t-t_0)^r = 0,$$

$$\sum_{r=0}^{\infty} (r+1)b_{i,r+1}(t-t_0)^r - \frac{\beta_i}{\Lambda} \sum_{r=0}^\infty a_r(t-t_0)^r + \lambda_i \sum_{r=0}^\infty b_{i,r}(t-t_0)^r = 0,$$
(61)

para i = 1: 6. Para a Equação (61) ser satisfeita para todo t é necessário que o coeficiente de cada potência de t seja nulo, desta forma, podemos concluir que:

$$(r+1)a_{r+1} - \left(\frac{\rho(t)-\beta}{\Lambda}\right)a_r - \sum_{i=1}^6 \lambda_i b_{i,r} = 0,$$

(r+1)b_{i,r+1} - $\frac{\beta_i}{\Lambda}a_r + \lambda_i b_{i,r} = 0,$ (62)

para i = 1 : 6. Isolando-se o termo de maior índice em cada equação obtêm-se:

$$a_{r+1} = \frac{\frac{\rho(t) - \beta}{\Lambda} a_r + \sum_{i=1}^{6} \lambda_i b_{i,r}}{(r+1)},$$

$$b_{i,r+1} = \frac{\frac{\beta_i}{\Lambda} a_r - \lambda_i b_{i,r}}{(r+1)},$$
 (63)

para i = 1 : 6. As expressões dadas em (63) são conhecidas como relação de recorrência, seus coeficientes sucessivos podem ser calculados um a um escrevendose a relação de recorrência primeiro para r = 0, depois para r = 1 e assim por diante. Os coeficientes a_0 e $b_{i,0}$ são encontrados aplicando-se as condições iniciais dadas por (57) em (58) truncando as séries conforme desejado.

A ideia para resolver as Equações da Cinética Pontual de Nêutrons pelo Método da Aproximação Polinomial em torno de um ponto t_0 é considerar a reatividade como uma função constante em um intervalo relativamente pequeno de tempo (aproximação constante da reatividade) em conjunto com a continuação analítica. Ou seja, a solução em torno de um ponto t_0 em um intervalo $I_0 = [0, 2\Delta t]$, onde $\Delta t = t - t_0$ é o passo de tempo escolhido, é a condição inicial para o próximo intervalo e assim por diante. Cabe ressaltar que escolhe-se a reatividade $\rho(t) = \rho_0$ em cada ponto central de I_r .

Admitindo que a densidade e concentração dos precursores de nêutrons atrasados são, por exemplo, uma aproximação linear local em torno de t_0 para I_0 , as séries (58) tornam-se:

$$n(t) \cong a_0 + a_1(t - t_0),$$

$$C_i(t) \cong b_{i,0} + b_{i,1}(t - t_0),$$
(64)

para i = 1 : 6, com a_1 e $b_{i,1}$ determinados pela fórmula de recorrência (63) para r = 0, ou seja:

$$a_{1} = \frac{\rho(t) - \beta}{\Lambda} a_{0} + \sum_{i=1}^{6} \lambda_{i} b_{i,0},$$

$$b_{i,1} = \frac{\beta_{i}}{\Lambda} a_{0} - \lambda_{i} b_{i,0},$$
(65)

para i = 1 : 6.

Então, pode-se reescrever (64) como:

$$n(t) \cong a_0 + \left(\frac{\rho(t) - \beta}{\Lambda} a_0 + \sum_{i=1}^6 \lambda_i b_{i,0}\right) (t - t_0),$$

$$C_i(t) \cong b_{i,0} + \left(\frac{\beta_i}{\Lambda} a_0 - \lambda_i b_{i,0}\right) (t - t_0),$$
(66)

onde i = 1 : 6, para o intervalo I_0 em torno de t_0 . Aplicando a condição inicial dada por (57) encontram-se os coeficientes a_0 e $b_{i,0}$ resolvendo o sistema linear. Utilizando a mesma ideia, pode-se encontrar a solução para todos intervalos I_{r+1} em torno de t_0 (pertencente a este intervalo) usando como condição inicial a solução no intervalo anterior, ou seja, fazendo uso da continuação analítica.

Considerando agora os efeitos de temperatura, parte-se das equações (54) e aplica-se o PAM. A expansão em séries de potências para a densidade e concentração de precursores de nêutrons atrasados é a mesma apresentada em (58), já para a temperatura, tem-se:

$$T(t) = c_0 + c_1(t - t_0) + c_2(t - t_0)^2 + \dots + c_r(t - t_0)^r + \dots = \sum_{r=0}^{\infty} c_r(t - t_0)^r.$$
 (67)

Diferenciando (67), encontra-se:

$$\frac{dT(t)}{dt} = c_1 + 2c_2(t - t_0) + \dots + rc_r(t - t_0)^{r-1} + \dots = \sum_{r=1}^{\infty} rc_r(t - t_0)^{r-1}.$$
 (68)

Substituindo (58), (59), (67) e (68) em (54) e combinando as três séries com o mesmo termo geral, obtêm-se:

$$\sum_{r=0}^{\infty} (r+1)a_{r+1}(t-t_0)^r - \left(\frac{\rho_0 - \alpha T(0) - \beta}{\Lambda}\right) \sum_{r=0}^{\infty} a_r(t-t_0)^r + \frac{\alpha}{\Lambda} \sum_{r=0}^{\infty} c_r(t-t_0)^r \sum_{r=0}^{\infty} a_r(t-t_0)^r - \sum_{i=1}^6 \lambda_i \sum_{r=0}^{\infty} b_{i,r}(t-t_0)^r = 0,$$

$$\sum_{r=0}^{\infty} (r+1)c_{r+1}(t-t_0)^r - H \sum_{r=0}^{\infty} a_r(t-t_0)^r = 0,$$
(69)

para i = 1 : 6.

O desenvolvimento da metodologia para a concentração de precursores de nêutrons atrasados é a mesma apresentada anteriormente e, por isso, não será repetida.

Da mesma forma, para as equações serem satisfeitas para todo t é necessário que o coeficiente de cada potência de t seja nulo. Assim, isolando os termos de maior índice de cada equação, a relação de recorrência, considerando os efeitos de *feedback* de temperatura, torna-se:

$$a_{r+1} = \frac{\left(\frac{\rho_0 - \alpha T(0) - \beta}{\Lambda}\right) a_r - \frac{\alpha}{\Lambda} \sum_{k=0}^r c_r a_{r-k} + \sum_{i=1}^6 \lambda_i b_{i,r}}{(r+1)},$$

$$b_{i,r+1} = \frac{\frac{\beta_i}{\Lambda} a_r - \lambda_i b_{i,r}}{(r+1)},$$

$$c_{r+1} = \frac{Ha_r}{(r+1)},$$
(70)

para i = 1 : 6, onde $\sum_{k=0}^{r} c_r a_{r-k}$ surge do terceiro termo da Equação (69) através da propriedade de multiplicação de séries infinitas.

Neste caso, quando considera-se uma aproximação linear local em torno de t_0 em I_0 , têm-se:

$$n(t) \cong a_0 + a_1(t - t_0),$$

$$C_i(t) \cong b_{i,0} + b_{i,1}(t - t_0),$$

$$T(t) \cong c_0 + c_1(t - t_0),$$
(71)

para i = 1 : 6, com a_1 , $b_{i,1}$ e c_1 determinados pela relação de recorrência (70) para r = 0. Então, pode-se reescrever (71) como:

$$n(t) \cong a_{0} + \left(\left(\frac{\rho_{0} - \alpha T(0) - \beta}{\Lambda} \right) a_{0} - \frac{\alpha}{\Lambda} c_{0} a_{0} + \sum_{i=1}^{6} \lambda_{i} b_{i,0} \right) (t - t_{0}),$$

$$C_{i}(t) \cong b_{i,0} + \left(\frac{\beta_{i}}{\Lambda} a_{0} - \lambda_{i} b_{i,0} \right) (t - t_{0}),$$

$$T(t) \cong c_{0} + H a_{0} (t - t_{0}),$$
(72)

onde i = 1 : 6, para o intervalo I_0 em torno de t_0 . Aplicando as condições iniciais dadas por (55), encontram-se os coeficientes pela resolução do sistema. Cabe destacar, que o sistema torna-se não linear pelo produto c_0a_0 . Assim, com a continuação analítica determinam-se os próximos coeficientes, como explicado anteriormente. Na Figura 2 apresenta-se um fluxograma onde são exibidas as principais etapas do Método da Aproximação Polinomial.

Figura 2: Fluxograma do Método da Aproximação Polinomial.

3.2 Controle do Erro e Convergência

3.2.1 Erro Local

Esta subseção tem por objetivo determinar o controle do erro local do Método de Aproximação Polinomial para estimar o erro de truncamento das séries de potências na solução das Equações da Cinética Pontual de Nêutrons. A análise será feita para a densidade de nêutrons, pois para o caso da concentração e temperatura o desenvolvimento é análogo.

Considera-se um polinômio f(t) para a aproximação da densidade em torno de um ponto t_0 , de modo que n(t) = f(t). Então, representa-se o polinômio por séries de potências como:

$$f(t) = a_0 + a_1(t - t_0) + a_2(t - t_0)^2 + \dots$$
(73)

Para determinar os coeficientes a_r em termos de f, primeiramente considera-se $t = t_0$ na Equação (73), obtendo:

$$f(t_0) = a_0.$$

Diferenciando a Equação (73) termo a termo, tem-se:

$$f'(t) = a_1 + 2a_2(t - t_0) + 3a_3(t - t_0)^2 + \dots$$
(74)

e então substituindo $t = t_0$ na Equação (74):

$$f'(t_0) = a_1.$$

Agora diferenciando a Equação (74):

$$f''(t) = 2a_2 + 2 \cdot 3a_3(t - t_0) + 3 \cdot 4a_4(t - t_0)^2 + \dots$$
(75)

e de novo substituindo $t = t_0$:

$$f''(t_0) = 2a_2.$$

Aplicando o mesmo procedimento novamente, a Equação (75) torna-se:

$$f'''(t) = 2 \cdot 3a_3 + 2 \cdot 3 \cdot 4a_4(t - t_0) + 3 \cdot 4 \cdot 5a_5(t - t_0)^2 + \dots$$
(76)

e substituindo $t = t_0$ na Equação (76):

$$f'''(t_0) = 2 \cdot 3a_3 = 3!a_3.$$

Continuando a diferenciar e substituir $t = t_0$, obtém-se:

$$f^r(t) = 2 \cdot 3 \cdot 4 \cdot \dots \cdot ra_r = r!a_r. \tag{77}$$

Isolando o coeficiente a_r , encontra-se:

$$a_r = \frac{f^r(t_0)}{r!}.$$
 (78)

Desta forma, considera-se f(t) com grau r para a aproximação da densidade em torno de um ponto t_0 , de modo que n(t) = f(t). Portanto, se f(t) puder ser diferenciado r vezes em t_0 , encontra-se o enésimo polinômio de Taylor para f(t) em torno de t_0 como sendo:

$$T_{r}(t) = \sum_{k=0}^{r} \frac{f^{r}(t_{0})}{k!} (t - t_{0})^{k} = f(t_{0}) + \frac{f'(t_{0})}{1!} (t - t_{0}) + \frac{f''(t_{0})}{2!} (t - t_{0})^{2} + \dots + \frac{f^{k}(t_{0})}{k!} (t - t_{0})^{k}.$$
(79)

Em geral, f(t) é a soma da sua série de Taylor se:

$$f(t) = \lim_{r \to \infty} T_r(t).$$

Denotando para o erro da aproximação $f(t) \approx T_r(t)$, de modo que represente a diferença entre f(t) e seu enésimo polinômio de Taylor, ou seja:

$$R_r(t) = f(t) - T_r(t) = f(t) - \sum_{k=0}^r \frac{f^r(t_0)}{k!} (t - t_0)^k.$$
(80)

A função $R_r(t)$ é denominada enésimo resto da série de Taylor de f(t). Se $\lim_{r\to\infty} R_r(t) = 0$, logo:

$$\lim_{r \to \infty} T_r(t) = \lim_{r \to \infty} [f(t) - R_r(t)] = f(t) - \lim_{r \to \infty} R_r(t) = f(t).$$
(81)

Assim sendo, a ideia é obter uma cota para $R_r(t)$ utilizando o Teorema da Estimativa do Resto para dar uma indicação da precisão da aproximação $f(t) \approx T_r(t)$ (BURDEN; FAIRES, 2008).

Se a função f(t) tem derivada de ordem r+1 contínua em um intervalo I_r contendo o ponto t_0 , então existe $M = \max_{t \in I} |f^{r+1}(t)|$. Portanto, tem-se um majorante para o erro de truncamento pois:

$$|f^{r+1}(t)| \le M, \forall t \in I.$$
(82)

Logo, pode-se concluir que:

$$|R_r(t)| \le \frac{M}{(r+1)!} |t - t_0|^{r+1},$$
(83)

onde M é o Estimador de Lagrange. O método é de ordem p se existir uma constante C de modo que:

$$|e_l| \le C|t - t_0|^{p+1},\tag{84}$$

onde e_l é o erro local, e C depende das derivadas da função que define a equação diferencial.

Obtendo-se uma apropriada cota superior para um erro prescrito, ou seja, se M for

uma cota superior para $|f^{r+1}(t)|$ num intervalo I_r que contenha o ponto t_0 , obtém-se:

$$|e_l| \le \frac{M}{(r+1)!} |t - t_0|^{r+1} \le \xi,$$
(85)

onde r é o número de termos do enésimo polinômio de Taylor e ξ é a precisão prescrita.

Sem perda de generalidade, assumindo que a densidade e concentração de nêutrons atrasados são uma aproximação linear local (r = 1) em torno de um ponto t_0 , tem-se:

$$|e_l| \le \frac{M}{2!} |t - t_0|^2 \le \xi,$$
(86)

com $|f''(t)| \leq M$ para todo t no intervalo I_r . Admitindo $|t - t_0| = \Delta t$, pode-se reescrever a Equação (85) como:

$$|e_l| \le \frac{M}{(r+1)!} |\Delta t|^{r+1} \le \xi,$$
(87)

e para r = 1:

$$|e_l| \le \frac{M}{(2)!} |\Delta t|^2 \le \xi.$$
(88)

Uma vez conhecido o estimador M pode-se controlar o erro local pela diminuição do Δt ou aumentando a ordem da aproximação r para satisfazer um erro prescrito. Assim, conhecida a função reatividade $\rho(t)$ e assumindo uma aproximação constante $\rho(t) = \rho_0$ para cada intervalo I_r , pode-se utilizar a fórmula de Inhour (DUDERSTADT; HAMILTON, 1976) para estimar uma cota superior M para todo t em um intervalo I_r dada por:

$$n(t) = \frac{\beta}{\beta - \rho} e^{\frac{\rho\lambda}{\beta - \rho}t} - \frac{\rho}{\beta - \rho} e^{\frac{\rho - \beta}{\Lambda}t}.$$
(89)

3.2.2 Controle Adaptativo do Passo de Tempo

Com a intenção de conservar o erro local de truncamento aproximadamente o mesmo ao longo de todo o intervalo de tempo, pode-se modificar o tamanho do passo de tempo (Δt) de forma adaptativa. O objetivo consiste em ajustar o tamanho do passo conforme avança-se no tempo sem ter que utilizar mais passos do que o necessário, otimizando o tempo computacional, e ao mesmo tempo, garantindo o controle da pre-

cisão. Desta maneira, a Equação (87) deve ser satisfeita ajustando o tamanho do passo de tempo através de uma precisão prescrita (ξ) fixada.

