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À física por me permitir admirar, mesmo que de maneira singela,
os fenômenos da natureza.

Também a todos os futuros cientistas deste país
desejo levar a seguinte mensagem:

"Não desista do seu futuro,
independente das forças externas,
faça na ciência a sua resistência,
assim como uma mola resiste
entre dois brutos corpos..."
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“Não, o homem é vasto, vasto até demais; eu o faria mais estreito. Até o diabo sabe o que
é isso, veja só! O que à mente parece desonra é tudo beleza para o coração. A beleza estará
em Sodoma? Podes crer que é em Sodoma que ela está para a imensa maioria dos homens
- conhecias ou não esse segredo? É horrível que a beleza seja uma coisa não só terrível,
mas também misteriosa. Aí lutam o diabo e Deus, e o campo de batalha é o coração dos

homens. Aliás, é a dor que ensina a gemer.”
(Fiódor Dostoiévski - Os Irmãos Karamázov)



Resumo

NOGUEIRA, Thiago Puccinelli Orlandi. Diffusão de traçadores em soluções com-
plexas de polímeros adsorventes. 2020. 61 f. Dissertação (Mestrado em Física) -
Programa de Pós-Graduação em Física, Instituto de Física e Matemática, Universidade
Federal de Pelotas, Pelotas, 2020.

A difusão de macromoléculas em ambientes de geometria altamente confinada e ambientes
povoados ainda é um campo em aberto na Física da Matéria Mole. O entendimento
dos processos difusivos nestas condições é essencial para o completo entendimento de
vários processos biológicos que possam ocorrer neste ambiente. Neste sentido, empregamos
simulações em Dinâmica de Langevin em larga escala com o intuito de entender como
as propriedades volumétricas de moléculas esféricas afetam a difusão das mesmas. Duas
espécies de moléculas são utilizadas: uma é modelada através do potencial de Weeks-
Chandler-Andersen, cuja natureza é puramente repulsiva, enquanto a segunda foi modelada
como uma partícula interagindo segundo um potencial de caroço amolecido. Moléculas
que interagem segundo este potencial podem ser proteínas globulares, colóides carregados
e nanopartículas cobertas por polímeros. Estes sistemas são caracterizados pela presença
de duas escalas no potencial de interação e podem apresentar anomalias de tipo água, em
função da competição existente no potencial. Neste trabalho, estudamos as propriedades
de estrutura e difusão destas duas espécies de moléculas em um meio povoado por
polímeros. Analisamos como a afinidade entre moléculas e polímeros, além da densidade do
sistema, afetam as propriedades de transporte e agregação de ambas espécies de moléculas.
Curiosamente, a molécula, modelada através do potencial de Weeks-Chandler-Andersen,
demonstrou um aumento na difusão, quando aumentamos sua fração de volume, de maneira
similar como ocorre com anomalias da difusão de tipo água. Até seu mecanismo é similar
ao que se observa em sistemas de tipo água. Discutimos nossos resultados nos baseando na
competição nos potenciais de interação e na competição induzida pelo ambiente povoado.

Palavras-chaves: Difusão de macromoléculas; Dinâmica de Langevin; Anomalias de tipo
água; Afinidade entre tracers e polímeros.



Abstract

NOGUEIRA, Thiago Puccinelli Orlandi. Tracer diffusion in crowded solutions of
sticky polymers. 2020. 61 f. Dissertation (Master in Physics) - Programa de Pós-
Graduação em Física, Instituto de Física e Matemática, Universidade Federal de Pelotas,
Pelotas, 2020.

Macromolecular diffusion in strongly confined geometries and crowded environments
remains as a open subject in soft matter Physics. Unveil the diffusion regimes in these
conditions is essential for a complete understanding of several biological process. In this
sense, we employ large scale Langevin Dynamics simulations to understand how the
spherical tracer volumetric properties affects the diffusive properties. Two species of tracers
are studied. One tracer particle is a standard soft-core particle modeled by the well known
Weeks-Chandler-Andersen soft-core potential. The second is modeled as a Core-Softened
particle. Core-softened macromolecules includes globular proteins, charged colloids and
nanoparticles covered by polymeric brushes. These systems are characterized by the
presence of two length scales in the interaction and can show waterlike anomalies regarding
on the competition existent in the potential. In this work we study the diffusion and
structure of these two tracer species in a polymeric crowded environment. We analyze how
the tracer-polymer affinity and the system density affect the transport and aggregation
properties. Surprisingly, the soft-core tracer particle shows a increase in the diffusion as
we increase its volume occupancy – similar to the waterlike diffusion anomaly. Even the
mechanism is similar to the observed in waterlike systems. We discuss our results based in
the competitions in the interaction potentials and the competition induced by the crowded
media.

Keywords: Macromolecular diffusion; Langevin Dynamics; Waterlike anomalies; Tracer-
polymer affinity.
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Introduction

The interior of biological cells, and almost every biological fluid medium, both
extracellular and intracellular, has a common feature, which is the fact that they con-
tain a high total concentration of macromolecules. But instead of calling this medium
concentrated, its more accurate to call it a crowded medium. Since, it’s not a single macro-
molecular species that occurs to occupy the high concentration, but all taken together,
the macromolecules occupy a significant fraction of the total volume (20-30%) 1, 2. For
instance, in biological cells biomacromolecules occupy volume fractions going beyond 30%
of its citoplasmatic fluid 3, 4, 5, 6, 7. This complex and confined environment constitutes
the condition known as macromolecular crowding, which involves non-specific interactions
among macromolecular species due to excluded volume, van der Waals, electrostatic and
hydrodynamic interactions 8. This crowded environment may even affect the behavior of
protein molecules. For instance, it was found that the macromolecular crowding promotes
self-association of the Filamenting temperature-sensitive mutant Z protein (FtsZ) which
is essential for cell division, and accelerates the rate of amyloid formation 9, 10. Also,
experiments have shown that macromolecular crowding reduces the size of proteins even
to volume fractions similar to that in cytosol, whereas DNA undergoes a coil-to-globule
transition at very small volume fractions 11. Even, macromolecular crowding influences
rates, equilibria and mechanism of biochemical reactions and the thermodynamics taking
place inside the biological cells 12, 2. Figure 1 illustrates how the biological medium is
crowded.

(a) (b) (c)

Figure 1 – (a) Massive simulation shows HIV capsid interacting with its environment. (b)
Poliovirus (red) binding to glycoproteins on the cell surface and force their
viral RNA inside. (c) Escherichia coli membrane cell.
Source (a): https://phys.org/news/2017-07-massive-simulation-hiv-capsid-
interacting.html
Source (b) and (c): https://www.asbmb.org/asbmb-today/people/david-
goodsell-the-master-of-mol-art

The scientific community since the 1990’s has a growing interest in understanding
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the macromolecular crowding, as we observe in figure 2 (a). This figure shows the total
number of publications over the years from the 1990’s to 2019. These publications had the
keyword macromolecular crowding in their titles. As we can see there is an exponential
growth from the 1990’s until now. Nonetheless, when we look at the total of times a
publication with the same keyword was cited (see figure 2 (b)), specifically between 2017
and 2018, the amount of citations reached more than 4000 times. This fuels even more our
interest in understanding the influence of macromolecular crowding, for instance, in the
diffusion processes of macromolecules.

(a)

(b)

Figure 2 – (a) Total number of publications over the years, from the 1990’s to 2019, with
the keyword ‘macromolecular crowding’ in the publications’ title. (b) Sum
of times papers were cited over the years with the keyword ‘Macromolecular
Crowding’ from the 1990’s to 2019. These data were collected using the Web of
Science analysis research feature in https://www.webofknowledge.com/.

