
FEDERAL UNIVERSITY OF PELOTAS

Institute of Physics and Mathematics

Graduate Program in Physics

Master Dissertation

A physics based feature engineering framework for trajectory analysis

Eduardo Henrique Mossmann

Pelotas, 2022

Eduardo Henrique Mossmann

A physics based feature engineering framework for trajectory analysis

Master Dissertation presented to the Institute of
Physics and Mathematics of Federal University of
Pelotas, partial requirement for obtaining the title
of Master in Physics.

Supervisor: José Rafael Bordin

Cosupervisor: Maurício Moreira Soares

Pelotas, 2022

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogação na Publicação

M913p Mossmann, Eduardo Henrique
MosA physics based feature engineering framework for
trajectory analysis / Eduardo Henrique Mossmann ; José
Rafael Bordin, orientador ; Maurício Moreira-Soares,
coorientador. — Pelotas, 2022.
Mos175 f. : il.

MosDissertação (Mestrado) — Programa de Pós-Graduação
em Física, Instituto de Física e Matemática, Universidade
Federal de Pelotas, 2022.

Mos1. Aprendizado de máquina. 2. Análise de trajetórias.
3. Difusão. I. Bordin, José Rafael, orient. II. Moreira-Soares,
Maurício, coorient. III. Título.

CDD : 533.63

Elaborada por Ubirajara Buddin Cruz CRB: 10/901

Eduardo Henrique Mossmann

A physics based feature engineering framework for trajectory analysis

Master Dissertation approved, como requisito parcial para obtenção do grau de Master in Physics,
Institute of Physics and Mathematics, Federal University of Pelotas.

Data da defesa: 16 de Agosto de 2022

Banca Examinadora:

José Rafael Bordin (Supervisor)
Doctor – Federal University of Pelotas

Maurício Jeomar Piotrowski
Doutor em Física – Universidade Federal de Pelotas

Frederico Schmidt Kremer
Doutor em Biotecnologia – Universidade Federal de Rio Grande

Elizane Efigênia Moraes
Doutora em Física – Universidade Federal da Bahia

RESUMO

MOSSMANN, Eduardo H.. A physics based feature engineering framework for trajectory
analysis. Supervisor: José Rafael Bordin. Cosupervisor: Maurício Moreira Soares. 2022. 175 f.
Master Dissertation (Graduate Program in Physics) – Instituto de Física e Matemática, Universidade
Federal de Pelotas, Pelotas, 2022.

Análise de trajetória é de grande importância para o entendimento de sistemas dinâmicos e

suas propriedades. Trajetórias podem descrever a evolução temporal de uma variável em diferentes

contextos, como o movimento da célula cancerígenas, a volatilidade de uma ação na bolsa de valores,

o crescimento populacional e assim por diante. Nos sistemas físicos, onde estamos interessados

na evolução temporal da posição de um ou de um conjunto de corpos, existem sistemas onde a

posição desses corpos depende da concentração de matéria em diferentes locais. Nesses contextos,

o movimento dos corpos tende a ser no sentido de uma área com alta concentração de matéria

para uma região de baixa concentração. Este movimento, tecnicamente chamado de fenômeno de

transporte, é chamado de Difusão. Como uma maneira geral de descrever a evolução temporal de

um corpo em tais sistemas, usamos o Deslocamento Médio Quadrático. Os tipos de movimento, às

vezes chamados de Classes de Difusão, são uma maneira de descrever o movimento de corpos em

sistemas onde a Difusão é observada. Para classificar a difusão, a literatura utiliza a dependência

temporal do Deslocamento Quadrático Médio. No presente trabalho, apontamos que usar esta

dependência temporal como a única grandeza para classificar a Difusão dá origem a um problema

imediato, onde podemos ter duas ou mais Classes de Difusão possíveis para o mesmo movimento.

Com isso em mente, propusemos uma estrutura de engenharia de atributos baseada em física

para análise de trajetória chamada TrajPy como uma possível solução para esse problema. A

estrutura contém três componentes principais. A primeira nos permite realizar a análise de trajetórias

computando múltiplas quantidades de interesse físico e estatístico para qualquer trajetória, seja

essa trajetória retirada de experimentos ou gerada em uma simulação computacional. A segunda

componente é uma combinação de duas interfaces gráficas, que são modelos de interface que

permite a interação com dispositivos digitais por meio de elementos gráficos como menus e botões.

A primeira nos permite calcular as quantidades físicas e estatísticas de forma que não precisamos

estar familiarizados com programação em Python. A segunda interface gráfica foi desenvolvida para

ser um primeiro passo para uma solução geral para o gargalo tecnológico presente no processo de

descoberta de medicamentos. A terceira componente nos permite simular os quatro tipos básicos

de movimento (Difusão Normal, Anômala, Confinada e Movimento Direto com Difusão) com uma

gama de parâmetros para que possamos usar essas simulações como uma conexão entre análise

de trajetórias e algoritmos de classificação externo no contexto de Aprendizado de Máquina para

que possamos classificar a Difusão de partículas de uma forma mais geral para que evitemos o

problema envolvendo a sobreposição de classes de difusão. Como demonstração da aplicação do

TrajPy, realizamos análise de trajetória e classificação de difusão para sistemas que mimetizam

a capacidade das células de serem deformadas. Para isso, simulamos vários sistemas, usando

Dinâmica Molecular, em uma combinação de valores de pressão e constante de mola relacionada

à Lei de Hooke, onde cada sistema é composto por 400 anéis poliméricos bidimensionais. Como

resultados, observamos que os anéis poliméricos, uma vez que a pressão atinge um determinado

limiar, apresentam uma transição dinâmica de Difusão Normal para Difusão Confinada, ou seja, à

medida que a pressão aumenta, os anéis poliméricos ficam confinados dentro de uma região como

efeito do aumento da pressão. Em seguida, classificamos a Difusão de cada anel polimérico para

cada sistema e observamos o mesmo comportamento sob a perspectiva do algoritmo Random Forest

Classifier usando Aprendizado de Máquina.

Palavras-chave: Aprendizado de Máquina. Análise de trajetórias. Difusão.

ABSTRACT

MOSSMANN, Eduardo H.. A physics-based feature engineering framework for trajectory
analysis. Advisor: José Rafael Bordin. Coadvisor: Maurício Moreira Soares. 2022. 175 p.
Dissertation (Master in Physics) – Instituto de Física e Matemática, Universidade Federal de Pelotas,
2022.

Trajectory analysis is of great importance for the understanding of dynamical systems and

their properties. Trajectories may describe the time evolution of a variable in different contexts, such

as the motion of cancer cell , the volatility of a stock in the stock market, the populational growth and

so forth. In physical systems, where we are interested in the time evolution of the position of one or a

set of bodies, there are systems where the position of these bodies depends on the concentration

of matter at different locations. In such context, the movement of bodies tends to be in the direction

of an area with high concentration of matter to a region of low concentration. This motion is called

Diffusion. As a general way of describing the time evolution of a body in such systems, we use the

Mean Squared Displacement. The motion types, sometimes called the Diffusion Classes, are a way of

describing the movement of bodies in systems where Diffusion is observed. To classify the diffusion,

the literature uses the time dependence of the Mean Squared Displacement. In the present work,

we pointed out that using this time dependence as the only quantity to classify the Diffusion will give

rise to an immediate problem, where we can have two or more possible Diffusion Classes for the

same motion. With that in mind, we proposed a physics-based feature engineering framework for

trajectory analysis called TrajPy as a possible solution to this problem. The framework contains three

main components. The first allows us to perform trajectory analysis by computing multiple quantities

of physical and statistical interest for any trajectory, whether this trajectory is taken from experiments

or generated in a computer simulation. The second component is a combination of two graphical-user

interfaces. The first allows us to compute the quantities of the first component in a way that we do not

need to be familiar with Python programming. The second graphical-user interface was developed

to be a first step towards a general solution to the bottleneck present in the drug discovery process.