O ajuste adaptativo pode ser realizado calculando a diferença entre os valores da solução por uma aproximação linear e quadrática em cada passo de tempo, por exemplo. Deste modo, tem-se a estimativa do erro de truncamento local (e_s) ao se utilizar o método original (aproximação linear). Se o erro estimado for diferente da tolerância prescrita, então deve-se ajustar o tamanho do passo e repetir os cálculos. Outra maneira possível seria calcular a diferença entre os valores provenientes da solução do método (pela aproximação desejada) e de uma solução exata proveniente da literatura. Assim, utilizando-se uma aproximação linear, por exemplo, o erro de truncamento local é proporcional a Δt^2 , de modo que, para satisfazer a tolerância prescrita ξ precisa-se multiplicar o passo de tempo antigo por um fator $\sqrt{\frac{2\xi}{e_sM}}$. Com este procedimento em cada passo de tempo, mantém-se o erro de truncamento local aproxima ao longo de todo processo.

3.2.3 Erro Global

O avanço com os valores calculados ao invés da solução exata em cada passo de tempo do Método da Aproximação Polinomial em conjunto com a continuação analítica gera erros que vão se propagando no decorrer das iterações. Para fazer uma análise da propagação do erro faz-se uma analogia com o teorema de estabilidade que relaciona o erro global com o erro local e a constante de Lipschitz.

Para equações diferenciais *stiff* localmente Lipschitz contínuas com a constante de Lipschitz l, a diferença entre as soluções exatas (v) e as provenientes do método (u) é controlada pela estimativa de estabilidade, desde que hl < 1, dada por (HAIRER; LUBICH, 2012):

$$|u_{n+1} - v_{n+1}| \le \frac{1}{1 - hl} |u_n - v_n|.$$
(90)

A estimativa de estabilidade pode ser combinada com o estudo da propagação do erro, utilizando o argumento de *Leque de Lady Windermere (Lady Windermere's Fan)* (HAIRER; LUBICH, 2012), como mostra a Figura 3. Cada passo de tempo do método empregado é representado por uma seta, iniciando em diferentes tempos, e as barras verticais representam os erros locais, que se propagam ao longo das iterações e são controladas utilizando repetidamente a estimativa de estabilidade. Assim, chega-se ao erro global, que representa o soma da propagação dos erros locais, que pode ser representada por:

$$e_g = y_n - y(t_n),\tag{91}$$

onde e_g representa o erro global, y_n a solução do método e $y(t_n)$ a solução exata.

Exact solution = Solução exata Numerical method = Método numérico Fonte: HAIRER & LUBICH, 2012, p.4 Figura 3: Leque de Lady Windermere mostrando a propagação dos erros locais.

O primeiro erro local $|d_1|$ (distância entre a solução exata e do método) tem a contribuição para o erro global e_g limitada por $\left(\frac{1}{1-hl}\right)^{n-1}|d_1|$, ou seja, aplica-se n-1 vezes a estimativa de estabilidade a partir de y_1 e $y(t_1)$, pois não existe erro no ponto y_0 . Deste modo, a contribuição do segundo erro local $|d_2|$ limita-se por $\left(\frac{1}{1-hl}\right)^{n-2}|d_2|$, e assim sucessivamente para os próximos passos de tempo. Então, utilizando a fórmula para o erro local dada por (87), o erro global é limitado por:

$$|e_g| \le \sum_{j=0}^{n-1} \left(\frac{1}{1-hl}\right)^j |e_l| = \left[\frac{1-\left(\frac{1}{1-hl}\right)^n}{1-\left(\frac{1}{1-hl}\right)}\right] |e_l|.$$
(92)

3.2.4 Análise de Convergência

As séries de potências tornam-se polinômios quando seus coeficientes são nulos a partir de certa ordem, ou seja, pode-se entender essas séries como generalizações de polinômios. Do mesmo modo que um polinômio define uma função de variável real em \Re , as séries de potências descrevem uma função no subconjunto de \Re onde a série é convergente, onde a soma da série no ponto determinado define a função em cada ponto.

A convergência da série de potências $\sum_{r=0}^{\infty} a_r (t - t_0)^r$ depende da distância entre $|t - t_0|$. Quando essa distância é suficientemente próxima de zero a série converge (quando $t = t_0$ o valor da série é a_0 e sempre convergente). Então se a série converge no seu centro, a série é dita convergente se existe outro ponto $t_1 \neq t_0$ o qual também

converge, conforme Lema de Abel² (REMMERT, 1991). Vale destacar que assumese $x = t - t_0$, assim o cálculo do raio de convergência de $\sum_{r=0}^{\infty} a_r (t - t_0)^r$ reduz-se ao cálculo do raio de convergência de $\sum_{r=0}^{\infty} a_r x^r$.Também para simplificação, sem perda de generalidade, escreve-se $\sum a_r x^r$ ao invés de $\sum_{r=0}^{\infty} a_r x^r$.

Lema de Convergência 3.2.1 (Abel) Supor que para a série de potências $\sum a_r x^r$ existem números reais positivos s e M tais que $|a_r|s^r \leq M$ para todo r. Então, essa série de potências é normalmente convergente no disco aberto B_s .

Corolário 3.2.2 Se a série $\sum a_r x^r$ converge para $t_0 \neq 0$, então converge normalmente no disco aberto $B_{|t_0|}$.

Desta maneira, à medida que a distância $|t - t_0|$ aumentar, mais lenta será a convergência até que a partir de uma determinada distância R (raio de convergência) a série irá divergir.

Teorema 3.2.3 (Convergência das séries de potências) Assumindo $\sum a_r x^r$ ser uma série de potência e denotando por *R* o supremo de todo número real $z \ge 0$ para qual $|a_r|z^r$ é uma sequência limitada, então:

- 1. A série converge normalmente no disco aberto B_R ;
- 2. A série diverge em cada ponto $w \in \mathbb{C}|\bar{B}_R$.

A quantidade $R \in [0, \infty]$ citada no Teorema de Convergência das séries de potência é chamada de raio de convergência e o conjunto B_R o disco de convergência.

Para determinar de uma maneira direta o raio de convergência de uma série de potências, pode-se utilizar Fórmula de Cauchy-Hadamard³.

A Fórmula de Cauchy-Hadamard 3.2.4 *O* raio de convergência da série de potências $\sum a_r(t-t_0)^r$ é:

$$R = \frac{1}{\overline{\lim}\sqrt[r]{|a_r|}}.$$
(93)

Porém, a fórmula de Cauchy-Hadamard não é sempre adequada para o cálculo do raio de convergência de séries de potência, pois não diz nada a respeito da convergência sobre o círculo de convergência. Assim, seria necessário a utilização de outro teste para descobrir o comportamento sobre o círculo.

²A prova do Lema de Convergência de Abel pode ser vista em (REMMERT, 1991).

³A prova da Fórmula de Cauchy-Hadamard pode ser vista em (REMMERT, 1991).

Critério 3.2.5 (Critério da Razão) Tomando $\sum a_r(t - t_0)^r$ como uma série de potências com raio de convergência R e $a_r \neq 0$ para todo, mas finitamente muitos valores de r, então:

$$\underline{\lim} \frac{|a_r|}{a_{r+1}} \le R \le \overline{\lim} \frac{a_{r+1}}{|a_r|}.$$
(94)

Portanto, onde o limite existir $R = \lim \frac{|a_r|}{a_{r+1}}$.

Desta maneira, o domínio de convergência da série de potências de $t - t_0$ pode ser obtido a partir do domínio de convergência da série de potências de x. Se $R = +\infty$, o domínio de convergência é \Re , quando R = 0 é t_0 e para $0 < R < +\infty$ o domínio de convergência contém $]t_0 - R, t_0 + R[$ e está contido em $[t_0 - R, t_0 + R]$. Em outras palavras, $|t - t_0| < R$ define o círculo de convergência absoluta, se $|t - t_0| > R$ a série diverge e quando $|t - t_0| = R$ a convergência é indefinida.

Porém, obter expressões para os coeficientes a_r , b_r e c_r em função de r pode se tornar complicado, se não impossível. Por outro lado, pode-se encontrar o intervalo de convergência da solução da série utilizando o seguinte teorema:

Teorema 3.2.6 Se t_0 for um ponto ordinário da equação diferencial P(t)y' + Q(t)y = 0, ou seja, p = Q(t)/P(t) for analítica em t_0 (tiver uma expansão em série de Taylor em torno desse ponto), então a solução geral será $y = \sum_{r=0}^{\infty} a_r(t-t_0)^r$. Além disso, o raio de convergência da série $y = \sum_{r=0}^{\infty} a_r(t-t_0)^r$ é pelo menos tão grande quanto o raio de convergência da série para Q(t)/P(t).

Para o caso em estudo, P(t) = 1, logo p = Q(t) é analítica em t_0 . Assim, o raio de convergência da série de potências é no mínimo da ordem da série para Q(t). Portanto, conhecendo a função reatividade é possível calcular o raio de convergência da função Q(t) e, consequentemente, da solução y em torno de t_0 para cada intervalo.

Teorema 3.2.7 (Diferenciação e integração formal termo a termo) Se a série $\sum a_r(t - t_0)^r$ tem raio de convergência R, então a série $\sum ra_r(t - t_0)^{r-1}$ e $\sum (r + 1)^{-1}a_r(t - t_0)^{r+1}$ advindas da diferenciação e integração termo a termo, respectivamente, também possuem o raio de convergência R.

Sendo assim, $y \in y'$ tem o mesmo raio de convergência R e, portanto, Q(t)/P(t) tem raio equivalente. Além disso, reelembrando da Equação (82), pode-se assegurar que a série converge uniformemente através do Critério Majorante de Weierstrass, apresentado em (REMMERT, 1991) juntamente com a sua demonstração.

Critério 3.2.8 (Critério Majorante (ou teste M) de Weierstrass) ⁵ Assumindo $f_r : X \to \mathbb{C}$ ser uma sequência de funções, A um subconjunto não vazio de X e

⁵O Critério Majorante de Weierstrass e sua demonstração podem ser vistos em (REMMERT, 1991).

suponha que existe uma sequência de números reais $M_r \ge 0$ tal que:

$$|f_r|_A \le M_r$$
 para todo $r \in \mathbb{N}$ e $\sum M_r < \infty$. (95)

Então a série $\sum f_r$ converge uniformemente em A.

3.3 Análise Perturbativa

Nesta seção, analisa-se o comportamento da solução das Equações da Cinética Pontual de Nêutrons via Método da Aproximação Polinomial incluindo perturbações na condição inicial e na reatividade. O objetivo desta análise é verificar a estabilidade do método diante dessas perturbações no sistema.

Nesta dissertação, abrangem-se reatividades que caracterizam o sistema de equações diferenciais em lineares e não-lineares. Nos sistemas lineares uma perturbação deve provocar nas suas variáveis perturbações proporcionais. Quando aplicam-se duas perturbações distintas ao mesmo tempo, elas comportam-se como se fossem aplicadas independentemente, de modo que a soma das reações individuais de cada perturbação é a resposta do sistema. Já para os sistemas não lineares, uma pequena perturbação pode acarretar em uma grande reação na resposta, ou seja, as perturbações aplicadas não resultam em reações proporcionais e perturbações distintas aplicadas ao sistema geram resultados totalmente inesperados e imprevisíveis, e não aditivos como no caso lineare.

A perturbação é inserida na forma de uma função randômica presente no Software Scilab (*http://www.scilab.org/*)em cada passo de tempo. A função "rand" é um gerador de números randômicos que apresenta valores entre 0 e 1. Para que as perturbações tenham tanto valores positivos como negativos, soma-se um fator de -0,5 à função "rand", assumindo assim valores entre -0,5 e 0,5. Deste modo, a perturbação é dada por:

$$\delta = \tau(rand(t_0) - 0, 5), \tag{96}$$

onde a constante τ controla a ordem de grandeza da perturbação, por exemplo, 10^{-2} .

Primeiramente, introduz-se um distúrbio gerado dentro do sistema (perturbação interna) que tende a afetar o valor da variável de saída. Desta forma, as Equações da Cinética Pontual de Nêutrons com perturbação na reatividade tem a forma:

$$\frac{dn(t)}{dt} = \frac{(\rho(t) + \delta) - \beta}{\Lambda} n(t) + \sum_{i} \lambda_i C_i(t),$$

$$\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t),$$
(97)

onde i = 1 : 6. Da mesma forma, as Equações da Cinética Pontual de Nêutrons com retroalimentação de temperatura incluindo uma perturbação na reatividade são dadas por:

$$\frac{dn(t)}{dt} = \frac{\left[\rho_0 - \alpha(T(t) - T(0)) + \delta\right] - \beta}{\Lambda} n(t) + \sum_i \lambda_i C_i(t),$$

$$\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t),$$

$$\frac{dT(t)}{dt} = Hn(t),$$
(98)

onde i = 1 : 6.

Já para a perturbação na condição inicial para a densidade de nêutrons considerase:

$$n(0) = n_0 + \gamma,$$

onde γ é a perturbação na condição inicial em cm^{-3} .

Os resultados para a densidade em cm^{-3} com perturbação, tanto para o caso linear como o não-linear, serão apresentados no próximo capítulo juntamente com as soluções não perturbadas.

4 RESULTADOS

Neste capítulo, apresentam-se os resultados numéricos para a metodologia proposta e descrita no Capítulo 3 e comparam-se com os existentes na literatura. Os resultados são obtidos para um e seis grupos de precursores de nêutrons atrasados, com e sem efeitos de retroalimentação de temperatura e reatividades do tipo: constante, rampa, quadrático, zig-zag, senoidal e fonte pulsada. Além disso, exibem-se as soluções das Equações da Cinética Pontual de Nêutrons (ECPN) incluindo uma perturbação na condição inicial e na reatividade.

Para cada caso de reatividade estudado são apresentados gráficos e tabelas com os resultados obtidos para a densidade de nêutrons, bem como os seus respectivos tempos computacionais. Para mostrar que aumentando a ordem da aproximação e diminuindo o passo de tempo a solução deve melhorar, realiza-se para um caso de cada tipo de reatividade o erro relativo entre a aproximação quadrática e linear e entre a aproximação cúbica e quadrática, diminuindo-se o passo de tempo. Também apresentam-se os erros de truncamento local e global para cada caso.

Os parâmetros cinéticos utilizados encontram-se na Tabela 2, Tabela 3, Tabela 4 e Tabela 5. Considera-se a densidade de nêutrons inicial como $n_0 = 1 \ cm^{-3}$ e a concentração de nêutrons atrasados $C_i(0) = \frac{\beta_i}{\lambda_i \Lambda}$ para i = 1 : 6. O software empregado para implementação do algoritmo foi o SciLab 5.5.1 (*http://www.scilab.org/*) em um computador com as seguintes configurações: Intel(R) Core(TM) i7-4930k CPU 3.40GHz, 16GB de RAM, Sistema operacional de 64 bits, processador com base em x64.