Diffusion processes are well described by the traditional Fluid Mechanics for the
cases of dilute mixtures in non-complex geometries. This is not the case of diffusion process
in biological environment. Specially, it substantially alters the diffusion processes occurring
inside these environments 1, 13. Macromolecular diffusion and crowding influence on it are
not fully comprehended by the scientific community, but efforts are underway to clarify this
correlation 2. Lately, experimental studies have been carried out to study macromolecular
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diffusion in crowded media. In vivo experiments, such as fluorescent tracer introduced
into a cell, allows a direct understanding of the macromolecular crowding. Unfortunately,
the intrinsic differences between the different intracellular microenvironments make the
interpretation of the results difficult 8. In order to overcome this issue, in vitro experiments
sought to recreate the crowded environment using highly concentrated polymer solutions, as
dextran or ficoll 14, 15. After, spectroscopic techniques are employed to study the fluorescent
macromolecules dynamics 16, mainly Fluorescent Correlation Spectroscopy (FCS) 14 and
Fluorescent Recovery After Photobleaching (FRAP) 15. In addition to these experimental
findings, the use of computational simulations has become indispensable, since it provides
a highly controlled environment 8. Therefore, the comparison between computational
and experimental analysis provides a better understanding on the factors governing
macromolecular diffusion in crowded environments.

In this sense, different computational techniques have been applied from Monte
Carlo simulations 17, 18 and Brownian Dynamics (BD) 19, 20, 21, 22, 23, 24, 25 to Molecular
Dynamics simulation 23, 26, 27, and from Phase Fields applications in biological systems 28, 29

to Lattice Boltzmann 30, 31, 32. Generally, macromolecules tends to have flexible structures.
Therefore, when two macromolecules approach each other their branches can become
entangled and non-specific attractive and/or repulsive interactions take place. This must
be closely linked to macromolecular diffusion in crowded media. Thus, the need of models
going beyond the hard-core spheres are necessary 33 to not lose the conformational dynamic
behavior of macromolecules. Core-softened colloids and proteins are characterized by the
presence of two length scales in the interaction, usually a short range attraction and
a long range repulsion 34, 35. The repulsion can be caused by a soft shell, as in the
case of polymeric brushes 36, 37, 38, 39, 40 and star-polymers 41, 42, 43, 44, or by electrostatic
repulsion in charged colloids, macromolecules, lysozyme and spherical proteins 17, 35, 45, 46,
while the attraction is caused by van der Walls forces or solvent effects 47, 48. These
core-softened potentials have also been largely employed to study systems with waterlike
anomalies 17, 49, 50, 51 and the confinement effects in these anomalies 52, 53, 54. Once we
are interested in the diffusion process, the diffusion anomaly is of special interest. For
most materials the diffusion coefficient decreases when the pressure (or density) increases.
However, anomalous materials as water 55, silicon 56 and silica 57 show diffusion anomaly,
characterized by a maximum in the diffusion coefficient at constant temperature. Therefore,
a question that arises is how the crowded media influences the diffusion of soft-core, core-
softened and soft tracer particles immersed in a polymeric environment. Nonetheless, how
the tracer’s softeness and geometry influence the diffusion as well.

To answer this question we divided our work in a main objetive and a specific
branch objective. In one way, our main objective is to understand how diffusion works in
crowded media. In the other way, our specific objective is to understand how the difference
between soft-core and core-softened softeness influence the diffusion of such tracers in the
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crowded media.

To proceed with these objectives, we employed large scale Langevin Dynamics
simulations to understand how the tracer volumetric properties affects the diffusive
properties. Two species of tracers are studied. One tracer particle is a standard soft-core
particle modeled by the well known Weeks-Chandler-Andersen (WCA) purely repulsive
potential, which does not have competition since it has only one length scale. The second
is modeled as a core-softened particle (CS), which shows a competition due its hard
core–soft corona characteristic. In order to mimic the macromolecular crowding we inject
these tracer molecules in a complex polymeric solution given by a coarse-grained model 58.
Our goal is to analyze the diffusion and the structure of these two molecule species in
the polymeric media, analyzing how the tracer-polymer affinity and density affects the
transport and aggregation properties.

This master’s dissertation was divided in two parts: in the first one we describe the
interaction models (Chapter 1), the computational methods for the fluid diffusion study
(Chapter 2), the simulation details used in our research (Chapter 3) and the description of
our proposed study system (Chapter 3.3); in the second part we present our results and
discussion (Chapter 4), followed by the master’s dissertation conclusion and future work
ideas (Chapter 5). Finally, we present in the Annex A the LAMMPS full script with some
coding information extracted from LAMMPS manual about the commands used in the
full script.



Part I

Interaction models, computational methods for
the fluid diffusion study and simulation details
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1 Interaction models

In this chapter, we will discuss the most used interaction models between particles
in fluid simulations, which are used in this work. Firstly, we will present the Lennard-Jones
potential (LJ), followed by the Weeks-Chandler-Andersen potential (WCA), the association
of this potential and the Finitely Extensible Nonlinear Elastic potential (FENE) for the
construction of polymer chains, which will form the complex media in our simulations.
Add to this, we will present the Core-Softened potential (CS).

1.1 Lennard-Jones interaction
The Lennard-Joned interaction (LJ) is a mathematical model proposed to describe

the interaction between pair of neutral atoms or molecules. This potential was firstly
proposed by John Lennard Jones in 1924 59, namely

ULJ(r) =


4εAB

[(
σ

r

)12

−
(
σ

r

)6]
, r 6 rc ,

0, r > rc ,

(1.1)

where ε is the well depth, σ is the distance where the potential is equal to zero, and rc is the
cuttof radius. The LJ potential profile is illustrated in Figure 3. This potential is a function

0.5 1.0 1.5 2.0 2.5

r/σ
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Lennard-Jones interaction

Figure 3 – LJ potential profile. The arrow indicates the potential cuttof radius rc.
Source: The Authors.

of the distance between the centers of two particles. When two non-bonding particles
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are a much greater distance than rc apart, the possibility of them coming together and
interacting is minimal. Their bonding potential energy is considered to be zero. However, as
the distance of separation decreases, the probability of interaction increases. The particles
come closer together until they reach a region of separation where the two particles become
bound; their bonding potential energy decreases from zero to a negative quantity. While
the particles are bound, the distance between their centers continue to decrease until the
particles reach an equilibrium, specified by the separation distance at which the minimum
potential energy is reached (−ε). If the two bound particles are further pressed together,
past their equilibrium distance, repulsion begins to occur. In terms of computational
efficiency, it is common to choose a cuttof radius rc = 2.5σ, which means that when
two particles are separated by a distance larger than 2.5σ, their interaction will not be
computed.

1.2 Weeks-Chandler-Andersen interaction
Another interaction model is a modification of the LJ potential, known as the

Weeks-Chandler-Andersen potential (WCA) 60, given by

UWCA(r) =


4ε
[(
σ

r

)12

−
(
σ

r

)6

+ 1
4

]
, r 6 rc ,

0, r > rc ,

(1.2)

where ε and σ are the characteristic energy and distance parameters, respectively; rc is the
cuttof radius. This potential exhibits only the repulsive part of the LJ potential. In this
way, we cut it only in the distance where the potential is zero, rc = 21/6σ. This potential
profile is shown in Figure 4. This interaction has a factor 1/4 in equation (1.2), which
shifts it up positively by a factor ε. If this factor is considered to be zero and considering a
cutoff radius rc = 2.5σ, we would return to the well known LJ interaction. The analysis of
this function is rather different from the late interaction, since we cut the potential where
the energy is zero, U = 0. Therefore, the particles undergoing this interaction potential
would feel only a strong repulsion, when their separation distance decreases from r = 21/6σ.