The third component allows us to simulate the four basic motion types with a range of parameters

so that we may use these simulations as a connection between trajectory analysis and Machine

Learning, where we aim to classify the Diffusion of particles in a more general way so that we avoid

the problem involving the overlapping of diffusion classes. As a demonstration of the application

of TrajPy, we performed trajectory analysis and diffusion classification for systems that mimic the

capability of cells to be deformed. For this, we simulated multiple systems, using Molecular Dynamics,

in a combination of values of pressure and the spring constant related to Hooke’s Law, where each

system is composed of 400 two-dimensional polymer rings. As a result, we observed that the polymer

rings, once the pressure reaches a certain threshold, present a dynamical transition from Normal

Diffusion to Confined Diffusion, i.e., as the pressure increases, the polymer rings become trapped

inside a region as an effect of the increase in pressure. Then, we classified the Diffusion of each

polymer ring for every system and observed the same behavior from the perspective of the Random

Forest Classifier algorithm using Machine Learning.

Keywords: Machine Learning. Trajectory Analysis. Diffusion.

LIST OF FIGURES

Figure 1.1 – Four examples of physical systems in different scales. 20

Figure 1.2 – Time evolution of the concentration of two different particles. 22

Figure 1.3 – Graphical comparison of the four MSD models. 24

Figure 1.4 – The distributions of β for different classes of Diffusion. 26

Figure 2.1 – Graph of the MSDisplacement by Time Average in log-log scale. 33

Figure 2.2 – Visual comparison of the Fractal Dimension for four different tracjecories. 34

Figure 2.3 – Asymmetry for four different trajectories. 36

Figure 2.4 – Anisotropy for four different trajectories. 36

Figure 2.5 – Straightness for four different trajectories. 37

Figure 2.6 – Efficiency for four different trajectories. 38

Figure 2.7 – Gaussianity for four different trajectories. 39

Figure 2.8 – Kurtosis for four different trajectories. 39

Figure 2.9 – The different behaviors of the Velocity Autocorrelation Function for four different

trajectories. 41

Figure 2.10–The possible values for the velocity skewness and kurtosis. 43

Figure 2.11–A visual repreentation of the Fourier Transform. 44

Figure 2.12–A visual representation of the effects of the velocity’s magnitude on the overall

behavior of Direct Motion with Diffusion. 46

Figure 2.13–A visualization of the first graphical-user interface. 47

Figure 2.14–A visualization of the second graphic-user interface. 49

Figure 2.15–A visualization of the two different regions the second graphic-user interfaces uses

to compute important attributes. 51

Figure 2.16–A visualization of the two graphs provided by the second graphical-user interface. 52

Figure 3.1 – Schematic depiction of the bead spring ring model for low and high kcm. 55

Figure 3.2 – Density ρ as function of pressure p∗ and Isothermal compressibillity βT for all

values of kcm. 57

Figure 3.3 – Cell center of mass radial distribution functions and cumulative two-body entropy. 59

Figure 3.4 – MSD by Ensemble average for p∗= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k* = 10.0. 61

Figure 3.5 – MSD by ensemble average for p∗= 0.25 and k* = 10.0. 62

Figure 3.6 – A comparison between the MSD by Ensemble average for p∗ = 0.25 and k* =

10.0 and the MSD calculated from simulated Confined Motion with a radius of

confinement rc = 0.5. 63

Figure 3.7 – Average MSD ratio for every system. 63

Figure 3.8 – Average Anomalous Exponent for every system. 64

Figure 3.9 – Average Fractal Dimension for every system. 65

Figure 3.10–Average Asymmetry for every system. 66

Figure 3.11–Average Anisotropy for every system. 67

Figure 3.12–Average Straightness for every system. 68

Figure 3.13–Average Efficiency for every system. 68

Figure 3.14–Average Gaussianity for every system. 69

Figure 3.15–Number of polymer rings, per system simulated for all values of k∗ and p∗, whose

gaussianity was measured to be larger than one. 70

Figure 3.16–Histograms for the values of the observed gaussianity larger than one for every

value of p for k = 10.0. 71

Figure 3.17–Average Gaussianity for every system, once we ignore the large values we observed. 72

Figure 3.18–Average Kurtosis for every system. 72

Figure 3.19–Number of polymer rings, per system simulated for all values of k∗ and p∗, whose

kurtosis was measured to be larger than 5. 73

Figure 3.20–Histograms for the observed values of kurtosis larger than 5 for every value of p∗
for k∗= 10.0. 73

Figure 3.21–Average kurtosis for every system, once we ignore the large values. 74

Figure 3.22–Average Velocity Kurtosis for every system. 75

Figure 3.23–Number of polymer rings, per system simulated for all values of k∗ and p∗ , whose

velocity kurtosis was measured to be larger than 2. 76

Figure 3.24–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p∗ for k∗= 10.0. 76

Figure 3.25–Average velocity kurtosis for every system, once we ignore the large values. . . . 77

Figure 3.26–Average Velocity Skewness for every system. 77

Figure 3.27–Average Diffusion Coefficient for every system. 78

Figure 3.28–Number of polymer rings, per system simulated for all values of k∗ and p∗, whose

diffusion coefficient was measured to be larger than 5. 79

Figure 3.29–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 10.0. 80

Figure 3.30–Average diffusion coefficient for every system, once we ignore the large values. . 81

Figure 3.31–Scatter matrix comparing the attributes used to perform diffusion classification. . 83

Figure 3.32–Confusion Matrix for the predictions of the Random Forest algorithm. 84

Figure 3.33–ROC curve presenting the true and false positive rates for classification model

evaluations. 86

Figure 3.34–ROC curves for classification model evaluations in the context of prediction of

cardiac surgical operative mortality. 86

Figure 3.35–Results of the diffusion classification process. 87

Figure B.1 – Histograms for the gaussianity values larger than one for k = 25.0 for all pressures

p. 135

Figure B.2 – Histograms for the gaussianity values larger than one for k = 50.0 for all pressures

p. 136

Figure B.3 – Histograms for the gaussianity values larger than one for k = 75.0 for all pressures

p. 137

Figure B.4 – Histograms for the gaussianity values larger than one for k = 100.0 for all pressures

p. 138

Figure B.5 – Histograms for the gaussianity values larger than one for k = 150.0 for all pressures

p. 139

Figure B.6 – Histograms for the gaussianity values larger than one for k = 200.0 for all pressures

p. 140

Figure B.7 – Histograms for the gaussianity values larger than one for k = 250.0 for all pressures

p. 141

Figure B.8 – Histograms for the gaussianity values larger than one for k = 300.0 for all pressures

p. 142

Figure B.9 – Histograms for the gaussianity values larger than one for k = 500.0 for all pressures

p. 143

Figure B.10–Histograms for the kurtosis values larger than 5 for k = 25.0 for all pressures p. . 144

Figure B.11–Histograms for the kurtosis values larger than 5 for k = 50.0 for all pressures p. . 145

Figure B.12–Histograms for the kurtosis values larger than 5 for k = 75.0 for all pressures p. . 146