4.1 Inserção de Reatividade Constante

No primeiro caso, usando os parâmetros cinéticos apresentados na Tabela 2, resolvem-se as ECPN pelo Método da Aproximação Polinomial (PAM) para inserção de reatividade constante. Consideram-se quatro valores constantes de reatividade, dois deles subcríticos ($\rho = -1\beta$ e $\rho = -0, 5\beta$) e outros dois supercríticos (subpronto-crítico: $\rho = 0, 5\beta$ e pronto-crítico: $\rho = 1\beta$). Os resultados obtidos são comparados com

i	eta_{i}	$\lambda_i(s^{-1})$	
1	0,000285	0,0127	
2	0,0015975	0,0317	
3	0,001410	0, 115	
4	0,0030525	0,311	
5	0,00096	1,40	
6	0,000195	3,87	
	$\beta=0,0075$		

Tabela 2: Parâmetros cinéticos para um reator térmico I com $\Lambda = 5 \cdot 10^{-4} s$.

Tabela 3: Parâmetros cinéticos para um reator térmico II com $\Lambda = 2 \cdot 10^{-5}s$.

i	β_i	$\lambda_i(s^{-1})$
1	0,000266	0,0127
2	0,001491	0,0317
3	0,001316	0,115
4	0,002849	0,311
5	0,000896	1,40
6	0,000182	3,87
	$\beta=0,007$	

Tabela 4: Parâmetros cinéticos para um reator com $\Lambda = 3 \cdot 10^{-5} s$.

i	eta_{i}	$\lambda_i(s^{-1})$
1	0,000214	0,0124
2	0,001423	0,0305
3	0,001247	0,111
4	0,002568	0,301
5	0,000748	1, 14
6	0,000273	3,01
	$\beta=0,006473$	

Tabela 5: Parâmetros cinéticos para um reator térmico III com $\Lambda = 5 \cdot 10^{-5} s$.

i	eta_{i}	$\lambda_i(s^{-1})$
1	0,00021	0,0124
2	0,00141	0,0305
3	0,00127	0,111
4	0,00255	0,301
5	0,00074	1, 13
6	0,00027	3,00
	$\beta=0,00645$	

o método Backward Euler Finite Diference (BEFD) presente em (GANAPOL, 2013).

Para o primeiro caso de reatividade, apresentam-se respectivamente na Tabela 6 e 7 os resultados para a densidade de nêutrons em cm^{-3} e tempo computacional em s para inserção de reatividade constante $\rho = -1\beta$, com $\Delta t = 0,001s$ fixo variando as aproximações e com Δt adaptativo com aproximação linear. Comparando-se a Tabela 6 com a Tabela 8, nota-se que ao diminuir o passo de tempo (utilizando aproximação linear) obtém-se um maior aumento da precisão do que ao aumentar a ordem da aproximação e fixar o passo de tempo. Por exemplo, utilizando como passo de tempo $\Delta t = 0,0001s$ e aproximação linear, o tempo computacional requerido é de 74,642s e apresenta erro relativo de $1,57 \cdot 10^{-8}$ comparado ao método BEFD, enquanto que, utilizando aproximadamente o mesmo tempo computacional o erro relativo é de $9,3 \cdot 10^{-3}$ empregando-se uma aproximação de décima sexta ordem (com $\Delta t = 0,001s$). Portanto, opta-se neste trabalho por fixar a aproximação e variar o tamanho do passo de tempo. Outra possibilidade, fixando o tipo de aproximação, seria usar o passo de tempo adaptativo. Porém, ao analisar a Tabela 7 é evidente que o tempo computacional aumenta significativamente. Isso se justifica pelo fato de que o esforço computacional é maior ao ter que avaliar em cada iteração a precisão utilizando a estrutura seletiva *if* e *else*. Apesar do controle adaptativo do passo de tempo controlar os erros gerados conforme a precisão prescrita, o esforço computacional prejudica a obtenção dos resultados. Diante disso, emprega-se para todos casos de reatividade a serem apresentados uma aproximação linear variando o passo de tempo.

A Figura 4 mostra os resultados para reatividade constante $\rho = -1\beta$, com aproximação linear, quadrática e cúbica. Percebe-se que as três aproximações representam bem as soluções quando comparadas ao método BEFD, mas é importante destacar que a aproximação linear tem uma melhor performance computacional, como mencionado anteriormente. Na Figura 5 apresenta-se a solução para a reatividade $\rho = -0,5\beta$, na Figura 6 para $\rho = 0,5\beta$ e, para finalizar o caso constante, na Figura 7 para $\rho = 1\beta$.

Utilizando como passo de tempo $\Delta t = 0,001s$ e $\Delta t = 0,0001s$, na Tabela 8 exibe-se a densidade de nêutrons em cm^{-3} até 100s, para todos os casos constantes citados, e na Tabela 9 apresentam-se seus correspondentes tempos computacionais.

De acordo com os gráficos e tabelas pode-se perceber que o método PAM aproxima-se satisfatoriamente dos resultados do método BEFD. No subcaso da reatividade subcrítica $\rho = -1\beta$ o maior desvio relativo ocorre em 0, 1s, para $\Delta t = 0,001s$ é de aproximadamente $4,24 \cdot 10^{-5}$ e para $\Delta t = 0,0001s$ é de $4,24 \cdot 10^{-7}$. Para o subcaso subcrítico $\rho = -0,5\beta$ o maior desvio relativo ocorre em 0,1s, com $\Delta t = 0,001s$ é de $1,88 \cdot 10^{-5}$ e com $\Delta t = 0,0001s$ é de $1,88 \cdot 10^{-7}$. Já para a reatividade subpronto-crítica, o maior desvio relativo acontece também no primeiro instante, com $\Delta t = 0,001s$ é de $4,41 \cdot 10^{-6}$ e com $\Delta t = 0,0001s$ é de $4,44 \cdot 10^{-8}$. Por fim, para o caso prontocrítico, o maior desvio relativo com $\Delta t = 0,001s$ é de $2,85 \cdot 10^{-4}$ e com $\Delta t = 0,0001s$ é de $2,85 \cdot 10^{-6}$, ambos ocorrendo no instante 100s. Pode-se perceber pela Tabela 8 que para vários instantes de tempo considerados, para os dois passos de tempo, a solução via PAM é a mesma que a encontrada na literatura. Cabe ressaltar que os desvios relativos foram calculados em relação aos resultados da literatura.

Nota-se que o tempo computacional para cada subcaso de reatividade constante é aproximadamente o mesmo. Ao diminuir o passo de tempo, percebe-se que há um aumento de uma ordem de grandeza no tempo computacional, com exceção do primeiro instante de tempo.

A Tabela 10 mostra os erros relativos entre as aproximações cúbica (AC), quadrática (AQ) e linear (AL) com diferentes passos de tempo para o caso $\rho = -1\beta$. Observando os erros relativos entre as aproximações linear e quadrática, pode-se notar que conforme reduz-se o passo de tempo em uma ordem de grandeza, o maior erro também diminui uma ordem. Já para o erro relativo entre as aproximações cúbica e quadrática, há uma redução de duas ordens de grandeza a cada diminuição do Δt .

Na Tabela 11 apresentam-se, com a utilização de diferentes Δt , o maior erro cometido localmente pelo Estimador de Lagrange e o erro global através do teorema da estabilidade juntamente com a constante de Lipschitz. Analisando esta Tabela, pode-se perceber que o maior erro local diminui em duas ordens de grandeza ao reduzir o passo de tempo de $\Delta t = 0,01s$ para $\Delta t = 0,001s$ e de $\Delta t = 0,001s$ para $\Delta t = 0,0001s$. Já o erro global diminui uma ordem de grandeza ao reduzir o passo de tempo de $\Delta t = 0,01s$ para $\Delta t = 0,001s$ e três ordens de grandeza de $\Delta t = 0,001s$ para $\Delta t = 0,0001s$.

4.2 Inserção de Reatividade Rampa

Para o segundo caso, utilizando os parâmetros cinéticos apresentados na Tabela 3, considera-se agora uma inserção de reatividade linear $\rho(t) = at$, onde a = 0, 1\$. Usando como passo de tempo $\Delta t = 0,001s$ e $\Delta t = 0,0001s$, comparam-se os resultados obtidos em cm^{-3} com o método BEFD mostrados na Figura 8 e Tabela 12 até 11s.

Analisando os gráficos e tabelas da reatividade rampa pode-se concluir que os resultados encontrados assemelham-se com o método BEFD. Para $\Delta t = 0,001s$, o maior desvio relativo ocorrido é de $6,36 \cdot 10^{-3}$, enquanto que, para $\Delta t = 0,0001s$ é de $6,33 \cdot 10^{-5}$, ambos ocorrem no instante 11s.

Percebe-se que o tempo computacional em segundos, presente na Tabela 13 para este caso, aumenta uma ordem de grandeza ao diminuir $\Delta t = 0,001s$ para $\Delta t = 0,0001s$ em todos instantes.

A Tabela 14 mostra os erros relativos entre as aproximações cúbica, quadrática

Aproximação	t(s)	PAM	Tempo
		$\Delta t = 0,001s$	Computacional (s)
	0, 1	0,520542216	0,017
Linear	1	0,433333435	0,091
	10	0,236110650	0,809
	100	0,028667642	7,759
	0, 1	0,520618135	0,047
Quadrática	1	0,433695421	0,1564
	10	0,236987638	1,373
	100	0,028930492	20,014
	0,1	0,520607350	0,051
Cúbica	1	0,433699011	0,188
	10	0,236996513	1,716
	100	0,028933165	23,634
	0, 1	0,520607353	0,067
4 ^a ordem	1	0,433699036	0,249
	10	0,236996579	2,137
	100	0,028933185	27,174

Tabela 6: Densidade de nêutrons em cm^{-3} e tempo computacional em s para inserção de reatividade constante $\rho = -1\beta \operatorname{com} \Delta t = 0,001s$ fixo e variando as aproximações.

Tabela 7: Densidade de nêutrons e	em cm	e^{-3} e tempo col	mputacional em s pa	ra inserção
de reatividade constante $\rho = -1\beta$	com Z	Δt adaptativo.		
Precisão prescrita (ξ)	t(s)	PAM	Tempo	
		$\Delta t = 0.001s$	Computacional (s)	

Precisão prescrita (ξ)	t(s)	PAM	Tempo
		$\Delta t = 0,001s$	Computacional (s)
	0, 1	0,520554552	0,078
10^{-4}	1	0,433333486	0,593
	10	0,236110747	7,728
	100	0,028667690	283,079
	0, 1	0,520623067	0,219
10^{-5}	1	0,433327170	2,182
	10	0,236111127	42,592
	100	0.028667650	2304.305

Reatividade	t(s)	PAM	PAM	BEFD
		$\Delta { m t}={ m 0}, { m 001s}$	$\Delta t = 0,0001 s$	
	0, 1	${\bf 0, 520542216}$	0 , 520564066	0,5205642866
$\rho = -1\beta$	1	${\bf 0}, {\bf 433333435}$	0 , 433333445	0,4333334453
	10	0 , 236110650	0 , 236110651	0,2361106508
	100	${\bf 0,028667642}$	0 , 028667642	0,02866764245
	0, 1	0 , 698912114	0 , 698925094	0,6989252256
$\rho=-0,5\beta$	1	0,607053557	0 , 607053566	0,6070535656
	10	0 , 396077690	0 , 396077691	0,3960776907
	100	0 , 071582854	0 , 071582854	0,07158285444
	0, 1	${\bf 1, 533119402}$	1,533112714	1,533112646
$\rho=0,5\beta$	1	${\bf 2,511494396}$	${\bf 2,511494293}$	2,511494291
	10	${\bf 14, 21502549}$	14 , 21502524	14,21502524
	100	${\bf 80061449, 33}$	${\bf 80061435,76}$	80061435, 62
	0, 1	2 , 515769054	2 , 515766171	2,515766141
	0, 5	${f 10, 3625526}$	10 , 362534	10,36253381
$\rho = 1\beta$	1	${f 32, 1836363}$	$\boldsymbol{32,1835419}$	32,18354095
	10	3247071362	3246979823	3246978898
	100	${\bf 2,597224141E+89}$	${\bf 2,59649204E+89}$	2,596484646E + 89

Tabela 8: Densidade de nêutrons em cm^{-3} para inserção de reatividade constante.

Figura 4: Densidade de nêutrons para aproximação linear, quadrática e cúbica utilizando PAM com $\rho = -1\beta$.

Figura 5: Densidade de nêutrons para reatividade constante com $\rho = -0, 5\beta$.

Figura 6: Densidade de nêutrons para reatividade constante com $\rho = 0, 5\beta$.

Figura 7: Densidade de nêutrons para reatividade constante com $\rho=1\beta$ de 0 a 10 segundos.

Reatividade	t(s)	Tempo Computacional (s)	Tempo Computacional (s)
		$\Delta t = 0,001s$	$\Delta t = 0,0001s$
	0, 1	0,017	0,082
$\rho = -1\beta$	1	0,091	0,756
	10	0,809	7,516
	100	7,759	74,642
	0, 1	0,016	0,083
$\rho=-0,5\beta$	1	0,083	0,755
	10	0,758	7,475
	100	7,467	74,556
	0, 1	0,016	0,082
$\rho=0,5\beta$	1	0,084	0,753
	10	0,76	7,505
	100	7,569	74,955
	0, 1	0,017	0,082
	0, 5	0,049	0,407
$\rho = 1\beta$	1	0,089	0,807
	10	0,757	7,735
	100	7,86	74,647

Tabela 9: Tempo computacional para inserção de reatividade constante.

e linear com diferentes passos de tempo. Ao examinar os erros relativos entre as aproximações linear e quadrática, pode-se perceber que a redução do passo de tempo de $\Delta t = 0,01s$ para $\Delta t = 0,001s$ gera uma diminuição de aproximadamente 82% no maior erro cometido, enquanto que, ao reduzir de $\Delta t = 0,001s$ para $\Delta t = 0,0001s$ diminui uma ordem de grandeza. Ao passo que, para o erro relativo entre as aproximações cúbica e quadrática, há uma redução de uma ordem de grandeza de $\Delta t = 0,01s$ para $\Delta t = 0,001s$ para $\Delta t = 0,001s$.

A Tabela 15 apresenta os erros locais e globais para a reatividade do tipo rampa. Nota-se que o maior erro local diminui duas ordens de grandeza a cada vez que se reduz o passo de tempo. O erro global diminui uma ordem de grandeza de $\Delta t = 0,01s$ para $\Delta t = 0,001s$, enquanto que, diminui duas ordens de $\Delta t = 0,001s$ para $\Delta t = 0,001s$.

4.3 Inserção de Reatividade Quadrática

Neste tipo de reatividade, resolvem-se as ECPN pelo PAM para uma reatividade do tipo rampa quadrática, dada por:

$$\rho(t) = at + bt^2,\tag{99}$$

onde *a* e *b* são constantes arbitrárias.

Os parâmetros nucleares estão presentes na Tabela 2 com $\Lambda = 1 \cdot 10^{-4}$ e ilustra-se na Figura 9 a resposta para a densidade de nêutrons em cm^{-3} até 1,2s, estabelecendo um parâmetro fixo b = 0,003 e assumindo três valores para a: -b/10, 0 e b/10. Para a reatividade deste caso, não foram encontrados resultados numéricos na literatura e, por isso, apresenta-se apenas o gráfico. O ajuste do parâmetro *a* pode controlar o crescimento da densidade de nêutrons, que fisicamente pode representar o movimento das barras de controle dada pela variação da reatividade com o tempo (PETERSEN, 2011).

Apresenta-se o tempo computacional com a = -b/10 na Tabela 16. Constata-se, com exceção do instante 1*s*, que ocorre um aumento de uma ordem de grandeza ao diminuir Δt em também uma ordem.