1.3 Coarse-grained interaction model for polymeric chains
For the generation of polymeric chains in molecular simulations, it is common

to use a coarse-grained 58, 61 model, in which the polymer is treated as a collection of
beads binded by springs. This model is an association of the WCA potential given by
equation (1.2), and the Finitely Extensible Nonlinear Elastic potential (FENE), which
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Figure 4 – Weeks-Chandler-Andersen potential profile.
Source: The Authors.

binds the beads as springs, according to

UFENE(r) =


− 0.5kR2

0 ln
[
1−

(
r

R0

)2]
, r 6 R0 ,

∞, r > R0 ,

(1.3)

where k is the elastic spring coefficient and R0 is the maximum extent of the bond. This
potential profile is shown in Figure 5. In this work, we used k = 30ε/σ2 e R0 = 1.5σ. For
the purpose of guiding the eyes, we represented in Figure 5 the WCA interaction by the
green dashed line and the FENE interaction by the red dashed line, and then the sum
of both potentials by the solid line. So one may see the contribution to this model of
the WCA and FENE potentials. When the distance between the beads is r = R0, they
reach the maximum distance given by the FENE potential, then they are going to feel
an attraction, but when they reach the distance of minimum energy given by the WCA
potential, they will start to feel a strong repulsion. Therefore, the association of these
potentials works as a harmonic potential, which keeps the beads binded. In this work, we
used a collection of 50 beads to generate the polymer chain.

1.4 Core-softened interaction
The Core-Softened interaction (CS) is composed by a short-range attractive LJ

potential and a repulsive gaussian term centered in r0, with depth u0 and width c0,
represented by the potential

UCS(r) = 4ε
[(
σ

r

)12

−
(
σ

r

)6]
+ u0 exp

[
− 1
c2

0

(
r − r0

σ

)2]
. (1.4)
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Figure 5 – Association plot of the WCA (green dashed line) and the FENE (red dashed
line) potentials. The sum is represented by the solid line. R0 is the chain
maximum elongation distance given by the FENE potential.
Source: The Authors.

This potential can be parametrized to have a ramplike shape, and was extensively applied
to study systems with waterlike anomalies 49, 50, 62. This potential profile is illustrated in
Figure 6 with the parameters: u0 = 5.0, c0 = 1.0, e r0/σ = 0.7. This interaction has two
length scales: the first at r ≡ 1.2σ, where the forces has a local minimum, and another
at r ≡ 2σ (see graph inset in figure 6), where the fraction of imaginary modes of the
instantaneous normal mode spectra has a local minimum 63. The cuttof radius for the
interaction is rc = 3.5σ. The two length scales in this potential allow us to represent the
interaction between hard core-soft shell colloids and proteins 64, 65. The blue particle inset
in figure 6 represents the particles interacting by this potential. Since this potential has
two length scales, these scales are represented by the core (first length scale at r ≡ 1.2σ)
and the soft corona (second length scale at r ≡ 2σ).
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Figure 6 – Core-Softened potential plot. With the parameters: u0 = 5.0, c0 = 1.0, e
r0/σ = 0.7. Inset: schematic representation of the particles undergoing this
interaction with its core (first length scale at r = 1.2σ) and the soft corona
(second length scale at r ≡ 2σ) and the force F multiplied by r as a function
of r that shows a local minimum at r = 1.2σ and another at r = 2σ.
Source: The Authors.
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2 Computational methods for the fluid diffu-
sion study

In this chapter, we will review the main computational and theoretical methods
for the fluid diffusion study. Nonetheless, the Molecular Dynamics (MD) method will
be explored in this chapter, as the use of thermostats to keep the system temperature
constant. For the use of such computational techniques, one must understand the theoretical
background of the fluid diffusion, which is the classical Fick law for fluid dynamics. This
theory will also be reviewed in this chapter. The Radial Distribution Function (RDF) for
the structure analysis and the excess entropy calculation of the system will be presented
as well. Since this work was carried out in the “Large-scale Atomic/Molecular Massively
Parallel Simulator” package 66 (LAMMPS), this package will be presented as well.

2.1 Molecular Dynamics method
The main objective of this method is to study many-body systems, such as systems

containing molecules, and then to analyze transport and equilibrium properties 67. For
one to use this technique, one must solve the classical newtoninan equations of motion for
conservative systems, in the lagrangian form 68,

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0, (2.1)

where the lagrangian function L (q, q̇) is defined by the particles system kinetic (T ) and
potential (V ) energies, namely

L = T − V . (2.2)

In this treatment, we are considering that the lagrangian function depends on the general-
ized coordinates qj and their time derivatives q̇j . Doing so, and knowing the usual definitions
of T and V added to the particles space positions defined in cartesians coordinates ri, the
equation (2.1) becomes

mir̈i = fi , (2.3)

where mi is the i particle mass and

fi = ∇ri
L = −∇ri

V , (2.4)

is the resultant force in the i particle given by the particle interactions with its surroundings.
Therefore, the MD simulations implicates to solve the differential equation (2.3) for each
particle in the studied system. In this way, one must solve for a three-dimensional system:
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N equations of motion, where N is the number of particles in the system, e.g, for systems
with one mole of molecules, one will need to solve 6, 02× 1023 differential equations, which
is impractical. This makes the use of computers and approximations very important.

2.1.1 Standard algorithm

The main methodology involving the MD software implementation is to set an
initial system configuration with particles’ positions and initial velocities for a time t = 0.
This setting may be randomly distributed or following a gaussian distribution for the
velocities, and for the particles’ positions, they can be setted randomly as well or following
a lattice distribution. Added to the initial setting, the computation of the interactions
between these particles and its parameters are important too. After these steps, the
program is ready to make simulation steps.

For the simulation, a final time and a step is setted. In this way, the program will
compute a number of quantities during the simulation until it reaches the final step of
simulation. The program will compute, e.g., the total force in each particle of the system
due to the chosen interaction model. Afterwards, the equation of motion will be solved to
generate the new particle positions and velocities, for a time t and t+ δt, where δt is the
simulation step. Some algorithms used for the equation of motion integration are presented
in the next section. After the integration, normaly a MD program computes the system
energy, pressure, temperature, molecular self-diffusion, the radial distribution function
and other sort of important data for analysis. When the program reaches the final step, it
stops and print the data into outputs. A standard algorithm is illustrated in figure 7.

2.2 Equations of motion integration
In scientific literature one may find a number of algorithms that integrates the

equations of motion. The velocity Verlet is the most used in MD simulations, and this
method is used, e.g., in LAMMPS simulation package. To present this method, firstly, we
have to present the Verlet algorithm, proposed by Loup Verlet in 1967 69, 70. The main
goal is to write a Taylor expansion for the particle position r(t), for a future time t+ δt

and for a past time t− δt. Defining b = d3r/dt3, one may write both expansions as

r(t+ δt) = r(t) + v(t)δt+ 1
2a(t)δt2 + 1

6b(t)δt3 +O(δt4)

r(t− δt) = r(t)− v(t)δt+ 1
2a(t)δt2 − 1

6b(t)δt3 +O(δt4), (2.5)

respectively. Summing the above equations we have

r(t+ δt) = 2r(t)− r(t− δt) + a(t)δt2 +O(δt4). (2.6)
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Figure 7 – Standard velocity Verlet Molecular Dynamics algorithm schematic description.
Source: The Authors

This is the traditional Verlet algorithm, with the order δt4 uncertainty. Since we are
integrating the Newton equations of motion, the particle acceleration ai(t) is given by

ai(t) = − 1
mi

∇U(rij), (2.7)

where mi is the i particle mass and U(rij) is the interaction potential between the particles
i and j. The acceleration computation gives us the new particle positions. However, one
may note that the new velocities are not computed simultaneously with the new positions.



Chapter 2. Computational methods for the fluid diffusion study 25

Instead, the new velocities are computed using

v(t) = r(t+ δt)− r(t− δt)
2δt . (2.8)

Therefore, the kinetic energy and the system temperature may be computed. Using this
method, the new velocities computation generates an uncertainty in the order of δt2. This
may generate significant fluctuations in the results computation. To avoid this, other
algorithms were develloped, such as the velocity Verlet 71 that is represented by the Figure 7,
which involves the simultaneously computation of the new positions and velocities.

This method follows two steps interspersed by the force computation. First knowing
a(t) and v(t), the program computes the particle velocity for a time t+ δt/2, given by

v
(
t+ 1

2δt
)

= v(t) + δt

2 a(t). (2.9)

Then, the new positions are computed for a time t+ δt, namely

r(t+ δt) = r(t) + v(t)δt+ 1
2a(t)δt2. (2.10)

Therefore, the new accelerations are computed for a time t+ δt using equation (2.10), and
also the new velocities,

v(t+ δt) = v
(
t+ 1

2δt
)

+ δt

2 a
(
t+ δt

)
. (2.11)

Doing so, it is possible to minimize the errors in the equations of motion integration, since
positions, velocities and accelerations are computed simultaneously for a time t.