Figure B.13–Histograms for the kurtosis values larger than 5 for k = 10.0 for all pressures p. . 147

Figure B.14–Histograms for the kurtosis values larger than 5 for k = 150.0 for all pressures p. 148

Figure B.15–Histograms for the kurtosis values larger than 5 for k = 200.0 for all pressures p. 149

Figure B.16–Histograms for the kurtosis values larger than 5 for k = 250.0 for all pressures p. 150

Figure B.17–Histograms for the kurtosis values larger than 5 for k = 300.0 for all pressures p. 151

Figure B.18–Histograms for the kurtosis values larger than 5 for k = 500.0 for all pressures p. 152

Figure B.19–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 25.0. 153

Figure B.20–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 50.0. 154

Figure B.21–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 75.0. 155

Figure B.22–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 100.0. 156

Figure B.23–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 150.0. 157

Figure B.24–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 200.0. 158

Figure B.25–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 250.0. 159

Figure B.26–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 300.0. 160

Figure B.27–Histograms for the observed values of velocity kurtosis larger than 2 for every value

of p for k = 500.0. 161

Figure B.28–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 25.0. 162

Figure B.29–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 50.0. 163

Figure B.30–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 75.0. 164

Figure B.31–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 100.0. 165

Figure B.32–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 150.0. 166

Figure B.33–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 200.0. 167

Figure B.34–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 250.0. 168

Figure B.35–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 300.0. 169

Figure B.36–Histograms for the observed values of the diffusion coefficient larger than 5 for

every value of p for k = 500.0. 170

Figure B.37–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 25.0. 171

Figure B.38–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 50.0. 171

Figure B.39–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 75.0. 172

Figure B.40–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 100.0. 172

Figure B.41–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 150.0. 173

Figure B.42–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 200.0. 173

Figure B.43–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 250.0. 174

Figure B.44–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 300.0. 174

Figure B.45–MSD by Ensemble average for p= 0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17
for k = 500.0. 175

LIST OF CODES

Code A.1 – Codes for the computation of each attribute. 103

Code A.2 – Codes for the simulation of trajectories for the four basic motion types. 118

Code A.3 – Code for single object tracking. 122

Code A.4 – ESPResSo code of the simulation. 124

LIST OF TABLES

Table 2.1 – Descriptive table of the attibutes. 30

SUMMARY

1 INTRODUCTION . 19

1.1 Overview . 19

1.2 Physical concepts of interest . 19

1.3 The problem of diffusion classification and a proposed solution 25

2 PHYSICS-BASED FEATURE ENGINEERING . 29

2.1 Computing attributes of the trajectory . 31

2.1.1 Previous features . 31

2.1.2 New Features . 40

2.2 Simulating trajectories for the four basic motion types 45

2.3 Using Graphical-User Interfaces - attributes calculations and animal tracking

for drug discovery . 47

3 TRAJECTORY ANALYSIS AND DIFFUSION CLASSIFICATION OF TWO-DIMENSIONAL

POLYMER RINGS . 53

3.1 The physical system of interest . 53

3.1.1 General Overview . 53

3.1.2 The Model and Simulation Details . 54

3.1.2.1 The 2D drop-like model for deformable cells . 54

3.1.2.2 Simulations Method and Details . 55

3.1.3 Results and Discussion . 57

3.1.3.1 Thermodynamic and Structural Analysis . 57

3.2 Trajectory analysis . 60

3.3 Machine Learning and diffusion classification 79

3.3.1 A general description of Machine Learning . 80

3.3.2 Diffusion classification . 82

4 CONCLUSION . 89

BIBLIOGRAPHY . 91

ATTACHMENTS . 101

ATTACHMENT A – ALGORITHMS . 103

ATTACHMENT B – SUPLEMENTARY MATERIAL 135

19

1 INTRODUCTION

1.1 Overview

Trajectory analysis is of great importance to the understanding of dynamical systems and their

properties. We define a trajectory to be a series of values of a given variable measured over time.

In that sense, trajectory analysis is a quantitative approach that describes the time evolution of that

variable, so that we can extract relevant information such as patterns and behavioral changes of the

data being analysed.

The variable measured over time may change according to the context of research. In

Economics, we might be interested in the time evolution of a set of economic indicators designed to

measure the economic growth (MARIANI et al., 2022). In Ecology, the variable of interest can describe

oscillations in the number of members of a certain population of animals following the predator-prey

model (CHOWDHURY; BANERJEE; PETROVSKII, 2022).

Lastly, in Physics, we are interested in describing the time evolution of the position of one or

multiple bodies in a variety of length scales. In the nanometric scale, we might want to determine

the optimal drug delivery mechanism to maximize the effects of a certain medicine, seeking the

geometric shape of nanoparticles of medicine that allows the drug to travel the furthest in the human

body (ZHANG et al., 2018). In the scale of micrometers, the motility of cancer cells has been the

object of extensive research due to the process of methastasis (SHI et al., 2022). The modelling

of bird migration, in the scale of meters, has been used to study the intricate ways flocks of birds

communicate (PANCERASA et al., 2019). Lastly, in astrophysical scales, the process of chaotic

lensing around boson stars has been observed and studied for its fractal patterns. Every one of the

systems we just described are vastly different from one another. They vary in complexity and scales,

however the concept of trajectory remains the same no matter what the system is. Figure 1.1 shows

the four different physical systems we described.

Regarding physical systems where the movement of bodies is related to the amount of matter

present in different regions of the system, such as the process of dialysis (SCHUETT et al., 2021)

and cancer cell motility (FUENTE; LOPEZ, 2020), the concept of diffusion is used to describe such

movement. Given that our main goal in the present work involves the idea of diffusion and trajectory

analysis, let us discuss some fundamental physical concepts.

1.2 Physical concepts of interest

In order to discuss the idea of diffusion and show where it comes from, we will use Fick’s laws

of diffusion, first proposed by Fick (1855). To do that, we begin by providing the definition of two main

concepts, the flux and concentration of matter in a system.

Simply put, the flux J⃗ of matter is defined as the amount of matter that crosses an area per

unit of time, whereas the concentration C indicates the quantity of matter1 located at a certain region

1 In the present work, we will use interchangeably the words “matter” and “substance”.

20

(a) Font: (ZHANG et al., 2018) (b) Font: (SHI et al., 2022)

(c) Font: (PANCERASA et al., 2019) (d) Font: (CUNHA et al., 2016)

Figure 1.1 – (a) The motion of two different kinds of nanoparticles of medicine over time. (b) The process
of migration and invasion of ovarian cancer cells. (c) The trajectory of a flock of birds through
the african continent. (d) Fractal patterns that emerge from gravitational lensing around boson
stars.

of the system of interest (JACKSON, 2006).

We now make two basic assumptions about the behavior of the substance present in the

system. First, we assume that the substance will avoid any location where C is considered large, since

the more particles there are in a specific set of coordinates, the more difficult it is for the substance

to pass through that area. Second, we assume that the conservation of matter holds true at all

times (DAYANANDA, 2022). This means that two measurements of the total mass at different times

must yield the same result.

By using our first assumption, we see that the flux of matter goes in the opposite direction of

the gradient of concentration, since the gradient points to the direction where C grows larger. In order

to express this proportionality between J⃗ and C as an equation, we must use a constant.