A Tabela 17 apresenta os maiores erros relativos cometidos entre as aproximações cúbica (AC), quadrática (AQ) e linear (AL) com diferentes passos de tempo e considerando a = -b/10 para o caso de reatividade quadrática. Analisando os erros relativos entre as aproximações linear e quadrática, observa-se que a redução de cada passo de tempo diminui uma ordem de grandeza no maior erro, enquanto que para o erro relativo entre as aproximações cúbica e quadrática, há uma redução de duas ordens.

Na Tabela 18 encontram-se os valores dos erros locais e globais variando Δt e

•••	mpe para e ea	. <i>p</i>	
-	Erro Relativo	Passo de tempo	Maior erro
		$\Delta t = 0,01s$	0,089242595
	$\frac{AQ-AL}{AQ}$	$\Delta t = 0,001s$	0,009085556
	,	$\Delta t = 0,0001s$	0,000910118
		$\Delta t = 0,01s$	0,009702389
	$\frac{AC-AQ}{AC}$	$\Delta t = 0,001s$	0,000092392
		$\Delta t = 0,0001s$	0,00000919

Tabela 10: Erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para o caso $\rho = -1\beta$.

Tabela 11: Erro global e maior erro local variando Δt para o caso de reatividade $\rho = -1\beta$.

$\Delta t(s)$	Maior Erro Local	Erro Global
0,01	0,016668450	0,031350880
0,001	0,000218351	0,003754346
0,0001	0,000002243	0,000003218

Figura 8: Densidade de nêutrons para reatividade rampa de 0 a 8 segundos.

t(s)	PAM	PAM	BEFD
-(-)	$\Delta { m t}=0,001{ m s}$	$\Delta { m t}=0,0001{ m s}$	
2	1,33820001	1,33820005	1,338200050
4	2 , 22844174	2 , 228441895	2,228441897
6	${f 5,582051378}$	${f 5,582052438}$	5,582052449
8	${f 42,78626619}$	${f 42,78629544}$	42,78629573
10	451210 , 9822	451164,0975	451163, 6239
11	${\bf 1,803607722E+16}$	${\bf 1,792327126E+16}$	1,792213607E + 16

Tabela 12: Densidade de nêutrons em cm^{-3} para inserção de reatividade rampa com $\rho=0,1\beta t.$

Tabela 13: Tempo computacional para inserção de reatividade rampa.

t(s)	Tempo Computacional (s)	Tempo Computacional (s)
	$\Delta t = 0,001s$	$\Delta t = 0,0001s$
2	0,218	1,701
4	0,405	3,432
6	0,53	4,93
8	0,702	6,365
10	0,858	7,675
11	0,951	8,283

Tabela 14: Erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para a reatividade do tipo rampa.

			1
Erro Relativo		Passo de tempo	Maior erro
		$\Delta t = 0,01s$	0,803356488
	$\frac{AQ-AL}{AQ}$	$\Delta t = 0,001s$	0,145239270
	,	$\Delta t = 0,0001s$	0,015713840
		$\Delta t = 0,01s$	0,721724830
	$\frac{AC-AQ}{AC}$	$\Delta t = 0,001s$	0,010826184
		$\Delta t = 0,0001s$	0,000107540

Tabela 15: Erro global e maior erro local variando Δt para o caso de reatividade rampa.

$\Delta t(s)$	Maior Erro Local	Erro Global
0,01	0,000319267	0,000512296
0,001	0,000006430	0,000010628
0,0001	0,00000064	0,00000114

assumindo a = -b/10. No caso de reatividade quadrática, percebe-se que tanto o maior erro local quanto o erro global diminuem duas ordens de grandeza ao reduzir o passo de tempo. Outro fato que pode ser destacado é que o erro global, para este caso, é da mesma ordem de grandeza do maior erro local para todos passos de tempo.

4.4 Inserção de Reatividade Zig-Zag

No quarto caso, resolvem-se as ECPN com reatividade do tipo zig-zag, dada por:

$$\rho(t) = \begin{cases}
0,0075t, & 0 \le t \le 0,5, \\
-0,0075(t-0,5) + 0,00375, & 0,5 \le t \le 1, \\
0,0075(t-1), & 1 \le t \le 1,5, \\
0,00375, & 1,5t.
\end{cases}$$
(100)

Utilizando-se os parâmetros cinéticos da Tabela 2 e com passo de tempo $\Delta t = 0,001s$ e $\Delta t = 0,0001s$, comparam-se os resultados com o método *Enhanced Piecewise Constant Approximation* (EPCA) apresentado em (PICCA; FURFARO; GANA-POL, 2013) e apresenta-se a densidade de nêutrons em cm^{-3} até 100s na Figura 10 e na Tabela 19. Na Tabela 20 são exibidos os respectivos tempos computacionais para este caso de reatividade.

Ao observar os gráficos e tabelas deste caso de reatividade, pode-se notar que os resultados encontrados aproximam-se satisfatoriamente com o método EPCA. Para $\Delta t = 0,001s$, o maior desvio relativo é de $1,91 \cdot 10^{-6}$ e para $\Delta t = 0,0001s$ é de $1,90 \cdot 10^{-8}$, ambos ocorrem no instante 1,5s.

Analisando o tempo computacional requerido para execução do método PAM, notase um aumento de uma ordem de grandeza, para todos instantes de tempo, ao diminuir $\Delta t = 0,001s$ para $\Delta t = 0,0001s$.

Na Tabela 21 encontram-se os maiores erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para o caso zig-zag. Analisando os erros relativos entre as aproximações linear e quadrática, pode-se perceber que a redução do passo de tempo, tanto de $\Delta t = 0,01s$ para $\Delta t = 0,001s$ quanto de $\Delta t = 0,001s$ para $\Delta t = 0,0001s$, reduz em uma ordem de grandeza o maior erro. Para o erro relativo entre as aproximações cúbica e quadrática, há uma redução de aproximadamente duas ordens de grandeza de $\Delta t = 0,01s$ para $\Delta t = 0,001s$ e três ordens de $\Delta t = 0,001s$ para $\Delta t = 0,0001s$.

Na Tabela 22 apresentam-se os erros locais e globais com diferentes passos de tempo. Nota-se que o maior erro local e o erro global diminuem em duas ordens de grandeza ao reduzir o passo de tempo. Assim como no caso anterior, o erro global

Figura 9: Densidade de nêutrons para reatividade quadrática $\rho(t) = at + bt^2$.

Tabela 16: Tempo computacional para inserção de reatividade quadrática.

t(S)	Tempo Computacional (s)	Tempo Computacional (s)
	$\Delta t = 0,001s$	$\Delta t = 0,0001s$
0, 5	0,071	0,438
1	0,125	0,872
1, 2	0,141	1,299

Tabela 17: Erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para o caso de reatividade quadrática.

Erro Relativo	Passo de tempo	Maior erro
	$\Delta t = 0,01s$	0,046000579
$\frac{AQ-AL}{AQ}$	$\Delta t = 0,001s$	0,004915708
·	$\Delta t = 0,0001s$	0,000494769
	$\Delta t = 0,01s$	0,011076842
$\frac{AC-AQ}{AC}$	$\Delta t = 0,001s$	0,000109025
	$\Delta t = 0,0001s$	0,00001088

Tabela 18: Erro global e maior erro local variando Δt para o caso de reatividade quadrática.

$\Delta t(s)$	Maior Erro Local	Erro Global
0,01	0,000047831	0,000083048
0,001	0,00000483	0,00000848
0,0001	0,00000005	0,00000008

possui a mesma ordem de grandeza do maior erro local cometido em todos passos de tempo.

4.5 Inserção de Reatividade Senoidal

Para o quinto caso, considera-se a reatividade senoidal primeiramente para um grupo de precursores de nêutrons atrasados em um reator rápido, com $\beta = 0,0079$, $\lambda = 0,077/s$, tempo médio de geração $\Lambda = 10^{-8}s$ e reatividade $\rho(t) = \rho_0 sen(\pi t/T)$, onde $\rho_0 = 0,0053333$ e o período é T = 50s. O passo de tempo usado para o PAM foi $\Delta t = 0,001s$ e $\Delta t = 0,0001s$. Os resultados para a densidade de nêutrons em cm^{-3} até 100s são comparados com o método BEFD e apresentados na Figura 11 e Tabela 23.

Os gráficos e tabelas do caso senoidal com um grupo de precursores apresentam resultados satisfatórios comparados com o método BEFD de (GANAPOL, 2013). Para $\Delta t = 0,001s$, o maior desvio relativo foi de aproximadamente $2,43 \cdot 10^{-8}$ ocorrido no instante 40s e para $\Delta t = 0,0001s$ foi de aproximadamente $9,68 \cdot 10^{-10}$ no instante 10s. Em vários instantes de tempo, com $\Delta t = 0,0001s$, a solução é a mesma da presente na literatura.

Analisando o tempo computacional presente na Tabela 25, nota-se que o tempo computacional requerido aumenta uma ordem de grandeza para todos instantes ao reduzir o passo de tempo.

Posteriormente, usam-se os parâmetros cinéticos da Tabela 4, com seis grupos de precursores de nêutrons atrasados e uma inserção periódica de reatividade $\rho(t) = \rho_0 sen(t)$, onde $\rho_0 = 0,00073$. A densidade de nêutrons em cm^{-3} até 10s, com passo de tempo $\Delta t = 0,001s$ e $\Delta t = 0,0001s$, é apresentada na Figura 12 comparada ao Método da Decomposição presente em (PETERSEN et al., 2011a). A Tabela 24 exibe os resultados para este subcaso senoidal.

Examinando os gráficos e tabelas do subcaso senoidal com 6 grupos de precursores, nota-se que os resultados obtidos aproximam-se satisfatoriamente com os da literatura (Método da Decomposição). Tanto para $\Delta t = 0,001s$ como $\Delta t = 0,0001s$, o maior desvio relativo ocorre no instante 5s e é de aproximadamente $1,82 \cdot 10^{-5}$. Portanto, a redução do passo de tempo neste caso não altera significativamente a precisão da solução.

Observando os tempos computacionais apresentados na Tabela 25, percebe-se que o tempo requerido para execução do método PAM aumenta em uma ordem de grandeza ao diminuir Δt em também uma ordem. Vale destacar que é o caso que apresenta um custo computacional maior para reatividade dependente do tempo ao diminuir o passo de tempo.

A Tabela 26 mostra os erros relativos entre as aproximações cúbica, quadrática

Figura 10: Densidade de nêutrons para reatividade zig-zag de 0 a 2 segundos.

t(s)	PAM	PAM	EPCA
	$\Delta t = 0,001 s$	$\Delta t = 0,0001 s$	
0, 5	1,72141948	${\bf 1,721422393}$	1,721422422
1	${\bf 1, 211125799}$	${\bf 1, 211127399}$	1,211127415
1, 5	${\bf 1,892222531}$	${\bf 1,892226104}$	1,892226140
2	${\bf 2}, {\bf 521600093}$	${\bf 2}, {\bf 521600526}$	2,521600530
10	${\bf 12,04710289}$	12,04710533	12,04710535
100	${f 68155565,88}$	${f 68155568,86}$	68155568, 88

Tabela 19: Densidade de nêutrons em cm^{-3} para inserção de reatividade zig-zag.

Tabela 20: Tempo computacional para inserção de reatividade zig-zag.

t(s)	Tempo Computacional (s)	Tempo Computacional (s)
	$\Delta t = 0,001s$	$\Delta t = 0,0001s$
0, 5	0,367	1,89
1	0,414	3,718
1, 5	0,592	5,597
2	0,771	7,49
10	3,738	36,834
100	37,046	370, 341

e linear. Observando os erros relativos entre as aproximações linear e quadrática, nota-se que o erro relativo reduz uma ordem de grandeza a cada vez que se diminui o passo de tempo. Já para o erro relativo entre as aproximações cúbica e quadrática, há uma redução de duas ordens de grandeza a cada vez que se diminui o passo de tempo em uma grandeza.

Na Tabela 27 encontram-se os maiores erros locais e os erros globais com diferentes passos de tempo para o caso senoidal com seis grupos de precursores de nêutrons atrasados. Percebe-se que o maior erro local e o erro global diminuem em duas ordens de grandeza a cada redução do passo de tempo. Novamente, como nos casos estudados anteriormente, o maior erro local e o erro global possuem a mesma ordem de grandeza.

4.6 Inserção de Reatividade Fonte Pulsada

Para o sexto caso de reatividade do tipo fonte pulsada, considera-se um grupo de precursores de nêutrons atrasados em um reator térmico com $\beta = 0,006502$, $\lambda = 0,077/s$, $\Lambda = 5 \cdot 10^{-4}s$ e a reatividade dada por:

$$\rho(t) = \begin{cases}
4\beta exp(-2t^2), & t < 1s, \\
0, & t > 1s.
\end{cases}$$
(101)

Utiliza-se para o PAM os passos de tempo $\Delta t = 0,001s$ e $\Delta t = 0,0001s$. A Figura 13 e a Tabela 28 mostram os resultados obtidos para a densidade de nêutrons em cm^{-3} até 3s comparados com o método BEFD e na Tabela 29 seus respectivos tempos computacionais para cada passo de tempo.

De acordo com os gráficos e tabelas percebe-se que o método PAM aproxima-se bem dos resultados do método BEFD, porém, dos casos sem efeitos de temperatura, é o que apresenta maior discrepância. Para $\Delta t = 0,001s$, observa-se que a densidade de nêutrons apresenta, no instante 0, 8s, o maior desvio relativo com o valor de $6,03 \cdot 10^{-3}$ e utilizando $\Delta t = 0,0001s$ é de aproximadamente $6,00 \cdot 10^{-5}$.

Percebe-se que no tempo computacional, com exceção do instante de tempo 3s, há um aumento de uma ordem de grandeza ao diminuir o passo de tempo.

Na Tabela 30 exibem-se os erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para a reatividade fonte pulsada. Examinando os erros relativos entre as aproximações linear e quadrática, nota-se que a cada redução do Δt ocorre uma diminuição de duas ordens de grandeza no maior erro. Já para o erro relativo entre as aproximações cúbica e quadrática, há uma

Erro Relativo	Passo de tempo	Maior erro
	$\Delta t = 0,01s$	0,439237618
$\frac{AQ-AL}{AQ}$	$\Delta t = 0,001s$	0,055905478
,	$\Delta t = 0,0001s$	0,005733256
	$\Delta t = 0,01s$	0,015680954
$\frac{AC-AQ}{AC}$	$\Delta t = 0,001s$	0,000156244
-	$\Delta t = 0,0001s$	0,000000779

Tabela 21: Erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para a reatividade zig-zag.

Tabela 22: Erro global e maior erro local variando Δt para o caso de reatividade zigzag.

$\Delta t(s)$	Maior Erro Local	Erro Global
0,01	0,001906287	0,002740367
0,001	0,000019077	0,000036149
0,0001	0,00000191	0,00000307

Figura 11: Densidade de nêutrons para reatividade senoidal $\rho(t) = 0,0053333sen(\pi t/50)$.

Figura 12: Densidade de nêutrons para reatividade senoidal $\rho(t) = 0,00073sen(t)$.