2.3 Constant temperature simulation
The usual MD simulation keeps constant the number of particles N , the system

volume V and the total system energy E. Totally isolated systems are not commonly found
in nature, since the system interacts with its surroundings. From statistical mechanics
point of view, it is known that systems in equilibrium with its surroundings or with a
thermal reservoir, must be studied by the canonical ensemble theory. The simulations
carried out for this matter are known as MD NV T .

When the system reaches the equilibrium, the particles velocities are distributed
following the Maxwell-Boltzmann distribution, which means that the system temperature
depends directly on the particles’ average kinetic energy, and therefore on the particles’
average velocities, namely

kBT = m〈v2
j 〉, (2.12)

where m is particle mass, vj is the j-th particle velocity component, x, y and z in a three
dimensional simulation, for instance, and kB is the Boltzmann constant. By rescalling the
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particles’ velocities, we may control the system temperature. To accomplish this, we use
thermostats. In scientific literature, one finds a number of thermostats, some of the most
significant are: the Langevin and Andersen 72 stochastic thermostats, and the Nosé-Hoover
thermostat 67. Our simulations were carried out using the Langevin stochastic thermostat,
which will be discussed in the next section.

2.3.1 Langevin dynamics

In each step of simulation under the Langevin Dynamics 72 the particles undergoes
the action of a viscosity force, proportional to each particles velocities and a viscosity
coefficient. Added to this force, there is a stochastic force generated by a white noise,
which simulates the effect of continuous collisions between the particles and a thermal
reservoir. In this way, we may insert in the resultant force in each particle these two terms,

FR = −∇U −mξvi + ηηηi(t), (2.13)

where ξ is the fricction coefficient and ηηη is the stochastic force, generated by the Wiener
process73, responsable for the white noise. In this sense by the fluctuation-dissipation
theorem, we might relate the noise and the system temperature using the distribution
second momentum,

〈ηηηi(t)ηηηj(t′)〉 = δijδ(t− t′)6kBTξ, (2.14)

where δij is the Kronecker delta, δ(t− t′) is the Dirac delta, kB is the Boltzmann constant,
T is the system temperature and ξ is the fricction coefficient with the thermostat. This
relation indicates that the random forces are completelly uncorrelated at different times.
The first term in equation (2.13) corresponds to the interaction forces derived from the
interaction potential. The Langevin Dynamics reduces to the Brownian Dynamics when
∇U = 0, which means that there is no interaction among particles.

2.4 Diffusion theoretical model for fluids
In this section we will review one of the most studied analytical model for the

diffusion in fluids, which is the analysis of the mean-squared displacement of the molecules
in a MD simulation, and relate it to the diffusion coefficient.

2.4.1 Mean-squared displacement and diffusion coefficient

Diffusion is a process whereby an initially nonuniform concentration profile, for
instance an ink drop in water, is smoothed in the absence of flow. Diffusion is caused by the
molecular motion of the particles in the fluid 67. To analyze the dynamics of the particles
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in a MD simulation, one should use the mean-squared displacement (MSD), which is a
function of time, given by

〈[r(t)− r(t0)]2〉 = 〈∆r(t)2〉 , (2.15)

where r(t0) and r(t) denote the position of a tracer molecule at a time t0 and at a time t,
respectively. The MSD is related to the diffusion coefficient, D, by the Einstein relation 74,

D = lim
t→∞

〈∆r(t)2〉
6t . (2.16)

This relation was first derived by Einstein 74. While the diffusion coefficient D is a
macroscopic property of the system, 〈r2(t)〉 has a microscopic interpretation: it is the
mean-squared distance over which the molecules have moved in a time interval t 67.
Therefore, this provides a method to compute D in computer simulations. For each past
time in the simulation, one must measure the particles’ traveled distance and plot the
mean-squared displacement of these distances as a function of time.

In the case of disordered systems, there is a phenomena known as annomalous
diffusion, that invalidates the relation (2.16). In this case the following relation works

〈∆r2〉 = 2dDtα, (2.17)

where d is the number of translational degrees of freedom and α is the annomalous diffusion
exponent 75. This exponent behavior is related to the particle diffusive behavior: that may
be subdiffusive (0 < α < 1), or superdiffusive (1 < α < 2), or diffusive α = 1, which leads
back to the Einstein’s equation (2.16).

2.5 Radial distribution function
To analyze the structure of fluids, one must make use of atomic distribution

functions 72. The most simple one is the radial distribution function (RDF), given by

g(rij) = 1
ρ

〈
1
N

N∑
i=1

N∑
j=1

δ(rij − rj + ri)
〉
, (2.18)

where rij is the distance between atom i and atom j, ρ is the system density, N is the
number of particles inside the system, and δ is the Dirac delta. In brief, the RDF provides
us the probability of finding a pair of molecules at a distance r relative to the expected
probability of a same density completelly randomic distribution 72. Through this function
analysis, one may confirm if the system is found to be in a gas, liquid or solid phase, given
the long or short atomic organization shown in this function graph 76. The schematic
discription of how to compute this function is shown in Figure 8. Hence, we measure
the probability of finding a particle at a distance r far from a reference particle relative
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Figure 8 – Schematic discription of how to measure the RDF. The red particle is the
reference particle, which a simple algorithm will count the neighboring particles
in a shell at distance r and r + dr.
Source: Wikipedia.

to an ideal gas phase distribution. The algorithm to compute this function envolves the
determination of how many particles are found inside the yellow shell (see again figure 8)
at a distance r and r + dr far from the reference particle. Looking at the figure, the red
particle at the center is the reference particle, and the blue particle inside the shell will be
accounted in the calculation, producing histograms with pairs, which will be normalized
with respect to the case of an ideal gas.
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3 Simulation details

In this chapter we will discuss the simulation details performed in this master’s
dissertation. Brieflly, we will present the reduced units, describe the computational method-
ology, for instance the used time step in the simulations, how many steps were performed
for system equilibration and for the production stage. Nevertheless, present the cluster
infrastructure in which our simulations were carried out and discuss our proposed system
studied in this master’s dissertation.

3.1 Reduced units
In MD simulations, its far convenient to express properties such as: temperature,

density, pressure and many others in reduced units 67. For instance, the fluid reduced
particles density,

ρ∗ ≡ ρσ3, (3.1)

the time,

t∗ ≡ t

(
ε

mσ2

)1/2

︸ ︷︷ ︸
τ

≡ tτ, (3.2)

the temperature,
T ∗ ≡ kBT

ε
, (3.3)

the pressure,
p∗ ≡ pσ3

ε
, (3.4)

the fluid diffusion coefficient,

D∗ ≡ D(m/ε)1/2

σ
. (3.5)

This procedure facilitates, for instance, the computer computation tasks. Since
its difficult to deal with small constants, such as the Boltzmann constant, compared to
higher values, which could lead to mathematical errors. Despite this feature, one more
important reason for working with reduced units, is the fact that there are many possible
combinations of density ρ, temperature T , and the LJ parameters: the well depth ε and
the particle diameter σ, which corresponds to the same thermodynamic state 67. Therefore,
working with LJ simulations of liquid Argon at 60 K and density 840 kg/m3, is the same
if we are dealing with Xenon at 112 K and density 1617 kg/m3, in reduced units. Both
cases correspond to a state with density ρ∗ = 0.5 and temperature T ∗ = 0.5.
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3.2 Computational methodology
Our simulations were carried out using Langevin Dynamics, as described in Sec-

tion 2.3.1. Hydrodynamics interactions were neglected. Since the system is in thermody-
namic equilibrium, we do not expect that this will change the long-time behavior. The
temperature was kept constant at T ∗ = 4.45. Such high temperature was choose to ensure
that the system is fluid even at high fluid densities.