We will call such a constant the “diffusion” of matter through the system. By doing that, we

arrive at what is known as Fick’s first law. This law is defined as

J⃗ =−D∇C(r,t), (1.1)

where D is the diffusion coefficient that tells us that diffusion is the movement of matter from a region

21

of high concentration C to a region of low concentration. By dimensional analysis, we notice that the

diffusion D is written in units of m2 · s−1. Also, it is clear that diffusion tells us how fast the substance

can sweep out a unit of area.

The negative sign in Equation (1.1) indicates that the flux of the substance happens in the

direction of the lowest concentration. In other words, the substance tends to move along the path

of least resistance where, in this context, the resistance is provided by the collisions between the

substance’s and environment’s particles.

Given that the particles are not bounded to stay fixed, it is easy to see that in a small region,

the flux of particles going into the region from the left might be different from the flux going outside

from the right. This means the concentration C changes according to the location and time, which

means C is a function of r and t, C(r,t). We may express the amount of substance present in this

region per unit of time as the difference between the inward and outward fluxes ∇ · J⃗(r,t), combine it

with the concept of concentration and rearrange the difference to obtain:

∂C(r,t)
∂ t

+∇ · J⃗(r,t) = 0, (1.2)

which is the equations that ensures the conservation of mass.

Now we can substitute J⃗ in Equation (1.2) by substituting Equation (1.1) in Equation (1.2) to

obtain:
∂C(r,t)

∂ t
−D∇

2C(r,t) = 0. (1.3)

Equation (1.3) is known as Fick’s second law, also called the Diffusion Equation. This is the equation

that governs every system where our two basic assumptions hold true. Given that the Laplacian of

the concentration C, ∇2C(r,t), tells us that the value of C located at r is the average value of the

concentration in the surrounding region, it is simple to see that Equation (1.3) states that C changes

over time according to the nearby concentration. The higher the concentration in the vicinity of the

point r, the faster C changes in r.

At this point, it is important to point out that, in the present work, we consider the applications

of Fick’s laws to the context of Self Diffusion, where the substance we discussed so far is composed

of one kind of particle. (FRENKEL; SMIT, 2002). To see an application of Fick’s laws in the context of

Interdiffusion, where the substance is composed of two or more kinds of particles, see Hirakawa et al.

(1973).

Let us solve Equation (1.3) to obtain a relation for the concentration C. To do that, we apply

the Dirac delta function (BOAS, 1999) as a boundary condition:

C(r,0) = Mδ (r). (1.4)

In Equation (1.4), we will set M = 1 for simplicity. Notice that, by computing the integral∫
∞

−∞

C(r,0)dr =
∫

∞

−∞

δ (r)dr = 1, (1.5)

we assure the conservation of mass2.
2 If we had not set M = 1 in Equation (1.4), we would have obtained M itself as the result of the integration in

Equation (1.5).

22

We may use the Fourier Transforms method following the work of Jackson (2006) in order to

solve Equation (1.3). The solution is given by

C(r,t) =
1

(4πDt)n/2 exp(−r2/4Dt), (1.6)

where n is the number of dimensions of the system.

Since Equation (1.6) is a Gaussian function, we may interpret this result as a Probability

Density Function (PDF) that tells us the probability of finding the particle at the point r at time t. Notice

that at small t, the probability of finding the particle at r = 0 is higher than at any other time. This

is the consequence of using the boundary condition given by Equation (1.4). Figure 1.2 shows the

evolution of C at all one-dimensional points x for different values of t. As we can clearly see, the fact

−10 −5 0 5 10

x [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
(x
,t

)
[1

/m
] D = 2.0 m²/s

M = 1.0 Kg

t = 0.1 s

t = 0.3 s

t = 0.5 s

t = 0.7 s

t = 0.9 s

−10 −5 0 5 10

x [m]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

D = 20.0 m²/s

M = 1.0 Kg

t = 0.1 s

t = 0.3 s

t = 0.5 s

t = 0.7 s

t = 0.9 s

Figure 1.2 – This figure shows the evolution of the concentration C over space and time for different values of the Diffusion
Coefficient D. To generate these graphs, we have used Equation (1.6) and set M = 1 Kg for both. In the left
graph, we have set D = 2.0 m2 · s−1 and in the right one, D = 20.0 m2 · s−1.

Fonte: The author.

that D is ten times higher on the right graph indicates that it is much easier for the particles of that

system to move around.

Now that we have solved the diffusion equation, we may use its solution to obtain the Mean

Squared Displacement (MSD) of a trajectory, defined as the squared deviation from the body’s initial

position over time (ALLEN; TILDESLEY, 1989). To do that, we write the MSD as the second moment3

of the PDF represented by C in Equation (1.6). The MSD is mathematically defined as:

⟨⃗r2(t)⟩=
∫

∞

−∞

r2C(r,t)d⃗r. (1.7)

3 A distribution may be represented by its four moments. The first indicates the central tendency we call the mean. The
second is the variance, the third is the skewness that measures the asymmetry of the distribution and the fourth is the
kurtosis, a measure of the tails of the distribution (AGARWAL, 2006).

23

Once we compute the integral in Equation (1.7), we get

⟨⃗r2(t)⟩= 2nDt. (1.8)

The diffusion modeled by Equation (1.8) is called Normal diffusion. According to Saxton e

Jacobson (1997), Normal diffusion is not the only motion type observed in nature. There are infact

four basic motion types: Normal, Anomalous, Direct motion with diffusion and Confined diffusion.

Each type has its unique relation with the MSD and we can use this relations to extract pieces of

information such as the diffusion itself. The mathematical formulations for the different motion types

are the following:

⟨⃗r2(t)⟩ ∝ t, Normal diffusion, (1.9)

⟨⃗r2(t)⟩ ∝ tβ , Anomalous diffusion, (1.10)

⟨⃗r2(t)⟩ ∝ t2, Direct motion with diffusion, (1.11)

⟨⃗r2(t)⟩ ≃ r2
c [1−A1 exp(−2A2nDt/r2

c)], Confined diffusion. (1.12)

In Equation (1.10), β assumes values less than one, according to Saxton e Jacobson (1997). In

Equation (1.12), rc, A1 and A2 are the radius of confinement and two constants that characterize the

shape of the confinement, respectively. In addition, we could write Equation (1.12) as ⟨⃗r2(t)⟩ ∝ tβ in

order to express the time dependency of the MSD directly. Figure 1.3 shows a comparison of the four

theoretical models for the MSD according to the motion type.

The linear time dependency of the MSD observed in Equation (1.9) was first calculated

by Einstein (1956), when providing a mathematical description of the motion we nowadays refer to

as Brownian motion. The concept of Brownian motion was named after the botanist Robert Brown,

who was the first person to observe the irregular motion of particles of polen generated by collisions

with particles when immersed in water (GENTHON, 2020). In order to mimic such behavior, the

Random Walker, a particle that may take multiple steps of random length in a random direction was

proposed (CODLING; PLANK; BENHAMOU, 2008). We will interpret, from now on, Normal diffusion

as the motion type for the Random Walker.

Let us discuss the meaning of Anomalous diffusion. If we recall the two assumptions we

made in order to obtain Fick’s Laws - where we have stated that the substance in question will avoid

any crowded location and that matter is conserved, we considered the environment the substance

is located in to be structureless. We made this consideration in an indirect way, since we have not

mentioned any details about the structure of the environment.

However, if we do consider the environment to impose geometric constraints of some kind,

the first assumption we just mentioned becomes obscure, once we can no longer be sure that the

substance will avoid crowded locations. These geometric constraints are one of the reasons we

observe Anomalous Diffusion (SANTOS; JUNIOR; CIUS, 2022). This behavior may also present itself

in many systems, such as Brownian Motion in inhomogeneous systems (OLIVEIRA et al., 2019a).