Reatividade	t(s)	PAM	PAM	BEFD
		$\Delta t = 0,001 s$	$\Delta t = 0,0001 s$	
	10	2 , 065383514	2,065383517	2,065383519
	20	${\bf 8,854133922}$	${f 8,854133918}$	8,854133921
	30	${\bf 40, 64354318}$	${f 40, 64354225}$	40,64354222
	40	${\bf 61}, {\bf 35607666}$	${f 61,35607515}$	61,35607517
$\rho = 0,0053333$	50	${\bf 46, 10628843}$	${\bf 46}, {\bf 10628771}$	46,10628770
$sen(\pi t/50)$	60	${\bf 29}, {\bf 12634891}$	${\bf 29, 1263484}$	29,12634840
	70	${f 18,95177077}$	18,95177043	18,95177042
	80	${\bf 13, 93829237}$	13,93829211	13,93829211
	90	${\bf 12}, {\bf 53353428}$	${f 12,53353406}$	12,53353406
	100	15,44816539	15,44816514	15,44816514

Tabela 23: Densidade de nêutrons em cm^{-3} para inserção de reatividade senoidal com um grupo de precursores de nêutrons atrasados.

Reatividade	t(s)	PAM	PAM	Decomposição
		$\Delta t = 0,001s$	$\Delta t = 0,0001s$	
	1	${\bf 1, 123940559}$	${\bf 1, 123940509}$	1,12394
	2	${\bf 1, 168889665}$	${\bf 1, 16888959}$	1,16884
	3	1,07448471	1,074484703	1,07442
	4	0 , 953829252	0 , 953829290	0,95380
$\rho = 0,00073sen(t)$	5	0 , 907353445	0 , 907353490	0,90737
	6	0 , 961539546	0 , 961539576	0,96158
	7	1,087458937	1,087458911	1,08749
	8	1 , 171671353	${\bf 1, 171671274}$	1,17164
	9	${\bf 1, 111304463}$	${\bf 1, 111304437}$	1,11124
	10	0 , 984680291	0 , 984680323	0,98464

Tabela 24: Densidade de nêutrons em cm^{-3} para inserção de reatividade senoidal com seis grupos de precursores de nêutrons atrasados.

Reatividade	t(s)	Tempo Computacional (s)	Tempo Computacional (s)
		$\Delta t = 0,001s$	$\Delta t = 0,0001s$
	10	0,343	3,089
	20	0, 64	5,912
	30	0,952	8,611
	40	1,28	11,232
$\rho = 0,0053333$	50	1,575	14,071
$sen(\pi t/50)$	60	1,872	16,614
	70	2,199	19,172
	80	2,481	22,121
	90	2,808	24,617
	100	3,104	27,081
	1	0,433	3,929
	2	0,777	8,346
	3	1,171	13,149
	4	1,61	18,403
$\rho = 0,00073sen(t)$	5	1,966	24,303
	6	2,315	30,513
	7	2,727	37,374
	8	3,116	45,024
	9	3,519	52,96
	10	3,957	61, 35

Tabela 25: Tempo computacional para inserção de reatividade senoidal.

redução de duas ordens de grandeza diminuindo $\Delta t = 0,01s$ para $\Delta t = 0,001s$ e três ordens de grandeza de $\Delta t = 0,001s$ para $\Delta = 0,0001s$.

Os erros locais e global não foram calculados para este caso, pois entende-se que a fórmula de Inhour, utilizada como solução exata, talvez não descreva corretamente este tipo de reatividade.

4.7 Perturbação na Reatividade

Para fins de análise do comportamento da solução perturba-se a reatividade. As respostas das densidades de nêutrons com e sem perturbação em cm^{-3} são mostradas nas Figuras 14, 15, 16, 17, 18 e 19. Em todos os casos a serem apresentados, utiliza-se como passo de tempo $\Delta t = 0,0001s$. As reatividades do tipo constante, rampa, quadrática, zig-zag, senoidal com 6 grupos de precursores e fonte pulsada, respectivamente, incluindo a perturbação são dadas por:

$$\rho = -1\beta + \delta, \tag{102}$$

$$o(t) = 0, 1\beta t + \delta, \tag{103}$$

$$\rho(t) = at + bt^2 + \delta, \tag{104}$$

$$\rho(t) = \begin{cases}
0,0075t + \delta, & 0 \le t \le 0, 5, \\
-0,0075(t - 0, 5) + 0,00375 + \delta, & 0, 5 \le t \le 1, \\
0,0075(t - 1) + \delta, & 1 \le t \le 1, 5, \\
0,00375 + \delta, & 1, 5t.
\end{cases}$$
(105)

$$\rho(t) = 0,0073sen(t) + \delta,$$
(106)

$$\rho(t) = \begin{cases}
4\beta exp(-2t^2) + \delta, & t < 1s, \\
0 + \delta, & t > 1s.
\end{cases}$$
(107)

onde $\delta = \tau (rand(t_0) - 0, 5)$ e assume-se $\tau = 10^{-2}$. Para o caso de reatividade fonte pulsada ilustrado pela Figura 19 são exibidas duas realizações para o sistema perturbado com o intuito de mostrar que ocorrem perturbações acima e abaixo da solução do PAM não-perturbado.

A fim de estudar o comportamento da densidade de nêutrons com perturbação, varia-se o tamanho dos passos de tempo e apresentam-se na Tabela 31 os valores da variância das soluções perturbadas em relação a solução do PAM. Vale destacar que são feitas cinco realizações das soluções perturbadas para calcular a variância e que utiliza-se $\tau = 10^{-2}$ para o caso constante e $\tau = 10^{-3}$ para os demais casos. Na Tabela 32 mostram-se os erros relativos entre as soluções não-perturbadas e perturbadas, com $\tau = 10^{-3}$ para as reatividades citadas acima. Observa-se que conforme diminui-

Tabela 26	: Erros	relativos	entre	as	aprox	xim	ações	cúbic	a, quad	rática	e line	ear	com	di-
ferentes p	assos	de tempo	o para	0	caso	de	reativi	dade	senoida	l com	seis	grι	ipos	de
precursore	es de n	êutrons a	trasad	los										

Passo de tempo	Maior erro
$\Delta t = 0,01s$	0,505896657
$\Delta t = 0,001s$	0,063889668
$\Delta t = 0,0001s$	0,006536384
$\Delta t = 0,01s$	0,430730713
$\Delta t = 0,001s$	0,004683636
$\Delta t = 0,0001s$	0,000046283
	$\begin{aligned} & \text{Passo de tempo} \\ & \Delta t = 0,01s \\ & \Delta t = 0,001s \\ & \Delta t = 0,001s \\ & \Delta t = 0,01s \\ & \Delta t = 0,001s \\ & \Delta t = 0,0001s \end{aligned}$

Tabela 27: Erro global e maior erro local variando Δt para o caso de reatividade senoidal com seis grupos de precursores de nêutrons atrasados.

$\Delta t(s)$	Maior Erro Local	Erro Global
0,01	0,000303845	0,000462596
0,001	0,000004463	0,000008631
0,0001	0,00000045	0,00000070

Figura 13: Densidade de nêutrons para reatividade fonte pulsada.
t(s)	PAM	PAM	BEFD
	$\Delta { m t}=0,001{ m s}$	$\Delta { m t}=0,0001{ m s}$	
0,5	9435058, 395	9380592 , 423	9380044,272
0, 8	170498868, 5	${\bf 169487791}, {\bf 0}$	169477616, 1
1	108160353, 8	107519618, 5	107513170, 4
2	4863184,473	4834396,081	4834106, 369

4833892,339

4862969, 315 4834182, 039

3

Tabela 28: Densidade de nêutrons em cm^{-3} para inserção de reatividade fonte pulsada.

Tabela 29: Tempo computacional para inserção de reatividade fonte pulsada.

t(s)	Tempo Computacional (s)	Tempo Computacional (s)
	$\Delta t = 0,001s$	$\Delta t = 0,0001s$
0, 5	0,047	0,188
0,8	0,05	0,282
1	0,062	0,348
2	0,087	0,663
3	0,123	0,964

Tabela 30: Erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para o caso de reatividade fonte pulsada.

Erro Relativo	Passo de tempo	Maior erro
	$\Delta t = 0,01s$	0,238308784
$\frac{AQ-AL}{AQ}$	$\Delta t = 0,001s$	0,009043944
,	$\Delta t = 0,0001s$	0,000089984
	$\Delta t = 0,01s$	0,108201118
$\frac{AC-AQ}{AC}$	$\Delta t = 0,001s$	0,001597606
	$\Delta t = 0,0001s$	0,00001560

se o passo de tempo, o erro relativo entre as soluções perturbadas e não-perturbadas e o valor da variância também diminui, ou seja, um menor passo de tempo controla com mais eficiência as perturbações incluídas no sistema. O método PAM mostra-se estável às perturbações incluidas na reatividade, não divergindo com a progressão das iterações.

4.8 Perturbação na Condição Inicial

Para analisar o comportamento da solução do PAM, perturba-se a condição inicial. Utiliza-se como ilustração o caso senoidal com 6 grupos de precursores de nêutrons atrasados. Na Figura 20 apresentam-se as densidades de nêutrons em cm^{-3} com os seguintes valores para a condição inicial: $n_0 = 1$, $n_0 = 1,01$, $n_0 = 1,05$, $n_0 = 1,1$, $n_0 = 0,99$, $n_0 = 0,95$ e $n_0 = 0,9$. Em todas simulações utiliza-se como passo de tempo $\Delta t = 0,0001s$.

4.9 Inserção de Reatividade Constante com Retroalimentação de Temperatura

Neste caso, resolvem-se as ECPN considerando os efeitos de retroalimentação de temperatura. Primeiramente, considera-se um grupo de precursores de nêutrons atrasados com os seguintes parâmetros cinéticos: $\beta = 0,0065$, $\Lambda = 10^{-4}$ e $\lambda = 0,07741s^{-1}$. Admitindo a densidade inicial $n_0 = 10 \ cm^{-3}$, a temperatura inicial $T_0 = 300K$, constante de proporcionalidade entre temperatura e densidade de nêutrons $H = 0,05\frac{K}{MWs}$ e coeficiente de temperatura da reatividade $\alpha = 5 \cdot 10^{-5}K^{-1}$ são estudados três casos subcríticos: $\rho_0 = 0,25\beta$, $\rho_0 = 0,5\beta$, $\rho_0 = 0,75\beta$. Os resultados encontrados são comparados ao método *Analytical Pertubation* presente em (ABOANBER; NAHLA; AL-MALKI, 2012).

As soluções para a densidade de nêutrons em cm^{-3} são mostradas nas Figuras 21, 22, 23 e na Tabela 33. Observa-se que os resultados são precisos comparados ao método *Analytical Perturbation*. Para inserção de reatividade constante $\rho_0 = 0, 25\beta$, o maior desvio relativo ocorre no instante 115s, para $\Delta t = 0,001s$ é de $6,09 \cdot 10^{-5}$ e para $\Delta t = 0,0001s$ é de $5,62 \cdot 10^{-5}$. Para o caso $\rho_0 = 0,5\beta$, o maior desvio em relação ao método da literatura para $\Delta t = 0,001s$ é de $1,73 \cdot 10^{-4}$, enquanto que para $\Delta t = 0,0001s$ é de $2,11 \cdot 10^{-4}$, ambos no instante 147s. Por fim, para a reatividade $\rho_0 = 0,75\beta$, o maior desvio ocorre no último instante de tempo, utilizando-se $\Delta t = 0,001s$ é de $1,84 \cdot 10^{-3}$ e para $\Delta t = 0,0001s$ é de $1,95 \cdot 10^{-3}$.

O tempo computacional para os três casos subcríticos de reatividade dependente do tempo e temperatura são apresentados na Tabela 34. Nota-se que para os três casos o tempo de execução é aproximadamente o mesmo para os mesmos instantes

Figura 14: Densidade de nêutrons com e sem perturbação na reatividade constante $\rho = -1\beta$.

Figura 15: Densidade de nêutrons com e sem perturbação na reatividade do tipo rampa.

Figura 16: Densidade de nêutrons com e sem perturbação na reatividade do tipo quadrática.

Figura 17: Densidade de nêutrons com e sem perturbação na reatividade do tipo zigzag.

Figura 18: Densidade de nêutrons com e sem perturbação na reatividade do tipo senoidal com 6 grupos de precursores.

Figura 19: Densidade de nêutrons com e sem perturbação na reatividade do tipo fonte pulsada.

Reatividade	$\Delta t(s)$	Variância
	0,01	0,007123474
Constante ($\rho = -1\beta$)	0,001	0,002504951
	0,0001	0,001281068
	0,01	150, 5499258
Rampa	0,001	12,51383315
	0,0001	1,954420755
	0,01	0,466520886
Quadrática	0,001	0,443411726
	0,0001	0,427750580
	0,01	0,005764137
Zig-Zag	0,001	0,001194258
	0,0001	0,000073805
	0,01	0,019039469
Senoidal	0,001	0,002739065
	0,0001	0,000364706
	0,01	1,60387D + 15
Fonte Pulsada	0,001	5,36023D + 12
	0,0001	1,64040D + 12

Tabela 31: Variância entre as soluções perturbadas e não-perturbadas.

Tabela 32: Erros relativos entre as soluções não-perturbadas e perturbadas.

Reatividade	$\Delta t(s)$	Erro Relativo
	0,01	0,079969609
Constante ($\rho = -1\beta$)	0,001	0,066024328
	0,0001	0,043545677
	0,01	0,401990267
Rampa	0,001	0,139054403
	0,0001	0,055313195
	0,01	0,145195153
Quadrática	0,001	0,044186332
	0,0001	0,023436942
	0,01	0,137926853
Zig-Zag	0,001	0,068589737
	0,0001	0,009785104
	0,01	0,144815155
Senoidal	0,001	0,068589737
	0,0001	0,026092893
	0,01	0,766055823
Fonte Pulsada	0,001	0,141525404
	0,0001	0,073579326

de tempo. Vale destacar também, que ao diminuir Δt o tempo computacional aumenta em duas ordens de grandeza, com exceção do instante 60s que aumenta uma ordem para os três casos.

Na Tabela 35 e Figura 24 exibe-se a temperatura em *K* variando com o tempo em comparação ao mesmo método da literatura. Percebe-se que os resultados para a temperatura aproximam-se satisfatoriamente do método comparado. Para o caso $\rho_0 = 0,25\beta$, o maior desvio relativo para $\Delta t = 0,001s$ é de $9,07 \cdot 10^{-7}$ (no instante 100s), enquanto que utilizando $\Delta t = 0,0001s$ é de $2,30 \cdot 10^{-6}$ (no instante 115s). Com inserção de reatividade $\rho_0 = 0,5\beta$, o maior desvio relativo para $\Delta t = 0,001s$ é de $1,02 \cdot 10^{-5}$, ao passo que empregando $\Delta t = 0,0001s$ é de $5,66 \cdot 10^{-6}$, ambos no instante 40s. Já para $\rho_0 = 0,75\beta$, utilizando-se $\Delta t = 0,001s$ o maior desvio relativo é de $2,18 \cdot 10^{-3}$ (no instante 30s), enquanto que para $\Delta t = 0,0001s$ é de $9,95 \cdot 10^{-6}$ (no instante 20s).