The time step used in the simulations was δt∗ = 0.001, and periodic boundary
conditions were applied in the three directions, which means that if one particle crosses one
side of the box, another particle is injected at the same spot but on the opposite box side.
We performed 1× 106 steps to equilibrate the system. These steps were, then, followed by
1× 107 steps for the production stage. To ensure that the system has reached equilibrium,
the kinetic and potential energy were analyzed as a function of time. System snapshots
were also used to verify the equilibration. All simulations were carried out using LAMMPS
MD software 66, which is a classical molecular dynamics code. This package is distributed
as an open source code under the terms of the GPL. It runs on single processors or in
parallel using message-passing techniques and a spatial-decomposition of the simulation
domain. It was firstly presented by S. Plimpton in 1995 as a fast parallel algorithm for
short-range molecular dynamics. At the present day, LAMMPS is developed by Sandia
National Laboratories in the US Department of Energy in USA.

To obtain good statistics for our results, five independent simulations were used to
produce our data. In each of these simulations, the polymers chains were firstly injected
and we let them relax at random positions. In this way, for the five configurations,
these polymers chains were not at the same positions. These simulations were runned in
SATOLEP cluster in Universidade Federal de Pelotas.

3.3 The system
Since in biological cells biomacromolecules occupy volume fractions going beyond

30% of its citoplasmatic fluid, this complex and confined environment is of our special
interest in the study of molecular diffusion process inside these environments. In this sense,
our objective is to study how the crowded media influences the diffusion of soft-core and
core-softened tracer particles immersed in a complex media.

To simulate the above system, we sought to create the crowded media by injecting
polymer chains in a simulation box and we let them relax to ensure that they are at random
positions as shown in figure 9 (a). These polymers were modeled by a coarse-grained
model, described in Section 1.3; for the molecule tracers, the soft-core species was modeled
as WCA tracer, as described in Section 1.2; the core-softened species was modeled as a



Chapter 3. Simulation details 31

CS tracer, as described in Section 1.4; the interaction between tracers and polymers was
modeled with LJ interaction, as described in Section 1.1. The full picture of our proposed
system is shown in figure 9 (c).

In our simulations, the packing fraction is defined as φ = Nv/L3, where L is the
simulation box side, v is the single particle volume and N is the number of particles. Hence,
we followed two strategies to tackle the crowded media influence on the molecules diffusion
processes: first, we fixed the fluid packing fraction φf = 0.1 and varied the polymer packing
fraction φP from 0.001 up to 0.1; second, we did the way around, which was keeping
φP = 0.1 and varied φf from 0.1 up to 0.4. This enable us to study the effect of tracer
and polymer crowding. In both strategies, we sought to analyze the diffusion and the
structure of these two molecule species in the complex polymeric solution. Thus, analyzing
how the tracer-polymer affinity, εAB (see equation 1.1), and density affects the transport
and aggregation properties related to the case of an excluded volume, which means that
εAB = 0. In these simulations, the crowding media, the polymer network, was treated
as rigid obstacles to the fluid diffusion, which means that they did not move during the
results production stage in the MD simulation. It is important to note that, since we have
done five independent simulations to obtain good statistics, in each of these simulations,
the polymers chains relaxed to ensure that they were at random positions. In this way, we
have five independent polymer chains configurations.

In order to exemplify how we implement the above description into a LAMMPS
script code, for instance how we inject the polymers matrix and tracers into the simulation
box, how we minimize the energy to avoid particles overlap, and how we insert particles
interaction, one shall find these methods described in Annex A.
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(a)

(b)

(c)

Figure 9 – Snapshots of the three-dimensional tracer-obstacle system used in our simula-
tions. (a) System snapshot with only polymers obstacles at volume occupancy
ϕP = 0.1 and (b) zoomed snapshot, in which we observe the presence of com-
plex free spaces and voids. (c) Snapshot of the whole system, composed by the
polymer obstacles in red and the tracer particles in green.
Source: The Authors.
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4 Results and discussion

In this chapter, we will present our results and discussion. Since we followed two
strategies to tackle the study of the effect of tracer and polymer crowding in the tracer
molecules diffusion processes as described in Chapter 3.3: the first set of simulations
refers to a fluid of tracers whose volume fraction was fixed at ϕ = 0.1 and immersed
in a polymer matrix that occupies increasing fractions of the available volume; the
second set of simulations, we varied the packing fraction of the tracers while keeping
the crowding polymer matrix at ϕP = 0.1. In both cases, we considered both kinds of
tracer-tracer interactions, namely single-length scale (WCA) and double-length scale (CS),
and progressively increased the strength of the tracer-polymer interaction, εAB, from zero.

4.1 Diffusion and structure of the tracer fluid at different polymer
packing fractions φP
The results of our simulations are illustrated in figure 10 and figure 11, where we

chose two different ways to normalize the data. The effect of the tracer-polymer affinity
εAB is best singled out by normalizing the measured diffusion coefficient through D(0, φP ).
Each point in the plot then quantifies the reduction in mobility caused by the tracer-
crowder attractive interaction irrespective of the additional reduction due to crowding,
i.e. excluded-volume. The first observation is that, surprisingly, a moderate attractive
interaction seems to have no effect on the tracer mobility (circles in the upper panels).
Increasing the strength of the tracer-polymer interaction beyond the value εAB = ε, that
is, the typical repulsive energy at the monomer-tracer contact distance, tracer mobility
appears progressively more and more hindered. In other words, a crowded environment
that is also somewhat sticky causes more hindrance to tracer diffusion. This effect is larger
the more crowded the environment, with D(ε, φP )/D(ε = 0, φP ) appearing to decrease
linearly with the crowding packing fraction φP .

The second observation is that the presence of multiple length scales in the tracer-
tracer interaction does not seem to induce noticeable differences in the way their mobility
is shaped by the interaction with the environment. As a matter of fact, the reduction in
diffusion for the WCA and CS fluid particles are very similar. While this may come to
little surprise, as the tracer volume fraction is still on the low side (φf = 0.1), we shall see
that this observation on mobility is not mirrored by the corresponding static structure
of the tracer fluid, which is characterized by different spatial correlations induced by the
crowders that indeed appear to depend on the kind of tracer-tracer interaction.

In figure 11 we show the same data normalized in a different fashion, intended to
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Figure 10 – Diffusion coefficient of tracer molecules, D(εAB, φP ), as a function of the
polymer volume fraction φP for different values of the tracer-polymer affinity,
εAB. (a) WCA tracers and (b) CS tracers. The diffusion coefficients are
normalized to the εAB = 0 value at the same values of φP to highlight the
effect of the tracer-polymer affinity. Error bars are smaller than points.
Source: The Authors.

highlight the combined action of crowder-tracer affinity and crowding volume fraction on
diffusion. It can be clearly appreciated that an environment that is both crowded and
somewhat sticky induces a substantial slowing down of the mobility. Tracers appear to
loose between 60 and 70 % of their mobility at a polymer packing fraction as low as 10 %
when the tracer-polymer attractive energy is between 3 to 5 times the typical energy ε.
Again, this normalization does not reveal substantial differences in mobility ascribed to
the kind of tracer-tracer interaction in the bulk.

It is instructive to compare our results with known predictions of diffusion in
complex porous media. In such context, the ratio of the tracer diffusivity in the matrix to
the Stokes-Einstein diffusivity D0 in the pure suspending fluid is known as the so-called
tortuosity τ . For a static matrix of spherical particles of diameter σ1 with volume fraction
φ, one has 77

D(φ)
D0

≡ τ(φ) = (1− φ)ν [1− λp(φ)]a+bλp(φ) (4.1)

where ν = 0.4, a = 4.2, b = 0.55 and λp(φ) is the ratio of tracer particle diameter σ to the
typical pore diameter σp(φ),

λp(φ) ≡ σ

σp(φ) =
(
σ

σ1

) 3φ
1− φ (4.2)

It is interesting to inquire whether our polymer matrices behave as simple quenched
suspensions of hard spheres by treating the diameter of such effective spheres σ1 as an
adjustable parameter. The fits shown in figure 11 reveal that our polymer matrices indeed
behave as quenched suspensions of hard spheres over the whole range of parameters
considered. More precisely, as the tracer-polymer interaction strength increases, the typical
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Figure 11 – Diffusion coefficient of tracer molecules, D(εAB, φP ), as a function of the
polymer volume fraction φP for different values of the tracer-polymer affinity,
εAB. (a) WCA tracers and (b) CS tracers. The diffusion coefficients are
normalized to the value at εAB = 0, φP = 0, to make the effect of varying
both parameters explicit. Solid lines correspond to one-parameter fits to a
model of diffusion in porous media, where the polymer matrix is modeled as
an effective quenched suspension of hard spheres, see equation (4.1). Error
bars are smaller than points.
Source: The Authors.