An alternative way of describing the rise of Anomalous Diffusion would be to consider systems

where the steps a Random Walker takes each time are not independent from each other. Systems as

the ones we just described are observed, for instance, in Biology (KLAFTER; SOKOLOV, 2005).

24

0 20 40 60 80 100

t [s]

0

1000

2000

3000

4000

〈r
2
〉(t

)
[m

²]

Normal Diffusion

Anomalous Diffusion

Direct motion with diffusion

Confined Diffusion

Figure 1.3 – A comparative plot of the four motion types. We defined the numerical values
for each parameter as the following: D = 2.0, n = 2, v = 0.3, A1 = 2.0,
A2 = 3.0, rc = 10.0 and β = 0.9. As expected, the MSD for the Confined
motion (red line) achieves a plateau, since the motion itself is limited (this will
become clear later on). The Direct motion generates a MSD (green line) that
grows fast for its quadratic time dependency, whereas the MSD for Normal
diffusion (blue line) produces a straight line since the relation between the MSD
and time is linear. Given that the exponent β must be less than 1, the MSD for
this motion will always be smaller than either Normal diffusion or Direct motion
with diffusion.

Fonte: The author.

We mentioned that β in Equation 1.10 is less than one. This fact was true in the context of

study of Saxton e Jacobson (1997). However, as a general rule β assumes values that may be smaller

or larger than one (OLIVEIRA et al., 2019b). When β < 1, the diffusion regime is called Subdiffusion.

On the other hand, if 1 < β < 2, the regime is refered to as Superdiffusion.

Subdiffusion is observed when the movement of particles in a system is slower, on average,

than the one observed in Normal Diffusion. This implies that the values of the MSD for Subdiffusion

are smaller across time. One interesting example of Anomalous Diffusion in the Subdiffusion regime

is the one of molecules’ diffusion through the plasma membrane of the human cell (KRAPF, 2015).

This membrane in known for its crowded inner structure that causes restriction of the motion of

macromolecules.

Superdiffusion, on the other hand, happens when the movement of particles is faster, on

average, than the one observed in Normal Diffusion. In constrast with Subdiffusion. the values of the

MSD across time are high when compared to the MSD for Normal Diffusion. A famous example of

Superdiffusion is encountered in the so called Lévy flights, where a Random Walker remains in motion

without changing direction for a random amount of time (ZABURDAEV; DENISOV; KLAFTER, 2015).

In the present work, we will use “Anomalous diffusion” as a simple way to refer to both subdiffusion

and superdiffusion in the context we just described.

25

In systems where the MSD presents a quadratic time dependency, the active transport of

matter is observed (WU; LIBCHABER, 2000). By active transport we mean that the substance that

presents diffusion - perhaps Normal diffusion - is immersed in a fluid that moves over time. The Direct

motion with diffusion, sometimes called Ballistic diffusion is observed, for instance, in the movement

of bacteria (CASPI; GRANEK; ELBAUM, 2002). In the present work, we will use “Direct motion with

diffusion” as a simple way to refer to situations where the MSD presents a squared time dependency.

Lastly, let us discuss the Confined diffusion. This motion type is observed when the particles

of the substance present Normal diffusion while confined in a certain region (BURADA et al., 2009).

This region may have any geometric shape, as long as it is able to contain the substance trapped.

Confined diffusion is observed, for instance, when spherical tracers are put inside Periodic Porous

Nanostructures (RACCIS et al., 2011).

Over the past decades, multiple computational models have been proposed by researchers in

order to improve the overall understanding of motion. Theoretical models that aim to mimic single

and multiple cell dynamics in both two dimensions (FANG et al., 2020) and (HECK et al., 2020) and

three dimensions (CAMPBELL; BAGCHI, 2017) have been vastly proposed. From the perspective of

trajectory analysis of three-dimensional Molecular Dynamics Simulations, two computational models

among many are proposed by Michaud-Agrawal et al. (2011) and Roe e Cheatham (2013). Regarding

the analysis of cell interactions, Jin et al. (2021) designed a package called CellChat. In the context of

Machine Learning being used, Li (2022) developed scTour, a package that uses Deep Learning to

model cell dynamics. In addition, the trajectory analysis of experimental data has also been discussed

in the literature. For an approach that uses Machine Learning in sets of data generated from hand

tremors related to Parkinson’s Disease, see San-Segundo et al. (2020). Lastly, Wagner et al. (2017)

utilizes Machine Learning in combination with trajectory analysis and object tracking techniques in

order to model single cell dynamics and diffusion classification.

1.3 The problem of diffusion classification and a proposed solution

In the last section, we have described the fundamental physical concepts related to diffusion,

the MSD and its time dependency. In this section, we will show that a problem immediately rises

if one wishes to classify the diffusion as one of the four motion types. In addition, we will propose

a solution to this problem, where we construct an alternative approach to trajectory analysis and

diffusion classification.

Let us begin by describing the problem we previously mentioned. As we established in

Section 1.2, we may use the time dependency of the MSD as a way to classify the diffusion as

one of the four basic motion types: Normal, Anomalous, Direct motion with diffusion and Confined

diffusion. For now, we will use β to indicate the value of the time exponent related to each MSD time

dependency. That means that for Normal diffusion, β = 1, for Direct motion with diffusion, β = 2, for

Confined diffusion, β < 1 and for Anomalous diffusion4, β ̸= 1.

4 We must recall that for Anomalous diffusion, β must also be less than two.

26

If we simulate many different trajectories for each of the motion types5, compute the MSD

for each trajectory and then extract the value of the time exponent β , we should get approximate

values of β that match the expected values for each class of diffusion6. However, as we can see in

Figure 1.4, the distributions of the values of β do not match the expected values.

0 1 2

β

Normal

Anomalous

Confined

Direct Motion with diffusion

Figure 1.4 – This graph provides the distributions of β for each motion type: Normal, Con-
fined, Anomalous and Direct motion with diffusion. These distributions show
that when β is computed from the MSD for trajectories simulated based on the
four motion types, we do not obtain the expected resuls for β . This, in turn,
implies that we should not use β as the only parameter to classify the diffusion
of trajectories, since we observe overlaps of β for different motion types.

Fonte: The author.

Such a problem may rise from underlying complexities that have not been taken into account

in the literature when the physical model we discussed in Section 1.2 was proposed. In addition,

as Hubicka e Janczura (2020) have stated, the trajectory of a cell, protein or any other object might

present a shift regarding the time dependency of the MSD as the system evolves over time. A

combination of such complexities and this shift in the time dependency might be a more general

reason the diffusion classification problem is observed.

As a possible solution to this problem, a Python package called TrajPy was proposed

by Moreira-Soares (2020) based on the ideas of Wagner et al. (2017). The overall objective of

TrajPy is to be a Physics based computational tool for three-dimensional trajectory analysis for both

data generated from simulations and experiments. The objective of the current dissertation is to

present, discuss and improve TrajPy. In addition, we wish to perform trajectory analysis and diffusion

5 We will discuss how these simulations are done based on the approach presented by Wagner et al. (2017) in
Section 2.2.

6 By class of diffusion, we mean Normal, Anomalous, Confined and Direct motion with diffusion. We will, from now on,
use “motion types” and “diffusion class” interchangeably.

27

classification of a physical system of our choosing in order to show why TrajPy was proposed as a

solution to the problem we have discussed in this section.