A Tabela 36 e Figura 25 apresentam a relação entre a reatividade e tempo com as reatividades iniciais $\rho_0 = 0, 25\beta$, $\rho_0 = 0, 5\beta$ e $\rho_0 = 0, 75\beta$ juntamente com os resultados do método *Analytical Perturbation*. O comportamento da reatividade assemelha-se satisfatoriamente ao método da literatura. Utilizando-se $\rho_0 = 0, 25\beta$, o maior desvio relativo para $\Delta t = 0,001s$ é de $3,66 \cdot 10^{-4}$ (no instante 50s) e para $\Delta t = 0,001s$ é de $5,96 \cdot 10^{-5}$ (no instante 40s). Para reatividade $\rho_0 = 0,5\beta$, o maior desvio ocorre no instante 50s, sendo $2,13 \cdot 10^{-2}$ com $\Delta t = 0,001s$ e $8,51 \cdot 10^{-3}$ com $\Delta t = 0,0001s$. Já para $\rho_0 = 0,75\beta$, o maior desvio com $\Delta t = 0,001s$ é de $6,41 \cdot 10^{-4}$ e para $\Delta t = 0,0001s$

Posteriormente, utilizam-se os parâmetros cinéticos listados na Tabela 5 para seis grupos de precursores de nêutrons atrasados. Considera-se a densidade inicial de nêutrons $1cm^{-3}$, a temperatura inicial $T_0 = 300K$, constante de proporcionalidade entre temperatura e densidade de nêutrons $H = 2, 5 \cdot 10^{-6} \frac{K}{MWs}$ e coeficiente de temperatura da reatividade $\alpha = 1K^{-1}$. Para todos subcasos de reatividade constante ($\rho_0 = 1\beta$, $\rho_0 = 1, 5\beta$ e $\rho_0 = 2\beta$) comparam-se os resultados encontrados para a densidade de nêutrons em cm^{-3} até 100s com o método BEFD e o *New Analytic Method* (NAM) apresentado em (NAHLA, 2011). Utiliza-se como passo de tempo para o PAM $\Delta t = 0,001s$, $\Delta t = 0,0001s$ e $\Delta t = 0,0001s$.

Como ilustração, na Figura 26 mostram-se os resultados para $\rho = 1\beta$. Na Tabela 37 exibe-se a densidade de nêutrons ao longo do tempo para os casos constantes com retroalimentação de temperatura $\rho_0 = 1\beta$ e $\rho_0 = 1,5\beta$ e, na Tabela 38, para o caso $\rho_0 = 2\beta$. Na Tabela 39, apresentam-se os tempos computacionais para os três casos citados. Já na Figura 27, mostram-se os resultados para a temperatura para os três casos citados.

Observando os gráficos e tabelas da densidade de nêutrons deste caso de reatividade, pode-se concluir que as soluções obtidas pelo método PAM aproximam-se satisfatoriamente com os métodos BEFD e NAM. Para $\Delta t = 0,001s$, percebe-se que

Figura 20: Densidade de nêutrons com e sem perturbação na condição inicial para reatividade senoidal.

Figura 21: Densidade de nêutrons para inserção de reatividade constante $\rho_0 = 0,25\beta$ com retroalimentação de temperatura.

Figura 22: Densidade de nêutrons para inserção de reatividade constante $\rho_0 = 0, 5\beta$ com retroalimentação de temperatura.

Figura 23: Densidade de nêutrons para inserção de reatividade constante $\rho_0 = 0,75\beta$ com retroalimentação de temperatura.

Reatividade	t(s)	PAM	PAM	Analytical Perturbation
		$\Delta { m t}=0,001{ m s}$	$\Delta { m t}=0,0001{ m s}$	
	10	11,91711484	11,9170007	11,916985
	20	${\bf 13, 36619499}$	${\bf 13}, {\bf 36601248}$	13,365992
	30	${f 14, 15544672}$	${\bf 14}, {\bf 15521427}$	14,155193
	40	${f 14,24992764}$	${\bf 14, 24967395}$	14,249636
	50	${f 13,74368496}$	${\bf 13, 74343815}$	13,743366
$\rho_0=0,25\beta$	60	12,79876379	${\bf 12,79854436}$	12,798441
	70	11,58783008	${\bf 11}, {\bf 58764903}$	11,587518
	80	${f 10,25914776}$	${f 10,25900805}$	10,258853
	90	${f 8,923230865}$	${f 8,923130121}$	8,922945
	100	7,653218738	${f 7,653151687}$	7,652932
	110	${\bf 6, 491492754}$	${f 6, 491453071}$	6,491133
	115	5,958084114	5,958055738	5,957721
	10	18, 19580822	18,19540128	18,195046
	20	${f 26,72726413}$	26 , 72634029	26,725939
	30	${f 31,89623743}$	${\bf 31}, {\bf 89502829}$	31,894813
	40	${f 32,59731539}$	${\bf 32}, {f 59620455}$	32,596224
	50	${f 30, 10272969}$	30 , 10192	30,102094
	60	${f 26,08091925}$	26 , 08042949	26,080507
	70	21 , 69756617	21 , 69733299	21,697222
$ \rho_0 = 0, 5\beta $	80	17,57803775	17,577983	17,577644
	90	13,98830846	13,988364	13,987887
	100	10,99492883	10,995046	10,994473
	110	8,566996173	8,5671418	8,566497
	120	6,633474614	6,6336272	6,632902
	130	5,112938625	5,1130857	5,112373
	140	3 , 927728178	${f 3,927863}$	3,927128
	147	3 , 260690369	3 , 260814625	3,260127
	10	47,699105	47,694727	47,691231
	20	${\bf 71, 461774}$	${\bf 71}, {\bf 456131}$	71,455316
	30	${f 66, 182445}$	${f 66, 179683}$	66, 179999
	40	${f 53, 153664}$	${f 53, 152884}$	53,153026
	50	${f 40,454076}$	${f 40,454277}$	40,453927
	60	30,020263	30,020875	30,020056
	70	${f 21,975056}$	${f 21,975786}$	21,974528
$\rho_0 = 0,75\beta$	80	${f 15,95632}$	15,95703	15,955435
	90	${f 11, 527386}$	${f 11,528017}$	11,526410
	100	${f 8,3002166}$	${f 8,3007505}$	8,298697
	110	${f 5,96322413}$	5,9636789	5,962025
	120	4 , 2777492	4 , 2781005	4,276512
	130	3 , 0654285	3,0657063	3,063066
	140	${f 2}, {f 1950663}$	2 , 1952834	2,193659
	150	${f 1,5710115}$	1,5711798	1,568125
	153	1,4209065	1,4210622	1,418485

Tabela 33: Densidade de nêutrons em cm^{-3} para inserção de reatividades constantes subc<u>ríticas.</u>

Reatividade	t(s)	Tempo	Tempo
	()	Computacional (s)	Computacional (s)
		$\Delta t = 0,001s$	$\Delta t = 0,0001s$
	10	0,593	28,657
	20	1 , 7	109 , 73
	30	3 , 182	$\boldsymbol{242,456}$
	40	5 , 242	$\boldsymbol{428,752}$
	50	7,831	$\boldsymbol{664,842}$
$\rho_0 = 0,25\beta$	60	11,03	958,466
	70	${\bf 14,726}$	$\boldsymbol{1307,189}$
	80	18,814	$\boldsymbol{1730,105}$
	90	${\bf 23, 462}$	$\boldsymbol{2205,017}$
	100	$\boldsymbol{28,673}$	$\boldsymbol{2981,48}$
	110	34 , 382	3451 , 37
	115	$\boldsymbol{37,455}$	$\boldsymbol{3760, 561}$
	10	0 , 577	28,658
	20	1,623	109, 387
	30	3 , 229	242 , 581
	40	5 , 242	$\boldsymbol{427,94}$
	50	7,956	666, 916
	60	10 , 936	956,609
	70	${\bf 14,71}$	$\boldsymbol{1311,728}$
$\rho_0 = 0, 5\beta$	80	${\bf 18,783}$	$\boldsymbol{1728,467}$
	90	$\boldsymbol{23,525}$	2203, 363
	100	$\boldsymbol{28,626}$	$\boldsymbol{2780,627}$
	110	34 , 491	3743,989
	120	$\boldsymbol{40,685}$	$\boldsymbol{4523,79}$
	130	$\boldsymbol{47,518}$	4957, 345
	140	$\boldsymbol{54,678}$	$\boldsymbol{5768,234}$
	147	60 , 232	6526,004
	10	0,702	28,72
	20	1,701	109, 528
	30	3 , 182	$\boldsymbol{245,828}$
	40	5,242	$\boldsymbol{485,722}$
	50	7,971	669, 709
	60	11,793	956, 391
	70	$\boldsymbol{14,664}$	1320, 589
$ \rho_0 = 0,75\beta $	80	18,782	1926, 65
/ 1	90	23,837	2608, 433
	100	28,829	2834, 322
	110	34, 382	3427,861
	120	40,856	4122,089
	130	47,69	5576, 316
	140	$\boldsymbol{54,725}$	6596, 1
	150	62,634	7017.45
	153	73, 164	7478.856

Tabela 34: Tempo Computacional para inserção de reatividade constante.

Reatividada				Analytical Porturbation
i teativiuaue	1(5)	$\mathbf{F}\mathbf{A}\mathbf{I}\mathbf{V}\mathbf{I}$	$\mathbf{\nabla F} = \mathbf{\nabla} \mathbf{\nabla} \mathbf{\nabla} \mathbf{\nabla} \mathbf{\nabla} \mathbf{\nabla} \mathbf{\nabla} \mathbf{\nabla}$	Analytical Perturbation
	10	$\Delta t = 0,0018$	$\Delta t = 0,00018$	205 409910
	10	303,4922790 211 8277067		300, 492219 211 927652
	20	311,8377907	311,8370820 919 7479910	311,037033
	30 40	318, 7476008	318,7473819	318, (4(3))
	40 50	325,876707	325,8763653	325,876708
	50	332,8970354	332,8965675	332,896942
$\rho_0 = 0,25\beta$	60 70	339,5472368	339,5466517	339,547050
	70	345,6516143	345,6509288	345,651356
	80	351,1156607	351,1148951	351,115344
	90	355,9097677	355,9089421	355,909445
	100	360,0500474	360,0491801	360,049753
	110	363, 5811592	363,5802655	363, 581103
	115	365, 136672	365, 1357698	365,136628
	10	306,9532514	${f 306,9531453}$	306,952849
	20	318, 2567203	${f 318,2562809}$	318,255655
	30	${\bf 333}, {\bf 1015553}$	$\bf 333, 1005662$	333,099883
	40	349, 3942159	349, 3926335	349,390656
	50	${f 365, 1651627}$	${f 365, 1630962}$	365, 161749
	60	${\bf 379}, {\bf 2457455}$	${f 379,2433558}$	379,242696
	70	${f 391, 1889211}$	${\bf 391}, {\bf 186354}$	391,186282
$\rho_0 = 0, 5\beta$	80	400 , 9892481	$\boldsymbol{400,98661}$	400,987074
	90	408 , 8563249	$\boldsymbol{408,85369}$	408,854429
	100	${\bf 415, 0774601}$	${f 415,07487}$	415,075780
	110	${\bf 419, 9457002}$	${\bf 419}, {\bf 94318}$	419,944209
	120	${\bf 423, 7269061}$	$\boldsymbol{423,72446}$	423,725630
	130	${f 426, 6479796}$	$\boldsymbol{426,64561}$	426, 646742
	140	${f 428,8956765}$	${f 428,89338}$	428,894540
	147	${\bf 430}, {\bf 1501451}$	${f 430, 1478901}$	430, 148962
	10	313, 33873	${\bf 313}, {\bf 33788}$	313, 336018
	20	${\bf 344}, {\bf 81265}$	$\boldsymbol{344,80891}$	344,805479
	30	$\boldsymbol{379,88152}$	${\bf 379}, {\bf 87568}$	379,873244
	40	${f 409,79417}$	$\boldsymbol{409,7875}$	409,786287
	50	${f 433, 11917}$	${f 433, 11238}$	433, 112263
	60	${f 450, 63432}$	${f 450,62775}$	450,628466
	70	${f 463, 53974}$	$\boldsymbol{463, 53352}$	463, 534940
$ \rho_0 = 0,75\beta $	80	472,94738	${f 472,94152}$	472,943463
	90	479,76071	479,75518	479,757136
	100	484,67462	484,66938	484,672014
	110	488, 20888	488, 20389	488,205908
	120	490,7461	490,74131	490, 743231
	130	492,56523	492, 56059	492, 564088
	140	493, 86833	493,86382	493,865788
	150	494,8012	494, 79678	494,800892
	153	495,02541	495,02101	495,024410

Tabela 35: Temperatura em K para inserção de reatividade constante.

Figura 24: Temperatura para inserção de reatividade constante $\rho_0 = 0,25\beta$, $\rho_0 = 0,5\beta$ e $\rho_0 = 0,75\beta$ com retroalimentação de temperatura.

Figura 25: Reatividade para inserção de reatividade $\rho_0 = 0, 25\beta$, $\rho_0 = 0, 5\beta e\rho_0 = 0, 75\beta$ com retroalimentação de temperatura.

Reatividade	t(s)		PAM	Analytical Perturbation
	()	$\Delta { m t}=0,001{ m s}$	$\Delta \mathrm{t}=0,0001\mathrm{s}$,
	10	0,207751695	0,207751999	0,207752
	20	0,158940025	0,158940903	0,158941
	30	0,105787686	0,105789370	0,105789
	40	0 , 050948407	0 , 050951036	0,050948
	50	-0,003054118	-0,003050519	-0,003053
$\rho_0 = 0,25\beta$	60	-0,054209514	-0,054205013	-0,054208
	70	- 0 , 101166264	- 0 , 101160991	-0,101164
	80	- 0 , 143197390	- 0 , 143191500	-0,143195
	90	- 0 , 180075136	-0, 180068786	-0,180073
	100	$-{\bf 0}, {\bf 211923441}$	- 0 , 211916770	-0,211921
	110	- 0 , 239085840	- 0 , 239078965	-0,239085
	115	- 0 , 251051323	- 0 , 251044383	-0,251051
	10	0 , 446513451	0 , 446514267	0,446517
	20	0 , 359563690	0 , 359567070	0,359572
	30	${\bf 0, 245372651}$	0 , 245380260	0,245386
	40	0 , 120044493	0 , 1200566666	0,120072
	50	- 0 , 001270482	-0,001254586	-0,001244
	60	- 0 , 109582658	- 0 , 109564276	-0,109559
	70	- 0 , 201453239	- 0 , 201433492	-0,201433
$\rho_0 = 0, 5\beta$	80	- 0 , 276840370	-0, 2768201	-0,276824
	90	- 0 , 337356345	-0, 3373361	-0,337342
	100	- 0 , 385211232	-0, 3851913	-0,385198
	110	- 0 , 422659232	-0, 4226398	-0,422648
	120	- 0 , 451745431	-0,4517266	-0,451736
	130	- 0 , 474215228	-0,4741970	-0,474206
	140	-0,491505204	-0,4914875	-0,491496
	147	$-{\bf 0}, {\bf 501154962}$	- 0 , 501137616	-0,501146
	10	0,6473944	0,6474010	0,647415
	20	${f 0, 4052873}$	${f 0,4053161}$	0,405342
	30	${f 0, 1355268}$	${f 0, 1355717}$	0,135590
	40	-0,0945706	-0,0945192	-0,094510
	50	-0, 2739936	-0, 2739414	-0,273940
	60	-0,4087256	-0,4086750	-0,408680
	70	-0,5079980	-0,5079501	-0,507961
$\rho_0 = 0,75\beta$	80	-0, 5803645	-0,5803194	-0,580334
	90	-0,6327747	-0,6327322	-0,632747
	100	-0,6705740	-0,6705337	-0,670554
	110	-0,6977606	-0,6977222	-0,697738
	120	-0,7172777	-0,7172408	-0,717256
	130	-0,731271	-0,7312353	-0,731262
	140	-0,7412948	-0,7412601	-0,741275
	150	-0,7484708	-0,7484368	-0,748468
	153	-0,7501954	-0,7501616	-0,750188