WCA CS
εAB σ1/σ φcP σ1/σ φcP

0.0 1.85± 0.02 0.381± 0.004 1.89± 0.02 0.386± 0.002
1.0 1.91± 0.02 0.389± 0.002 1.86± 0.03 0.383± 0.004
3.0 1.57± 0.01 0.343± 0.001 1.51± 0.02 0.335± 0.003
5.0 1.21± 0.01 0.287± 0.002 1.26± 0.01 0.296± 0.002

Table 1 – Best-fit values of the effective typical pore diameter σ1 obtained by fitting
equation (4.1) to our data over the whole range of polymer packing fraction φP .
The corresponding void percolation tresholds φcP computed from equation. (4.3)
are also reported.

effective pore size decreases, showing that stickier polymer matrices slow down tracers as
quenched suspensions with smaller pores would do. This analogy also allows us to compute
the equivalent void percolation threshold of the polymer matrix φcP , that is, the critical
packing fraction where the pore size equals the tracer size. From the condition λp = 1,
equation (4.2) gives immediately

φcP = σ1

3σ + σ1
(4.3)

The best-fit values of the effective pore size and the corresponding percolation thesholds
are reported in table 1.

The similar trends observed in the mobility of WCA and CS particles might still
conceal some more conspicous difference in the structural reorganization of the tracer
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fluid induced by the sticky crowding matrices. In order to investigate this aspect, it is
instructive to compute the radial distribution function (RDF), both for tracer-tracer pairs
(BB) as well as for tracer-monomer pairs (AB).
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Figure 12 – The polymer-tracer RDF gAB(r) for WCA (top) and (CS) particles for different values of the tracer-polymer affinity.
Source: The Authors.
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Figure 13 – The tracer-tracer RDF gBB(r) for WCA (top) and (CS) particles for different values of the tracer-polymer affinity.
Source: The Authors.
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Figure 12 illustrates the behavior of the polymer-fluid RDF, gAB(r). Both kind of
fluids appear to develop an increasing degree of structural organization in the vicinity
of the polymer matrix as the polymer-tracer affinity increases beyond εAB = 1. However,
this analysis reveals that CS particles are much less prone to affinity-induced structural
organization around the crowders. This observation can be interpreted as a direct result
of the competition between different length scales in the repulsion between CS particles,
which appears to induce some frustration in the spatial ordering of such tracers in the
presence of crowding.

A direct inspection of the tracer-tracer RDFs gBB(r) (figure 13) confirms that
structural ordering is globally hindered in the CS fluid. Interestingly WCA particles get
more and more structured around each other at large values of εAB and the first and
second coordination shells appear to become populated at essentially the same rate (see
panel (d) in figure 13). By contrast, the dual length-scale repulsion of CS particles appears
to essentially suppress any appreciable structuring in the first coordination shell, while
the second shell becomes more and more populated, even if to a much lesser extent when
compared to WCA particles (see arrow in panel (h) in figure 13).

4.2 The effect of self-crowding on diffusion
It is interesting to reverse the diffusion analysis illustrated above, where the fluid

packing fraction was held fixed at φf = 0.1, while we investigated the combined effect
of εAB and the crowding volume occupancy, φP . In this section we analyze the results of
simulations where the crowding density was fixed at the same moderate value, i.e. φP = 0.1,
while we let φf and εAB vary. In order to isolate the effect of the polymer-tracer affinity,
we plot in figure 14 the diffusion coefficient of tracers D(εAB, φf ) normalized to the purely
repulsive value at the same density, D(0, φf). As a first observation, it can be clearly
appreciated that varying the fluid packing fraction (self-crowding) seems to have a less
dramatic effect on diffusion than varying the crowding density. For low affinity, εAB = 1.0,
WCA and the CS tracers display an approximately constant diffusion coefficient, mirroring
the corresponding trend observed in the reversed situation (see figure 10 (a) and (b)).

An interesting phenomenon is observed in the high-affinity case. When εAB = 5.0,
both tracer species display a water-like diffusion anomaly. It is clear from figure 14 that
the diffusion constant increases as φf increase, reaches a maximum at φf ∼= 0.2 and
then decreases again as the fluid density increases further. While for CS molecules this
anomalous behavior is well known and directly ascribed to the dual-length repulsion 49, 51,
it appears rather unexpected in the simple repulsive WCA fluid.

Some insight into this unexpected result can again be gathered by looking at the
radial distribution functions at increasing values of φf in the high-affinity case (figure 15).
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Figure 14 – Diffusion coefficient of tracers normalized to the purely repulsive values
D(0, φf ) as a function of the fluid volume fraction φf for two values of εAB at
fixed polymer volume fraction φP = 0.1. Error bars are smaller than points.
Source: The Authors.

More precisely, it should be remarked that the effect of increasing the fluid density is to
progressively lower the fraction of tracers adsorbed on the polymer matrix. This behavior is
clearly illustrated by the decrease of both the first and second peaks in the polymer-tracer
RDF, gAB(r). At the same time, while the polymer-tracer interface becomes less organized,
the tracers start developing more short-range order. This is reflected by the increase of
the first peak of the tracer-tracer RDF, gBB(r). Therefore, as we increase the fluid density,
less and less tracers are adsorbed by the polymer matrix, thereby raising the number of
unconstrained, fully mobile molecules in the bulk. However, increasing the fluid density
further, the self-crowding effects become more prominent and the mobility of tracers starts
decreasing as the fluid becomes more and more structured (see also the black arrows in
figure 15).
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5 Conclusion

In this master’s dissertation, we employed large-scale Langevin dynamics simulations
to investigate the mobility of tracer particles diffusing in a static matrix consisting of
quenched polymer chains of equal-sized monomers. The two main parameters varied were
the volume fraction occupied by the polymer matrix and the strength of a short-range, non-
specific attractive interaction causing tracer particles to spend longer time in the vicinity
of the crowders. Furthermore, we focused on two types of tracer particles, characterized
by different tracer-tracer repulsive interactions. In particular, we considered core-softened
tracers (CS), characterized by a dual-length repulsive potential as compared to purely
repulsive, shifted Lennard-Jones particles (WCA).

We found that excluded-volume interactions, i.e. crowding, reduce the tracer
diffusion coefficient, all the more so the larger the polymer-tracer affinity. At the moderate
tracer volume fraction considered in this paper (φf = 0.1), we found no appreciable
signature of the kind of tracer-tracer interactions in the measure diffusivity. The mobility
of CS and WCA particles decreased with increasing crowding and increasing affinity
following practically indistinguishable trends. In particular, we found that, for all the
values of the attractive energy strength considered, the sticky crowding matrices behaved
as porous media consisting of quenched suspensions of purely repulsive hard spheres, as
gauged by fitting a tortuosity model to our data.

If the meausured diffusion coefficients bore no blueprint of the underlying tracer-
tracer interactions, the same was not true for static spatial correlations. In particular,
for large crowding tracer affinity, the core-softened tracers showed a considerably lower
propensity to structure around the polymers, whereas WCA particles showed substantial
short- and intermediate-range order, increasing with the volume fraction of crowders.