In Chapter 2, we will discuss TrajPy’s main goals and its approach to the problem of diffusion

classification. In Sections 2.1 through 2.3 we discuss the three sections of TrajPy that are used so

that it achieves its purposes, along with the contributions we have made to the package.

In Chapter 3, we will use TrajPy to perform trajectory analysis and diffusion classification of a

physical system we chose for demonstration purposes. In Section 3.1, we describe the system itself

along with its applications in Physics. In Section 3.2, we provide the results of the trajectory analysis

of the system. In Section 3.3 we present the diffusion classification process and the results we have

gathered.

Lastly, in Chapter 4 we will review the main concepts and results we discussed throughout

the current dissertation. In addition, we designate possible new steps we might take in the future

regarding the development of TrajPy.

29

2 PHYSICS-BASED FEATURE ENGINEERING

In this chapter, we will discuss the Physics based computational tool called TrajPy, a general

framework developed to perform trajectory analysis and diffusion classification. In Section 1.1, we

established the importance of trajectory analysis. We must now discuss TrajPy’s approach to the

problem of diffusion classification we presented in Section 1.3.

We propose two workflows for data analysis that are independent and complementary. The

first branch depicts the development of a classification model for diffusion modes: confined, normal,

anomalous and direct motion. We generate synthetic trajectories by employing 4 independent

simulation engines that provide trajectories on each of the 4 labels. We vary the space of parameters1

for these simulations and obtain a range of different trajectories that obey the same diffusion regime.

Then we apply feature engineering to quantify these trajectories with the proposed attributes in this

dissertation. The data generated with features and the labels are used to train a classifier that can

be used later for classifying unseen data generated from simulations or experiments. We provide a

dataset of synthetic data that can be used to train new models (Moreira-Soares, 2022). The second

workflow regards to statistical analysis of experimental (unlabeled) raw trajectory data. We perform the

same feature engineering process on the experimental data, obtaining the same attributes used to train

our classifier. Therefore, if deemed relevant, the analyst can apply the classifier to the experimental

data and obtain the diffusion modes. The features can be useful to quantify different systems of

interest accross many areas and statistical inference can be performed to draw novel insights about

the systems’ nature. In addition, new classifiers can be trained based on other labels that may be

interesting in other fields.

In Section 2.1, we present the physical and statistical attributes that can be used to perform

trajectory analysis. Specifically, Subsection 2.1.1 contains the quantities implemented in the software

by Moreira-Soares (2020). In Subsection 2.1.2 we discuss the new attributes added to TrajPy

throughout the current research project. In Section 2.2 we present how the motion types we used

to describe the diffusion classification problem were simulated and how we will use them. Lastly, in

Section 2.3 we present both graphical-user interfaces TrajPy provides to the user. The first is used

to analyse trajectories by computing the attributes discussed in Section 2.1 in a way that the user

does not need to be familiar with programming. The second graphical-user interface is responsible for

performing macroscopic object tracking, so that we are able to analyse the trajectory of bodies in the

context of experiments. This graphical-user interface is another contribution we have made to TrajPy.

For completeness sake, we have provided the algorithms we developed for each concept discussed in

this chapter in Code A.1 of Attachment A.

As an easy way to summarise all the attributes TrajPy offers to the process of trajectory analysis

we will discuss shortly, we provide a table that briefly describes each attribute. Table 2.1 contains the

name of each attribute, what they measure, their smallest and largest values in parenthesis - when

1 These parameters are, for instance, the initial position, the number of time steps and the number of dimensions. We
will fully discuss these parameters in Section 2.2

30
Ta

bl
e

2.
1

–
D

es
cr

ip
tiv

e
ta

bl
e

of
th

e
at

tib
ut

es
.

A
ttr

ib
ut

e
M

ea
su

re
m

en
t

Po
ss

ib
le

Va
lu

es

M
S

D
by

Ti
m

e
av

er
ag

e
A

ve
ra

ge
qu

ad
ra

tic
di

sp
la

ce
m

en
t

(0
,-)

M
S

D
by

E
ns

em
bl

e
av

er
ag

e
A

ve
ra

ge
qu

ad
ra

tic
di

sp
la

ce
m

en
t

(0
,-)

M
S

D
R

at
io

R
at

io
be

tw
ee

n
tw

o
M

S
D

’s

M

SD
R

at
io

=
0
→

N
or

m
al

di
ff

us
io

n,
Po

si
tiv

e
M

SD
R

at
io
→

C
on

fin
ed

or
A

no
m

al
ou

s
di

ff
us

io
n

N
eg

at
iv

e
M

SD
R

at
io
→

D
ir

ec
tm

ot
io

n
w

ith
di

ff
us

io
n

A
no

m
al

ou
s

E
xp

on
en

t
Ti

m
e

de
pe

nd
en

cy
of

th
e

M
S

D
(0

,-)

Fr
ac

ta
lD

im
en

si
on

Tr
aj

ec
to

ry
’s

irr
eg

ul
ar

ity

 Fr
ac

ta
lD

im
en

si
on

=
1
→

Tr
aj

ec
to

ry
is

a
st

ra
ig

ht
lin

e,
Fr

ac
ta

lD
im

en
si

on
≈

2
→

Tr
aj

ec
to

ry
re

se
m

bl
es

a
R

an
do

m
W

al
ke

r,
Fr

ac
ta

lD
im

en
si

on
>

2
→

Tr
aj

ec
to

ry
un

de
rg

oe
s

ph
ys

ic
al

lim
ita

tio
ns
.

G
yr

at
io

n
R

ad
iu

s
D

es
cr

ip
tio

n
of

th
e

sh
ap

e
of

a
cu

rv
e

(-
,-)

A
sy

m
m

et
ry

E
xi

st
en

ce
of

pr
ef

er
re

d
di

re
ct

io
n

of
m

o-
tio

n
(0

,∞
)

A
ni

so
tro

py
S

ym
m

et
ry

of
th

e
po

si
tio

ns
’d

is
tri

bu
tio

n
(0

,1
)

S
tra

ig
ht

ne
ss

S
im

ila
rit

y
be

tw
ee

n
th

e
tra

je
ct

or
y

an
d

a
st

ra
ig

ht
lin

e
(0

,1
)

Po
si

tio
ns

’K
ur

to
si

s
S

ha
pe

of
th

e
po

si
tio

ns
’d

is
tr

ib
ut

io
n

 K
=
<

3
→

Fl
at

pe
ak

an
d

lo
ng

ta
ils
,

K
=

3
→

G
au

ss
ia

n
D

is
tr

ib
ut

io
n,

K
=
>

3
→

Sh
ar

p
pe

ak
an

d
sh

or
tt

ai
ls
.

G
au

ss
ia

ni
ty

S
im

ila
rit

y
be

tw
ee

n
th

e
po

si
tio

ns
’d

is
tri

-
bu

tio
n

an
d

a
G

au
ss

ia
n

di
st

rib
ut

io
n

(0
,-)

E
ffi

ci
en

cy
H

ow
ef

fe
ct

iv
e

th
e

tra
je

ct
or

y
is

(0
,1

)
Ve

lo
ci

ty
D

is
pl

ac
em

en
tp

er
un

it
of

tim
e

(-
,-)

Ve
lo

ci
ty

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

S
im

ila
rit

y
of

th
e

pa
rt

ic
le

’s
ve

lo
ci

ty
at

di
ffe

re
nt

tim
es

(-
,-)

G
re

en
-K

ub
o

R
el

at
io

n
D

iff
us

io
n

co
ef

fic
ie

nt
(0

,-)
Ve

lo
ci

ty
D

es
cr

ip
tio

n
C

en
tra

l
te

nd
en

cy
an

d
sp

re
ad

of
th

e
ve

lo
ci

ty
di

st
rib

ut
io

n
(-

,-)

Fr
eq

ue
nc

y
S

pe
ct

ru
m

U
nd

er
ly

in
g

fr
eq

ue
nc

ie
s

vi
a

Fo
ur

ie
r

Tr
an

sf
or

m
(0

,-)

Fo
nt

e:
Th

e
au

th
or

.