Tabela 36: Valor da reatividade (\$) para inserção de reatividade constante.

a densidade de nêutrons (coluna 3 da Tabela 39), comparadas com o método BEFD (coluna 6), para os subcasos $\rho_0 = 1\beta$, $\rho_0 = 1, 5\beta$ e $\rho_0 = 2\beta$ apresentam o maior desvio relativo no instante 10s e com o valor de $1,97 \cdot 10^{-4}, 3, 18 \cdot 10^{-3}$ e $9,91 \cdot 10^{-3}$, respectivamente. Enquanto que, comparando-se com o método NAM (coluna 7), o maior desvio relativo para cada caso é de $9,66 \cdot 10^{-4}$ (no instante 60s), $9,01 \cdot 10^{-3}$ (no instante 10s) e 2,62 \cdot 10⁻² (no instante 10s). Com $\Delta t = 0,0001s$ (coluna 4), considerando a ordem das reatividades como citadas anteriormente e em comparação com o método BEFD (coluna 6), os maiores desvios relativos ocorrem no instante 10s e são $1,93 \cdot 10^{-5}$, $3,09 \cdot 10^{-4}$ e $9,52 \cdot 10^{-4}$. Comparando-se com o método NAM (coluna 7) são $8,46 \cdot 10^{-4}$ (no instante 60s), $6, 15 \cdot 10^{-3}$ (no instante 10s) e $1, 75 \cdot 10^{-2}$ (no instante 10s). Para o menor passo de tempo utilizado, $\Delta t = 0,00001s$ (coluna 5), comparando-se a densidade de nêutrons com o método BEFD (coluna 6), os maiores erros relativos são de $1,40 \cdot 10^{-6}$ (no instante 50s), $2,83 \cdot 10^{-5}$ (no instante 10s) e $9,22 \cdot 10^{-5}$ (no instante 10s), respectivamente. Já para os erros relativos em relação ao método NAM (coluna 7), os valores são $8,34 \cdot 10^{-4}$ (no instante 60s), $5,87 \cdot 10^{-3}$ (no instante 10s) e $1,68 \cdot 10^{-2}$ (no instante 10s). Portanto, para todos subcasos e passos de tempo, o PAM aproxima-se melhor ao método BEFD.

Nota-se que o tempo computacional para cada subcaso de reatividade constante com retroalimentação de temperatura é aproximadamente o mesmo. Com exceção do instante 10s do caso $\rho_0 = 1\beta$, em todos tempos dos três subcasos ocorre um aumento de uma ordem de grandeza ao reduzir o passo de tempo.

A Tabela 40 mostra os erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para o caso de inserção de reatividade constante $\rho = 1\beta$ com retroalimentação de temperatura. Ao examinar os erros relativos entre as aproximações linear e quadrática, observa-se que a cada redução do passo de tempo ocorre uma diminuição de uma ordem de grandeza no maior erro. Ao passo que, para o erro relativo entre as aproximações cúbica e quadrática, há uma redução de uma ordem de grandeza de $\Delta t = 0,01s$ para $\Delta t = 0,001s$ e tanto de $\Delta t = 0,001s$ para $\Delta t = 0,0001s$ como de $\Delta t = 0,0001s$ para $\Delta t = 0,0001s$ diminui duas ordens de grandeza.

Figura 26: Densidade de nêutrons para inserção de reatividade constante $\rho_0 = 1\beta$ com retroalimentação de temperatura.

ara inserção de reatividade constante ($ ho_0=1eta$ e $ ho_0=1,5eta$) com retroalimentação de	
le nêutrons em cm^{-3} para	
Tabela 37: Densidade d	temperatura.

Reatividade	t(s)	PAM	PAM	PAM	BEFD	NAM
		$\Delta { m t}=0,001{ m s}$	$\Delta { m t}=0,0001{ m s}$	$\Delta t=0,00001 \mathrm{s}$		
	10	132,0125579	132,0360488	132,038657	132,0385964	132,1052
	20	51,68982749	51, 69886781	51,69983768	51,69986095	51, 72712
	30	28,16990425	28, 17421067	28, 17466636	28,17468536	28, 18947
	40	18, 14357715	18, 14605626	18, 14631666	18, 14633000	18, 15454
$ ho_0=1eta$	50	12,77778317	12, 77939848	12, 77955918	12,77957703	12,78886
	09	9,473665053	9,474806263	9,474925212	9,474932501	9,482830
	20	7,243532488	7,244383322	7, 244471811	7,244477494	7,248503
	80	5, 645559651	5, 646216922	5,646285158	5,646289700	5,646767
	06	4,456257	4,456776689	4,4568285	4,456834255	4,458845
	100	3,549639239	3,550056532	3,550098143	3,550102766	3,550773
	10	107, 5684009	107, 8782873	107,9086284	107,9116832	108, 5460
	20	41,48242785	41, 59240359	41,60315574	41,60428128	41, 83258
	30	23, 23762439	23, 29295293	23, 29835752	23,29893150	23,41236
	40	15,26590668	15,29976806	15,30307385	15,30342749	15,36867
$ ho_0=1,5eta$	50	10,86452102	10,88764407	10,88989386	10,89014315	10,93202
	09	8,082336836	8,099208379	8,100854514	8,101031859	8, 130170
	20	6, 168471778	6, 181303562	6, 182555343	6, 182690459	6,204616
	80	4,782206153	4,792224927	4,793202182	4,793307820	4,812251
	00	3,746799017	3,754754694	3,755528848	3,755614629	3,769579
	100	2,958995181	2,965384313	2,966006055	2,966074952	2,965561

Realividade	(S)	MAM	PAM	PAM	ВЕГО	NAM
		$\Delta { m t}=0,001{ m s}$	$\Delta { m t}=0,0001{ m s}$	$\Delta \mathrm{t}=0,00001\mathrm{s}$		
	10	102, 3568309	103, 2824514	103, 3713254	103, 3808535	105, 1118
	20	38, 76629635	39,10307186	39, 13535857	39, 13886903	39,77467
	30	21,80874678	21,98505236	22,00193293	22,00377721	22, 33538
	40	14,37074876	14,4818771	14,49250781	14,49367193	14,69613
$ ho_0=2eta$	50	10,23308138	10, 31040763	10, 31779399	10, 31861108	10,45320
	09	7,600259879	7,657272581	7,662721292	7,663319203	7,761803
	20	5,781231275	5,82477758	5,828938553	5,829395378	5,904826
	80	4,461820586	4,495821922	4,499070283	4,499427073	4,559800
	00	3,477638684	3,504567484	3,507138287	3,507422663	3,555554
	100	2,731307513	2,752843461	2,754899458	2,755126886	2,795546

Tabela 38: Densidade de nêutrons em cm⁻³ para inserção de reatividade constante (p₀ = 2β) com retroalimentação de temperatura.

4.10 Inserção de Reatividade Rampa com Retroalimentação de Temperatura

Para este caso, utilizando os parâmetros cinéticos apresentados na Tabela 5, considera-se agora uma inserção de reatividade rampa $\rho_0(t,T) = at$, onde a = 0, 1\$. Considera-se a densidade inicial de nêutrons $1cm^{-3}$, a temperatura inicial $T_0 = 300K$, constante de proporcionalidade entre temperatura e densidade de nêutrons $H = 2, 5 \cdot 10^{-6} \frac{K}{MWs}$ e coeficiente de temperatura da reatividade $\alpha = 1K^{-1}$. Usando como passo de tempo $\Delta t = 0,001s$ e $\Delta t = 0,0001s$, apresentam-se os resultados para a densidade de nêutrons em cm^{-3} na Tabela 41 e Figura 28. Já os resultados para a temperatura são apresentados na Figura 29.

O tempo computacional para execução do algoritmo com reatividade rampa com *feedback* de temperatura é exibido na Tabela 42. Para todos instantes de tempo, ao reduzir o passo de tempo Δt , ocorre um aumento de uma ordem de grandeza no tempo computacional.

4.11 Perturbação na Reatividade Dependente do Tempo e Temperatura

Com o intuito de estudar o comportamento da solução no caso não-linear, perturba-se a reatividade dependente do tempo e da temperatura. Apresentam-se as respostas das densidades de nêutrons com e sem perturbação em cm^{-3} para os casos com *feedback* de temperatura constante com um e seis grupos de precursores de nêutrons atrasados e rampa nas Figuras 30, 31 e 32, respectivamente. Para o caso de reatividade constante $\rho = 1\beta$, a densidade de nêutrons está em escala logarítmica para melhor visualização. Para a temperatura, as Figuras 33, 34 e 35 mostram a resposta para as soluções perturbadas em *K* na mesma ordem dos casos de reatividade citados anteriormente. Para cada gráfico, exibe-se o resultado da densidade de nêutrons utilizando diferentes constantes que controlam a ordem de grandeza da perturbação, assumindo os valores $\tau = 0,001$ e $\tau = 0,011$. Em todos os casos a serem apresentados, utiliza-se como passo de tempo $\Delta t = 0,001s$. As reatividades do tipo constante (com um e seis grupos de precursores) e rampa,

Reatividade	t(s)	Tempo	Tempo	Tempo
		Computacional (s)	Computacional (s)	Computacional (s)
		$\Delta t = 0,001s$	$\Delta t = 0,0001s$	$\Delta t = 0,00001s$
	10	1,014	9,189	86,097
	20	2,028	17,768	170,399
	30	2,979	26,302	255,372
	40	3,9	34, 6	339,878
$\rho_0 = 1\beta$	50	4,805	43,212	425,008
	60	5,913	51,823	511,026
	70	6,537	60,154	594,595
	80	7,316	68,531	679, 194
	90	8,221	76,986	764,276
	100	9,703	85,738	849, 53
	10	0,999	8,908	85,379
	20	1,965	17,487	170,649
	30	2,995	26,099	258,074
	40	3,9	34,366	347,201
$\rho_0 = 1, 5\beta$	50	4,727	42,775	425, 221
	60	5,678	51,495	510,246
	70	6,412	60,294	595,172
	80	7,191	68,703	680, 395
	90	8,128	77, 157	764, 464
	100	8,783	85,676	850,218
	10	0,983	8,846	84,677
	20	1,965	17, 55	174,721
	30	2,902	25,74	255, 216
	40	3,728	33,867	349,922
$\rho_0 = 2\beta$	50	4,618	42,245	425,350
	60	5,538	50,716	509,747
	70	6,053	60, 138	594,907
	80	7,192	67, 611	678, 383
	90	7,925	75,738	764, 636
	100	8,908	84,929	851,224

Tabela 39: Tempo computacional para inserção de reatividade constante ($\rho_0 = 1\beta$, $\rho_0 = 1, 5\beta$ e $\rho_0 = 2\beta$) com retroalimentação de temperatura.

Figura 27: Temperatura para inserção de reatividade constante ($\rho_0 = 1\beta$, $\rho_0 = 1, 5\beta$ e $\rho_0 = 2\beta$) com retroalimentação de temperatura.

Tabela 40: Erros relativos entre as aproximações cúbica, quadrática e linear	com	di-
ferentes passos de tempo para o caso de inserção de reatividade constante	$\rho_0 =$	1β
com retroalimentação de temperatura.		

Erro Relativo	Passo de tempo	Maior erro
	$\Delta t = 0,01s$	0,239046827
$\frac{AQ-AL}{AQ}$	$\Delta t = 0,001s$	0,028521294
~	$\Delta t = 0,0001s$	0,002990526
	$\Delta t = 0,00001s$	0,000308674
	$\Delta t = 0,01s$	0,029873594
$\frac{AC-AQ}{AC}$	$\Delta t = 0,001s$	0,003317462
	$\Delta t = 0,0001s$	0,000036259
	$\Delta t = 0,00001s$	0,00000398

t(s)	PAM	PAM
	$\Delta t = 0,001s$	$\Delta t = 0,0001s$
10	1,23233279	1,232336594
20	1,839780096	1,839792458
30	3,506632315	3,506689305
40	9,645959249	9,646464001
50	47,77909357	47,79289787
60	632, 1399974	634,8313436
70	35367,98244	46813, 36091
80	340512,7037	2536349,603
90	594577,0056	5662386, 424
100	772027,7938	7687086, 98

Tabela 41: Densidade de nêutrons em cm^{-3} para inserção de reatividade rampa $\rho_0(t,T) = 0, 1\beta t$ com retroalimentação de temperatura.

Figura 28: Densidade de nêutrons para inserção de reatividade rampa $\rho_0(t,T) = 0, 1\beta t$ com retroalimentação de temperatura.

Figura 29: Temperatura para inserção de reatividade rampa $\rho_0(t) = 0, 1\beta t$ com retroalimentação de temperatura.

Tabela 42: Tempo computacional para inserção de reatividade rampa com retroalimentação de temperatura.

t(s)	Tempo	Tempo
	Computacional (s)	Computacional (s)
	$\Delta t = 0,001s$	$\Delta t = 0,0001s$
10	3,246	31,635
20	6,44	63,406
30	9,745	95,03
40	12,851	126,506
50	16,398	158, 351
60	19,391	190,048
70	22, 21	221,587
80	25,599	247,385
90	28,818	253,105
100	30,265	274,826

respectivamente, incluindo a perturbação são dadas por:

$$\rho = 0,25\beta + \delta,\tag{108}$$

$$\rho = 1\beta + \delta,\tag{109}$$

$$\rho(t,T) = 0, 1\beta t + \delta, \tag{110}$$

onde $\delta = \tau(rand(t_0) - 0, 5)$.

Para analisar o comportamento da densidade de nêutrons com perturbação no sistema não-linear, varia-se o tamanho dos passos de tempo e apresentam-se na Tabela 44 os valores da variância e na Tabela 45, os erros relativos das soluções perturbadas em relação a solução do PAM. Vale destacar que foram feitas cinco realizações das soluções perturbadas para realizar os cálculos citados e que utilizou-se $\tau = 10^{-4}$. Pode-se notar que mesmo diminuindo o passo de tempo a variância e os erros relativos não diminuem, pois perturbações inseridas em sistemas não-lineares têm resultados imprevisíveis, ou seja, uma pequena perturbação pode gerar reações descontroladas. Deste modo, nada pode-se afirmar sobre o controle da perturbação através da diminuição do passo de tempo, pois como as perturbações são geradas aleatoriamente, ora uma perturbação gerada utilizando $\Delta t = 0,001s$ é maior que outra perturbação com $\Delta t = 0,01s$, ora é menor.

4.12 Perturbação na Condição Inicial para os Casos com Retroalimentação de Temperatura

Nesta seção, perturba-se a condição inicial para analisar o comportamento da solução do PAM no caso não-linear. Utiliza-se como ilustração o caso constante $\rho_0 = 0,25\beta$ com 1 grupo de precursor de nêutrons atrasados e o caso rampa. Na Figura 36 apresenta-se as densidade de nêutrons em cm^{-3} do caso constante com os seguintes valores para a condição inicial: $n_0 = 11$, $n_0 = 10, 5$, $n_0 = 10$, $n_0 = 9, 5$ e $n_0 = 9$. Já na Figura 37 apresenta-se as densidade de nêutrons em cm^{-3} para o caso rampa com os seguintes valores para a condição inicial: $n_0 = 11$, $n_0 = 0, 1$, $n_0 = 0, 5$, $n_0 = 1$, $n_0 = 1, 5$ e $n_0 = 2$. Em todas simulações utiliza-se como passo de tempo $\Delta t = 0,01s$.