In order to explore further the distinctive signature of the tracer-tracer repulsion
in the high affinity case, we run a series of simulations at increasing density of tracers
and intermediate crowding (φP = 0.1) for εAB = 5, comparing the measured diffusion
coefficient to the zero affinity case. While we recovered the known water-like anomaly for
CS particles, i.e. a non-monotonic trend of the diffusion coefficient as a function of the
tracer density for high affinity, we found an even more pronounced anomaly of the same
kind for the WCA particles. This kind of anomaly, which does not seem to be directly
abscribed to dual-length repulsion, is more deeply, and likely more generally rooted in
the competition between the confinement and the attraction exerted on tracers by the
polymeric network. For dilute tracer fluids, an increase in self-crowding is seen to induce a
progressive desorption of tracers from the polymer matrix, while the fluid gets more and
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more structured in the bulk. The apparent result of this is that a little increase in φf from
the very dilute case reduces D(εAB = 5, φf) less than what observed in the zero-affinity
case, i.e. less than D(εAB = 0, φf ). It is interesting to recall that a vast litterature exists
reporting a non-monotonic trend of the diffusion coefficient in the presence of crowding
and tracer-crowder attractive interactions as the strength of the latter is increased. This
scenario, also rooted in the competition between confinement and attraction, appears
rather universal, from quenched-annealed mixtures of hard spheres 78, to ions in a charged
polymer gel 79, nanoparticles in polymer melts80 ans simple hard-sphere like colloids 81.
However, despite the large body of work in this area, further work seems to be needed to
gather a more comprehensive picture of tracer diffusion in the presence of crowded and
attractive media in the regime where self-crowding effects become important.

Work ideas for the future
Since in this master’s dissertation, we worked to understand how the softness of

the tracers influences the diffusion in a crowded media, now we aim to investigate how the
geometric feature of these tracers and of a soft particle should influence the diffusion in
a crowded media. In this sense we will work with dimer particles diffusing in the same
crowded media. Nonetheless, as we worked with a rigid crowded media, which means that
the polymer network did not move during the simulation, we look forward to study how
the molecules tracer diffusion might change, when the crowding media is no more rigid.
For that case, we aim to parametrize our model to fit the experimental data obtained by
Prof. Anand Yethiraj, from the Memorial University of Newfoundland, Canada. As well,
we will keep the ongoing collaboration with Prof. Francesco Piazza.
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ANNEX A – LAMMPS script

In this annex, we shall describe the LAMMPS script used in our simulations. For
instance, how to implement the polymer matrix; how to inject the tracers; how to set
the interactions between types of particles; how LAMMPS minimizes the energy to avoid
particles overlap; how to equilibrate the system; and how to measure properties in the
production stage such as: the MSD, the RDF, the kinetic and potential energy. All these
descriptions but not our full script were exctraced from LAMMPS manual.

A.1 Variable
The variable command in LAMMPS assigns one or more strings to a variable name

for evaluation later in the input script or during a simulation. For instance, one shall apply
this command for setting the temperature, assign the number of particles, or the system
density. This command is represented in the script in this way:

1 va r i a b l e ph i f equal 0 . 1

In the above command line, we have setted the tracer fluid volume occupancy φf to a
desired value ‘equal’ to 0.1. The variables are accessed by the command:

1 ${ ph i f }

A.2 Simulation parameters
Before starting to simulate any system, LAMMPS needs to understand the en-

vironment in which the simulation will take place. In this sense, we need to set: the
system dimension which is the dimensionality of the simulation that can be in three
dimension or two; the style of units used for a simulation, which determines the units
of all quantities specified in the input script and data file; the style of atoms to use in
a simulation; the system boundaries, which can be periodic or not; the neighbor listing
style, which affects the building of pairwise neighbor lists, all atom pairs within a neighbor
cutoff distance equal to the their force cutoff plus the ‘skin’ distance are stored in that list.
These parameters are illustrated in the following way

1 dimension 3
2 un i t s l j
3 atom_style molecu lar
4 boundary p p p
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5 neighbor 3 .0 mult i
6 neigh_modify every 1 de lay 0 check yes

the above script, we setted the system dimension to three; the units in ‘lj’, which means
that all quantities are unitless, without loss of generality, LAMMPS sets the fundamental
quantities mass, sigma, epsilon and the Boltzmann constant to one; the atom style by
molecular that takes into account bonds, angles, dihedrals and impropers; we applied the
periodic boundary conditions in the three directions (x,y,z) with ‘boundary p p p’; finally,
the system neighboring list with its ‘skin’ equal to 3.0, that determines how often atoms
migrate to new processors if the check option of the ‘neighbor modify’ command is set to
yes.

A.3 Data file for polymers
In order to inject polymers into the system, one should generate a data file with the

polymers information, such as: the number of monomers, the bonds, the angles, dihedrals,
impropers, atom types, bond types, the box of simulation size and the position and
velocities (of each monomer in the polymer chain). Unfortunately, LAMMPS does not have
an embedded function to generate these kind of data file. Even, for polymers simulations.
In this sense, scientists should make use of alternative codes for the polymer configuration
wrote in lammps standard data file format by following the above description. A illustrated
data file format is presented bellow:

1 LAMMPS Desc r ip t i on
2
3 5 atoms
4 4 bonds
5
6 1 atom types
7 1 bond types
8
9 −40 40 x lo xhi
10 −40 40 y lo yhi
11 −40 40 z l o zh i
12
13 Masses
14
15 1 1
16
17 Atoms # id mol type xu yu zu
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18
19 1 1 2 −40.00000 0.00000 0.00000
20 2 1 1 −39.03500 0.00000 0.00000
21 3 1 1 −38.07000 0.00000 0.00000
22 4 1 1 −37.10500 0.00000 0.00000
23 5 1 1 −36.14000 0.00000 0.00000
24
25
26 Bonds
27
28 1 1 1 2
29 2 1 2 3
30 3 1 3 4
31 4 1 4 5

in the above data file, we have: 5 monomers in the polymer chain and 4 bonds between
monomers that constitues the whole chain with one monomer type and one bond type;
and the simulation box size in the three directions (x, y and z); and the masses in ‘lj’
unities. These commands are illustrated as below:

1 5 atoms
2 4 bonds
3
4 1 atom types
5 1 bond types
6
7 −40 40 x lo xhi
8 −40 40 y lo yhi
9 −40 40 z l o zh i
10
11 Masses
12
13 1 1

Afterwards in the data file, one must describe all the atoms id, molecule id and molecular
type followed by the atoms position. These description are illustrated bellow:

1 Atoms # id mol type xu yu zu
2
3 1 1 2 −40.00000 0.00000 0.00000
4 . . .
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Finally, we have to take into account the polymer chain bonds, which means which atom
is bonded to which atom in the chain by the following way

1 Bonds
2
3 1 1 1 2
4 . . .

The above command links the atoms bond in the chain, in this way: the first bond (1)
of molecular type 1 links the first monomer (1) to the second monomer (2). With this
data file complete, one shall insert in the LAMMPS script the polymer chain using the
command bellow:

1 read_data polymer_chain . in

This command inserts the polymer chains, which are described in the polymer chain data
file input, into the simulation box.

A.4 Tracers injection
To add the tracers in the simulation, we need to use this command:

1 r eg i on box block −40 40 −40 40 −40 40
2 create_atoms 2 random ${npart } 358723 box

the command ‘region’ defines a geometric region of space. And this region can be filled
whith atoms via the ‘create atoms’ command. In the above commands, we defined a region
and filled with a number of atoms (variable ${npart}) with type 2 in random positions,
using a seed (358723) for a random number generator, into the ‘box’ of simulation.