31

that applies2.

2.1 Computing attributes of the trajectory

Given that we have established the main idea of TrajPy and its approach to diffusion classifica-

tion, it is time to present every physical and statistical quantity3 Trajpy provides so that we can perform

trajectory analysis. To do that, we will discuss the features implemented by Moreira-Soares (2020) in

Subsections 2.1.1 and our contributions in Subsection 2.1.2.

2.1.1 Previous features

The first attribute we will discuss is the MSD. In Section 1.2 we have defined the MSD to be

the deviation of a particle’s position with respect to a fixed starting point and provided the MSD models

for each motion type. Now, let us discuss how we can compute the MSD of a trajectory composed of

discrete data points.

There are two mathematically equivalent ways to compute the MSD, according to the Ergodic

Hypothesis (ALLEN; TILDESLEY, 1989). We can either compute the MSD by Time Average or

Ensemble Average4, where the former is the usual time average of the position of a single trajectory

and the latter is an average of the position taken over the total number of single particle trajectories.

The MSD by Ensemble Average is defined as

⟨⃗r2⟩(t) = 1
N

N

∑
n=1
|⃗rn(t)− r⃗n(0)|2, (2.1)

where N is the total number of trajectories, r⃗n(t) is the position of the n-th particle at time t and r⃗n(0)
is the initial position of the same particle. In order to compute this feature, we take the difference

between the position of the n-th particle at time t and its initial position. Then we square that difference

so that the positive and negative values do not cancel out and move on to the next particle. Once we

have squared all the differences using the same value for t, we add all of them and divide the result by

the total number of particles N. This is the result for the MSD by Ensemble average for that value of t.

The next step is similar to the previous one, but now we use the next available value for t and so on.

The MSD by Time average differs from the previous feature due to the fact that it takes in as

input a single trajectory. The MSD by Time average is defined by Wagner et al. (2017) as

⟨⃗r2
τ⟩=

1
T − τ

T−τ

∑
t=1
|⃗r(t + τ)− r⃗(t)|2, (2.2)

2 When there are no smallest or largest values, we will inform what specific values indicate.
3 From now on, we will use “quantity”, “attribute” and “feature” to refer to the same concept.
4 An ensemble of particles can be interpreted in two ways: a set of particles that differ in their initial positions but are

under the same influences in the system or, more generally, repeating the same experiment multiple times where, in
each time, the particles present the same initial positions.

32

where τ is the time interval5, also called the time lag, between the two positions and T is the total

trajectory time. To compute this feature, we interpret r⃗(t + τ) as the position of the particle at the

(t + τ)-th time step of the trajectory6. By setting τ = 1, since τ = 0 would simply yield zero as result,

and t = 1, we take the difference between the particle’s position at the (1+ τ)-th and first time steps.

Then we square this difference so that positive and negatives values do not cancel out and move on to

the next value of t, in this case, t = 2. The next step is to plug in t = 2,3, · · · ,T −τ in Equation (2.2),

add the results and divide the final result by T − τ . The numerical output we get is the value of the

MSD by Time average for τ = 1. To extract information about the particle’s displacement, we can set

τ = 0,1,2, · · · (when analysing discrete trajectories) and compute the MSD by Time average for each

value of τ . It is worth mentioning that, since we are always working with finite data, we cannot set a

value for τ that is bigger than the data itself, given the definition of τ in this context.

The next feature TrajPy provides is the MSD Ratio, a feature that allows the user to characterize

the shape of the MSD curve by using two different values for the time lag τ of the MSD by Time

Average. The MSD Ratio is defined as:

⟨⃗r2⟩τ1,τ2 =
⟨⃗r2

τ1
⟩

⟨⃗r2
τ2
⟩ −

τ1

τ2
, (2.3)

where τ1 < τ2 and ⟨⃗r2
τi
⟩ is the Mean Squared Displacement by Time average. When we insert

Equations (1.9) - (1.12) in Equation (2.3), we see that the MSD Ratio has the following values for each

of the four motion types (WAGNER et al., 2017):
MSD Ratio = 0 for Normal diffusion,
MSD Ratio > 0 for Confined and Anomalous diffusion,
MSD Ratio < 0 for Direct motion with diffusion.

That tells us that we can obtain the motion type simply by computing the MSD Ratio or looking

at the motion graph. However, if we want to calculate the diffusion constant itself, we may extract

this information by either fitting a MSD curve through our data, as we have already established, or

computing the so called Green-Kubo’s relation for diffusion (LEE, 2000). This relation will be explored

in Section 2.1.2.

Now that we have established the four basic motion types and discussed the importance of

the MSD Ratio, we may present the Anomalous exponent feature present in TrajPy. We have seen

that the time dependency plays an important role in the MSD, so we would expect that the exponent

who dictates this dependency is also crucial.

Let us consider the relation between the MSD and the Anomalous diffusion provided by

Equation (1.10):

⟨⃗r2⟩(t) = 2Dntβ .

5 When dealing with a trajectory formed by discrete data points - which is the case for TrajPy, the values for τ must, by
definition, be a non-negative integer. Negative values would make us compute the difference between the previous
position and the next, not the other way around (which is what we want). Non-integer values do not make sense in the
context of discrete trajectories, i.e, there is no position ata between the first and second positions.

6 Keep in mind that a trajectory is a list of positions with regular time steps, so t = 1 means the first time step and so on.

33

To compute the exponent β , we apply the logarithm function to both sides of this equation and make

use of the logarithmic rules to obtain:

log(⟨⃗r2⟩(t)) = log(2nD)+β log(t). (2.4)

Then, we take the partial derivative with respect to log(t) on both sides of Equation (2.4) to end up

with:

β =
∂ log(⟨⃗r2⟩(t))

∂ log(t)
, (2.5)

since log(2nD) does not change with time7. Equation (2.5) provides a simple way to compute the

exponent β , we must simply calculate the angular coefficient of the straight line in a log-log graph of

the MSD as a function of time.

Figure 2.1 is a log-log plot of the MSD by Time Average as a function of τ . To construct this

plot, we used the log of Equation (1.10) and set the possible parameters as follows: D = 2.0, n = 2,

β = 0.9. We can easily check that the angular coefficient of the straight line if Figure 2.1 is precisely

equal to 0.9, so Equation (2.5) does in fact provide the correct answer.

Figure 2.1 – A log-log graph of the MSD by Time Average as a function of τ . The angular
coefficient of the straight line produced is the value of the anomalous exponent
β .

Fonte: The author.

Another useful feature in TrajPy is the Fractal Dimension. This concept is connected to Kirkby

(1983) and the idea of Fractal Geometry. Fractals are useful in many fields of study, including

medicine (XINGYUAN; CHAO; JUAN, 2009), social sciences (BANASZAK et al., 2015) and more.

For a complete discussion about the use of fractals emerging from chaos and their applications in

Science, see Strogatz (2014).