Tabela 43: Erros relativos entre as aproximações cúbica, quadrática e linear com diferentes passos de tempo para o caso de inserção de reatividade rampa $\rho_0(t,T) = 0, 1\beta t$ com retroalimentação de temperatura.

Erro Relativo	Passo de tempo	Maior erro
	$\Delta t = 0,01s$	0,187199916
$\frac{AQ-AL}{AQ}$	$\Delta t = 0,001s$	0,110371216
·	$\Delta t = 0,0001s$	0,097729766
	$\Delta t = 0,01s$	0,100650260
$\frac{AC-AQ}{AC}$	$\Delta t = 0,001s$	0,002271412
	$\Delta t = 0,0001s$	0,000245990

Figura 30: Densidade de nêutrons com e sem perturbação na reatividade constante $\rho_0 = 0,25\beta$ com retroalimentação de temperatura.

Reatividade	$\Delta t(s)$	Variância
	0,01	240,0889684
Constante ($\rho_0 = 0, 25\beta$)	0,001	19524, 37852
	0,0001	39906429
	0,01	22235673, 46
Constante ($\rho_0 = 1\beta$)	0,001	3023706683
	0,0001	1,64040D + 12
	0,01	421656, 5294
Rampa	0,001	4178750, 384
	0,0001	63369366, 66

Tabela 44: Variância entre as soluções perturbadas e não-perturbadas.

Figura 31: Densidade de nêutrons com e sem perturbação na reatividade constante $\rho_0 = 1\beta$ com retroalimentação de temperatura.

Figura 32: Densidade de nêutrons com e sem perturbação na reatividade rampa $\rho_0(t,T) = 0, 1\beta t.$

Figura 33: Resposta da temperatura com e sem perturbação na reatividade constante $\rho_0 = 0,25\beta$ com retroalimentação de temperatura.

Figura 35: Resposta da temperatura com e sem perturbação na reatividade rampa $\rho_0(t,T) = 0, 1\beta t.$

os relativos entre as soluções não perturbadas			
$\Delta t(s)$	Erro Relativo		
0,01	0,6411726		
0,001	12,899263		
0,0001	408,029		
0,01	112,975294		
0,001	5254,887482		
0,0001	3297, 550237		
0,01	0,019778195		
0,001	0,009423560		
0,0001	0,003298765		
	$\begin{array}{c} \underline{\Delta t(s)} \\ \hline \Delta t(s) \\ \hline 0,01 \\ 0,001 \\ \hline 0,001 \\ \hline 0,001 \\ \hline 0,001 \\ \hline 0,001 \\ 0,001 \\ \hline 0,001 \\ \hline \end{array}$		

Tabela 45: Erros relativos entre as soluções não-perturbadas e perturbadas.

Figura 36: Densidade de nêutrons com e sem perturbação na condição inicial para reatividade constante com retroalimentação de temperatura.

Figura 37: Densidade de nêutrons com e sem perturbação na condição inicial para reatividade rampa com retroalimentação de temperatura.

5 CONCLUSÕES E PERSPECTIVAS FUTURAS

Nesta dissertação, apresenta-se a solução das Equações da Cinética Pontual de Nêutrons pelo Método da Aproximação Polinomial com e sem retroalimentação de temperatura, considerando-se inserções de reatividades constante, rampa, quadrática, senoidal, zig-zag e fonte pulsada. A simplicidade deste método juntamente com a incomum superação direta do problema de rigidez, causada pela grande diferença dos tempos médios de vida dos nêutrons prontos e atrasados, faz o PAM uma boa opção para solucionar as ECPN com as mais usuais reatividades.

Percebe-se com as simulações numéricas, quando comparadas com os resultados presentes na literatura, que o PAM possibilita obter resultados precisos usando apenas uma ordem de aproximação linear, o que resulta em um reduzido tempo computacional comparado a aproximações de maiores ordens. Além disso, o método apresentado gera resultados com tempo computacional menor do que o tempo real, ideal para situações de controle e operação do reator nuclear. Cabe ressaltar também, que em nosso conhecimento, os trabalhos presentes na literatura não exibem o tempo necessário para execução de seus métodos.

Para as Equações de Cinética Pontual de Nêutrons sem retroalimentação de temperatura, o Estimador de Lagrange assegura o controle do erro local, enquanto que o teorema da estabilidade que relaciona o erro global com o local e a constante de Lipschitz para analisar a propagação do erro, permite ter o conhecimento de como os erros, uma vez gerados, são propagados por todas iterações. Além disso, este tipo de controle de erro permite ao algoritmo uma maleabilidade para adaptar o passo de tempo de acordo com o máximo erro admitido. Conforme os resultados apresentados no Capítulo 4, pode-se concluir que na maioria dos casos, o erro local e global possuem a mesma ordem de grandeza. Isto se justifica pelo fato de que o método gera o maior erro local ao superar a curva abrupta da rigidez, enquanto que nos outros instantes de tempo os erros locais cometidos são de ordens de grandeza muito menores. Além disso, realizou-se um estudo da convergência para o sistema sem *feedback* de temperatura.

Os testes da resposta do sistema a perturbações mostraram que, utilizando PAM

e a continuação analítica, conforme as iterações progridem a solução não diverge, sugerindo a estabilidade do método.

Conforme ilustrado nas tabelas do Capítulo 4, observa-se que quando diminui-se o passo de tempo a solução aproxima-se às presentes na literatura, bem como os erros locais e globais, evidenciando a consistência da solução. Além disso, os erros relativos entre as aproximações cúbica, quadrática e linear mostram que aumentandose a ordem da aproximação das séries de potências e diminuindo o passo de tempo, a solução fica mais precisa, reforçando a ideia de convergência para a solução exata tanto para o caso linear, como o não linear.

Como perspectivas futuras, pretende-se implementar a programação em linguagem $C \in C_{++}$ com o intuito de obter um melhor desempenho computacional reduzindo o tempo de execução e disponibilizar uma interface mais interativa com o usuário a fim de possibilitar uma ferramenta computacional para uso de testes e validações com relação as equações de cinética.

Almeja-se utilizar o método PAM nas Equações da Cinética Espacial de Nêutrons com e sem efeitos de Temperatura, que descreve o comportamento da população de nêutrons em tempo e espaço. Pode-se aplicar nas Equações da Cinética Espacial, por exemplo, as transformadas integrais nas dimensões espaciais para recair em equações diferenciais ordinárias com a mesma estrutura das ECPN estudadas, que podem ser resolvidas pelo Método de Aproximação Polinomial. Além disso, temse em vista aplicar a Decomposição (PETERSEN et al., 2011a) em conjunto com a Aproximação Polinomial para reatividades dependentes do tempo. A ideia consiste em ao invés de aproximar a reatividade em cada passo do tempo, decompor a reatividade numa parte constante mais uma dependente do tempo. Assim, a parte dependente do tempo poderia ser inserida como um termo fonte e corrigida após nas demais iterações. Outra possibilidade seria utilizar a Decomposição para atualizar os coeficientes da expansão do PAM, evitando a propagação de erros. Porém, a utilização desse método implica em desacoplar o sistema não linear (efeitos de temperatura) com seis grupos de precursores de nêutrons atrasados, o que tornaria o procedimento bastante complexo, pois necessita-se o conhecimento do comportamento da não linearidade (multiplicação da densidade pela temperatura). Essa ideia foi aplicada por (SILVA, 2011) para um grupo de precursores de nêutrons atrasados.

Atualmente têm sido realizadas manipulações complexas, como por exemplo em (GANAPOL, 2013);(NAHLA, 2011);(PICCA; FURFARO; GANAPOL, 2013), para resolver cinética (pontual e espacial) de forma precisa. A metodologia de resolução proposta mostra que não é necessário nem prático utilizar um método numérico de difícil implementação computacional. O método apresentado é simples, eficiente e preciso para resolver as ECPN, além de superar o problema de rigidez com e sem efeitos de temperatura. Também vale destacar que, em nosso conhecimento, o PAM é um dos

poucos métodos que fornecem uma solução com representação em forma analítica para ECPN com efeitos de temperatura para seis grupos de energia com controle do erro local e global e análise de convergência. Portanto, este trabalho demonstrou a viabilidade do Método da Aproximação Polinomial para a solução das Equações da Cinética Pontual de Nêutrons através da obtenção de resultados precisos para simular o comportamento de um reator nuclear.

REFERÊNCIAS

ABOANBER, A. E.; NAHLA, A. A. Generalization of the analytical inversion method for the solution of the point kinetics equations. **Journal of Physics A: Mathematical and General**, v.35, p.3245–3263, 2002a.

ABOANBER, A. E.; NAHLA, A. A. Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximations via the analytical inversion method. **Journal of Physics A: Mathematical and General**, v.35, p.9609– 9627, 2002b.

ABOANBER, A. E.; NAHLA, A. A.; AL-MALKI, F. A. Stability of the analytical perturbation for nonlinear coupled kinetics equations. In: INTERNATIONAL CONFERENCE ON MATHEMATICS, TRENDS AND DEVELOPMENT ICMTD12, 2012. **Anais...** 2012. p.MCI–01.

BURDEN, R. L.; FAIRES, J. D. Análise Numérica. Cengage Learning, São Paulo, 2008.

CEOLIN, C. A equação unidimensional de difusão de nêutrons com modelo multigrupo de energia e meio heterogêneo: avaliação do fluxo para problemas estacionários e de cinética. 2014. Tese de Doutorado — UFRGS, Porto Alegre/RS.

CHAO, Y.; ATTARDT, A. A resolution of the stiffness problem of reactor kinetics. **Nu-clear Science and Engineering**, v.90, p.44–46, 1985.

CHEN, W.; HAO, J.; CHEN, L.; LI, H. Solution of Point Reactor Neutron Kinetics Equations with Temperature Feedback by Singularly Perturbed Method. **Science and Technology of Nuclear Installations**, v.2013, p.6 páginas, 2013.

DUDERSTADT, J.; HAMILTON, L. Nuclear Reactor Analysis. John Wiley & Sons, New York, 1976.

EL_TOKHY, M.; MAHMOUD, I. I. Parameter analysis of the neutron point kinetics equations with feedback temperature effects. **Annals of Nuclear Energy**, v.68, p.228–233, 2014. GANAPOL, B. D. The refined way to solve the reactor point kinetics equations for imposed reactivity insertions. **Nuclear Technology and Radiation Protection**, v.24, p.157–166, 2009.

GANAPOL, B. D. A highly accurate algorithm for the solution of the point kinetics equations. **Annals of Nuclear Energy**, v.62, p.564–571, 2013.

GANAPOL, B. D.; PICCA, P. A highly accurate benchmark for reactor point kinetics with feedback. In: 2010. **Anais...** The 17th Pacific Basin Nuclear Conference: 17th PBNC: Cancun: México, 2010.

GANAPOL, B. D.; PICCA, P.; PREVITI, A.; MOSTACCI, D. The Solution of the Point Kinetics Equations via Convergence Acceleration Taylor Series (CATS). In: THE 17TH PACIFIC BASIN NUCLEAR CONFERENCE, 17TH PBNC, CANCUN, MéXICO, 2012. **Anais...** International Conference on the Physics of Reactors: PHYSOR 2012: Knoxville: USA, 2012.

HAIRER, E.; LUBICH, C. Numerical solution of ordinary differential equations. The Princeton Companion to Applied Mathematics, 2012. p.15 páginas.

HAMADA, Y. M.; ABOANBER, A. E. Generalized Runge-Kutta method for two- and three- dimensional space-time diffusion equation. **Annals of Nuclear Energy**, v.241, p.1024–1040, 2008.

KEEPIN, G. R.; COX, C. W. General solution of the reactor kinetics equations. **Nuclear Science and Engineering**, v.8, p.670–690, 1960.

KINARD, M.; ALLEN, K. E. J. Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics. **Annals of Nuclear Energy**, v.31, p.1039–1051, 2004.

LAMARSH, J. R. Introduction to Nuclear Reactor Theory. Wesley publishing company, New York, 1966.

LEITE, S. Q. B.; PALMA, D. A. P.; VILHENA, M. T. B. Analytical representation of the solution of the point reactor kinetics equations with adaptive time step. **Progress in Nuclear Energy**, v.70, p.112–118, 2013.

LEWIS, E. E. Fundamentals of Nuclear Reactor Physics. Elsevier's Science and Technology, Oxford, 2008.

LI, H.; CHEN, W.; LUO, L.; ZHU, Q. A new integral method for solving the point reactor neutron kinetics equations. **Annals of Nuclear Energy**, v.36, p.427–432, 2009.

NAHLA, A. A. Generalization of the analytical exponential model to solve the point kinetics equations of Be- and D₂O-moderated reactors. **Nuclear Engineering and Design**, v.238, p.2648–2653, 2008.

NAHLA, A. A. An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects. **Annals of Nuclear Energy**, v.38, p.2810–2817, 2011.

PETERSEN, C. Z. Solução Analítica das equações da Cinética Pontual e Espacial da Teoria de Difusão de Nêutrons pelas técnicas da GITT e Decomposição. 2011. Tese de Doutorado — UFRGS, Porto Alegre/RS.

PETERSEN, C. Z.; DULLA, S.; VILHENA, M. T. B.; RAVETTO, P. An analytical solution of the point kinetics equations with time-variable reactivity by the decomposition method. **Progress in Nuclear Energy**, v.53, p.1091–1094, 2011a.

PICCA, P.; FURFARO, R.; GANAPOL, B. A highly accurate technique for the solution of the non-linear point kinetics equations. **Annals of Nuclear Energy**, v.58, p.43–53, 2013.

QUINTERO-LEYVA, B. CORE: a numerical algorithm to solve the point kinetics equations. **Annals of Nuclear Energy**, v.35, p.2136–2138, 2008.

REMMERT, R. **Theory of complex functions**. Springer-Verlag New York Inc., New York, 1991. Traduzido por Ribert B. Burckel.

SANCHEZ, J. On the numerical solution of the point reactor kinetics equations by generalized Runge-Kutta methods. **Nuclear Science and Engineering**, v.103, p.94–99, 1989.

SILVA, J. J. A. **Cinética Pontual com Realimentação de Temperatura considerando um grupo de precursores de nêutrons atrasados**. 2011. Dissertação de Mestrado — UFRGS, Porto Alegre/RS.

SILVA, M. W.; LEITE, S. B.; VILHENA, M. T.; BODMANN, B. E. J. On an analytical representation for the solution of the neutron point kinetics equation free of stiffness. **Annals of Nuclear Energy**, v.71, p.97–102, 2014.

TASHAKOR, S.; JAHANFARNIA, G.; HASHEMI-TILEHNOEE, M. Numerical solution of the point reactor kinetics equations with fuel burn-up and temperature feedback. **Annals of Nuclear Energy**, v.37, p.265–269, 2010.

VILHENA, M. T. M. B. de. Estudo de difusão de nêutrons e calor dependente do tempo num reator nuclear a leito fluidizado. 1988. Tese de Doutorado — UFRGS, Porto Alegre/RS.