A.5 Groups of molecules and interactions
To set the interactions between molecules, we need first to separate molecules types

into groups and set the particles masses. This is done by the following commands:

1 mass ∗ 1
2
3 group ob s t a c l e type 1
4 group mobile type 2

The ‘mass’ command sets for all kind of molecules (represented by the * symbol) the mass
1 (in ‘lj’ units). And then we group molecules by the command ‘group’ followed by the
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group name and molecular type. Since we have injected the polymer with a data file before
injecting the tracers, the polymer will have type 1, and then the tracers, the type 2. After
this step, we need to set the particles interactions. For this script we are going to use
WCA potential for tracer-tracer, tracer-polymer and polymer-polymer interactions, and
the FENE bond for polymer-polymer. This setting is illustrated bellow:

1 #Weeks−Chandler−Anderson
2 pa i r_s ty l e l j / cut 1.12246204830937
3 pa i r_coe f f ∗ ∗ 1 .0 1 .0 1.12246204830937
4 pair_modify s h i f t yes
5
6 #FENE type bond
7 bond_style f ene
8 bond_coeff 1 30 .0 1 .5 1 .0 1 .0
9 spec ia l_bonds f ene

The command pair style sets the interaction, since we are modelling all the intermolecular
interactions with the WCA potential, we need to use ‘lj/cut’ followed by its cutoff ‘21/6’.
Then, we set the pair coefficients for each pair of molecules, with ε = 1.0, σ = 1.0 and
rc = 21/6. For the WCA case, one needs to modify it for LAMMPS, by shifting it upwards
with the command pair modify shift yes. Finally, we specify the bonds in the polymer
chain. In this case, we use the FENE bond, which is defined by the bond style fene, and
its coefficients k = 30.0, R0 = 1.5, ε = 1.0 and σ = 1.0.

A.6 Particle overlap
To avoid particles overlap, we perform an energy minimization of the system, by

iteratively adjusting atom coordinates. Iterations are terminated when one of the stopping
criteria is satisfied. At that point the configuration will hopefully be in local potential
energy minimum. The stopping criteria are: the total energy, the stopping force tolerance,
the max iterations of the minimizer and its max number of force and energy evaluations,
respectively. To implement the described minimization, we need to use the following
command:

1 minimize 1 .0 e−4 1 .0 e−6 100 1000

For the first criterion, the specified energy tolerance is unitless; it is met when the energy
change between sucessive iterations divided by the energy magnitude is less than or equal
to the tolerance. For example, a setting of 1.0e-4 for the total energy means an energy
tolerance of one part in 10−4. For the second criterion, the specified force tolerance is in
force units, since it is the length of the global force vector for all atoms, e.g. a vector of size
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3N for N atoms. Since many of the components will be near zero after minimization, one
may think that this tolerance is an upper bound on the final force on any component of any
atom. For example, a setting of 1.0e-4 for this tolerance means no x, y and z component
of force on any atom will be larger than 1.0e-4 (in force units) after minimization. For the
later tolerations, the first means the max iterations LAMMPS will perform the minimizer
and the second the max number of force and energy evaluations.

A.7 Integrator
To use the equations of motion time integration in LAMMPS, one must use the ‘fix’

command added to the desired dynamics. Since we have performed Langevin Dynamics in
our simulations, we have to use the Langevin thermostat added to a NV E time integration,
the command is presented bellow:

1 f i x i n t e g r a t o r mobile nve
2 f i x dynamics mobile l angev in ${temp} ${temp} 0 .5 252352

Unlike the Nose-Hoover ‘fix nvt’ command performs thermostatting and time integration,
the ‘fix langevin’ does not perform time integration. It only modifies forces to effect
thermostatting. Thus one must use a separate time integration fix, like ‘fix nve’ to actually
update the velocities and positions of atoms using modified forces. This ‘fix’ will need
desired a temperature value, a damping factor and a seed, as seen above.

A.8 Mean-squared displacement and radial distribution function
evaluation
To define a computation that calculates the mean-squared displacement of a group

of atoms, including all effects due to atoms passing through peridic boundaries walls, one
must use the following command:

1 compute 1 a l l msd

For the radial distribution function, one must define a computation that calculates
this function and the coordination number for a group of particles. Both are calculated
in histogram form by binning pairwise distances into a number of bins from 0.0 to the
maximum force cutoff defined by the interactions. To define this computation, we need to
use the following command:

1 compute 1 a l l rd f 256
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A.9 Run the simulation
To run the simulation, we use the command ‘run’ added to a specified number of

timesteps as shown below:

1 run 1000000

A.10 LAMMPS full script
Then, with all the above commands, we are able to perform the simulations used

in this masters dissertation. The full script is shown bellow as an example:

1 #temperature in reduced un i t s
2 va r i a b l e temp equal 4 .45
3
4 #number o f ob s t a c l e s to add
5 va r i ab l e npart equal 40000
6
7 # Polymer pack f r a c
8 va r i a b l e phi_poly equal 0 .001
9
10 #se t up ba s i c s imu la t i on s t u f f
11 dimension 3
12 un i t s l j
13 atom_style molecu lar
14 boundary p p p
15
16 #neighbor s e t t i n g s
17 neighbor 3 .0 mult i
18 neigh_modify every 1 de lay 0 check yes
19
20 #read input c on f i gu r a i t on
21 read_data equ i l 1 . data
22
23 #add add i t i ona l p a r t i c l e s to box
24 reg i on box block −29.693150 29.693150 −29.693150

29.693150 −29.693150 29.693150
25 create_atoms 2 random ${npart } 358723 box
26
27 #a l l p a r t i c l e s has mass 1
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28 mass ∗ 1
29
30 #Type 1 i s polymer . type 2 i s f i x ed
31 group mobile type 2
32 group ob s t a c l e type 1
33
34 ###### INTERACTION #################################
35 #Weeks−Chandler−Anderson + LJ POTENTIAL BETWEEN MOLECULES

and Polymers
36 pa i r_s ty l e hybrid / over l ay l j / cut 1.12246204830937 l j / cut

2 .5 l j / cut 1.12246204830937
37
38 # PAIR 1−1
39 pa i r_coe f f 1 1 l j / cut 1 1 .0 1 .0 1.12246204830937
40 pair_modify s h i f t yes
41
42 # PAIR 1−2
43 pa i r_coe f f 1 2 l j / cut 2 1 .0 1 .0 2 .5
44
45
46 # PAIR 2−2
47 pa i r_coe f f 2 2 l j / cut 3 1 .0 1 .0 1.12246204830937
48 pair_modify s h i f t yes
49
50 #FENE type bond
51 bond_style f ene
52 bond_coeff 1 30 .0 1 .5 1 .0 1 .0
53 spec ia l_bonds f ene
54
55 ##########################
56
57 #remove over lap between polymer and ob s t a c l e s
58 minimize 1e−6 1e−6 10000 100000
59 rese t_t imestep 0
60
61
62 ######## SIMULATION INTEGRATOR #######################
63 f i x i n t e g r a t o r mobile nve
64 f i x dynamics mobile l angev in ${temp} ${temp} 1 .0 252352



ANNEX A. LAMMPS script 60

65
66
67 # sp e c i f y t imestep
68 t imestep 0 .001
69
70 ############################################################
71 #ENERGY EVALUATION
72 thermo_style custom step temp pre s s pe ke e t o t a l
73 thermo 1000
74
75 ###### EQUILIBRATION
76
77 run 1000000
78
79 ##### WRITE EQUILIBRATION RUN BINARY FOR RERUN
80 wr i t e_re s t a r t r e s t a r t . e qu i l 1
81
82 ###### EXPERIMENT
83 rese t_t imestep 0
84
85
86 dump img a l l custom 10000 s imu la t i on . snapshot id type xs ys

zs vx vy vz
87
88 #sample r a d i a l d i s t r i b u t i o n func t i on g ( r ) and save i t to l j .

r d f
89 #the 100 100 10000 means sample every 100 steps , make 100 o f

such samples , and save at 10000 s t ep s
90 compute rd f a l l rd f 250 1 2 2 2 1 1
91 f i x save rd f a l l ave/ time 100 1000 ${ f i na l_s t ep } c_rdf [ ∗ ]

f i l e rdf_pack_frac_poly_${phi_poly}_1 . dat mode vec to r
92
93
94 compute tracer_msd mobile msd
95 f i x tracer_msd mobile ave/ time 2 6 100 c_tracer_msd [ 4 ] f i l e

msd_pack_frac_poly_${phi_poly } . dat
96 compute msd mobile msd
97 thermo_style custom step temp pre s s pe ke e t o t a l
98 thermo_modify l o s t e r r o r
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99 thermo 1000
100
101 run 10000000
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