In TrajPy, we compute the Fractal Dimension D f of curves proposed by Katz e George (1985),

a direct adaptation of the same concept in the Fractal Geometry context to the analysis of curves in a
7 The diffusion coefficient D may fluctuate around a fixed value over time, but these fluctuations are minimal so we may

not consider them.

34

plane. The Fractal Dimension that interests us is mathematically defined as

D f =
logn

log(ndL−1)
, (2.6)

where n is the number of steps taken to form the curve, d is the largest distance between two points

of the curve and L is the total length of the curve.

In a sense, D f tells us how irregular the trajectory is. If the curve is a straight line, then D f = 1
- wich means the trajectory is not irregular at all. However, if D f → 2, the trajectory can be associated

to Brownian motion modeled by Normal Diffusion. And, finally, if a curve is erratic to the point where

the motion described by the curve is undergoing some physical limitation - as in the Anomalous or

Confined diffusion, for instance - the Fractal Dimension takes values of D f > 2.

Figure 2.2 shows the value of the Fractal Dimension for each of the four motion types: Normal

diffusion, Confined Diffusion, Anomalous diffusion and Direct motion with diffusion. As we can clearly

see, the Direct motion with diffusion represented by the green line is a straight line and has a Fractal

Dimension of D f = 1. The other three motion types have a Fractal Dimension D f > 1 and the more

erratic the motion is, the higher the value of D f . In addition, the more the curve crosses over itself,

the higher the value of D f .

Df = 1.98 Df = 1.0

Df = 2.02 DF =2.65

Figure 2.2 – A comparison for different values of the Fractal Dimension D. The blue, green,
red and black lines refer to the four basic motion types: Confined Diffusion,
Direct motion with diffusion, Normal Diffusion and Anomalous Diffusion.

Fonte: The author.

The next feature we will discuss is the Radius of Gyration Tensor, sometimes called Gyration

Tensor. There is a close relation between this tensor and the Moment of Inertia Tensor, where both

can be used to describe the shape of an object using its distribution of mass and particles. While

the Inertia Tensor makes use of the masses of each particle, the Gyration Tensor uses the particles’

positions as input to describe the macroscopic object (VYMĚTAL; VONDRÁŠEK, 2011).

To describe a distribution of mass, for example, the Gyration Tensor makes use of its eigenval-

ues, where the approximate shape is obtained from ensembles averages of each eigenvalue of the

35

tensor in question (RUDNICK; GASPARI, 1987). This is where the Gyration Tensor becomes very

useful, since we can use its eigenvalues to describe the shape of the trajectory used in TrajPy and

obtain certain properties such as the asymmetry and kurtosis of the trajectory.

The Gyration Tensor is defined as

←→
T =

 Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz,

 (2.7)

where each element, according to vSolc (1971), is defined by

Ri j =
1
N

N

∑
k=1

x(k)i x(k)j −
1

N2

N

∑
k=1

x(k)i

N

∑
k=1

x(k)j . (2.8)

Computing the eigenvalues of the gyration tensor is very useful in many fields of study such as polymer

physics, where the Gyration Tensor can describe the dimensions of a polymer chain (FIXMAN, 1962).

Once we compute the eigenvalues and eigenvectors of the diagonalized Gyration Tensor, we

may proceed to the next features implemented in TrajPy. The asymmetry makes use of Ri, which is

the square root of the i-th eigenvalue λ , in such a way that it allows us to verify if there is any tendency

for a preferred direction. This means we can analyse any given trajectory and quantify the amount

of symmetry or lack thereof across the entire movement. The asymmetry was first mathematically

defined by Huet et al. (2006) as

γ =− log
(

1− (R2
1−R2

2)
2 +(R2

1−R2
3)

2 +(R2
2−R3

3)
2

2(R2
1 +R2

2 +R2
3)

2

)
. (2.9)

Given the already established meaning of asymmetry, we can use this concept to evaluate

the shape of the trajectory curve. A perfectly symmetric trajectory would yield γ = 0 whereas a

trajectory in a straight line along the main axis would be completely asymmetric - since a straight line

is formed by consecutive steps in the same direction - and, therefore, γ → ∞. Figure 2.3 shows a

direct comparison of different trajectories and their respective values for γ .

The Anisotropy makes use of the eigenvalues of the Gyration Tensor. Defined by Olgar e

Janke (2013) as

k2 = 1−3
λ1λ2+λ2λ3 +λ3λ1

(λ1 +λ2 +λ3)2 , (2.10)

the anisotropy contains information about the symmetry and dimensionality of the system. In simple

terms, the anisotropy is the characteristic of a physical property that changes its value according to

the direction it is measured Colin et al. (2019). One simple example of anisotropy would be the mass

anisotropy, where the amount of matter changes according to the direction we look. In Equation (2.10),

k2 is limited to values between 0 and 1 where k2 = 0 indicates the distribution of positions is symmetric

in relation to the origin and, therefore, all eigenvalues are the same. If k2 = 1, that same distribution

is not symmetric in relation to the origin and implies that at least two eigenvalues are zero. This

happens because the positions may be aligned as a linear chain and and there is only one eigenvector

that could represent it (FIXMAN, 1962). Figure 2.4 provides a comparison of the anisotropy for four

different trajectories.

36

γ = 0.23 γ = 0.69

γ = 0.19 γ = 0.06

Figure 2.3 – This image shows a direct comparison for different values of the asymmetry γ .
The blue, green, black and red lines refer to the four basic motion types: Con-
fined diffusion, Direct motion with diffusion, Anomalous diffusion and Normal
diffusion. As expected, the straight green line provides the highest value of γ .

Fonte: The author.

k2 = 0.41 k2 = 1.0

k2 = 0.35 k2 = 0.3

Figure 2.4 – This image shows a direct comparison for different values of the anisotropy k2.
The blue, green, black and red lines refer to the four basic motion types: Con-
fined diffusion, Direct motion with diffusion, Anomalous diffusion and Normal
diffusion. As expected, the straight green line provides the highest value of k2.

Fonte: The author.

Another simple and yet useful quantity provided by TrajPy is the Straightness of the trajectory.

The straightness measures the similarity between the actual trajectory and a straight line. This quantity,

according to Benhamou (2004), is defined as

S =
|⃗rN−1− r⃗0|

∑
N−1
i=1 |⃗ri− r⃗i−1|

, (2.11)

37

where the numerator is the distance, measured as a straight line, between the initial and second to

last positions r⃗0 and r⃗N−1 respectively. The denominator is the length of the trajectory measured as

the sum of the individual distances between each pair of points of the trajectory.

If the trajectory takes the form of a straight line, then both terms of the fraction in Equation (2.11)

are equal and, therefore, S = 1. However, as the trajectory gets less similar to a straight line, the larger

is the length of the trajectory and, by extension, the larger the denominator becomes. In such cases,

S≈ 0 as the trajectory increases in length. Figure 2.5 shows a comparison of different trajectories

and their respective values of S.

S =0.05 S =1.0

S =0.0 S =0.02

Figure 2.5 – This image shows a direct comparison for different values of the straightness
S. The blue, green, black and red lines refer to trajectories presenting the
four basic diffusion types: Confined diffusion, Direct motion with diffusion,
Anomalous diffusion and Normal diffusion. As we expected, the straight green
line presents S = 1.

Fonte: The author.

The efficiency of the trajectory, another quantity present in TrajPy, relies on a similar principle

that of the straightness. Mathematically defined as

E f f =
|⃗rN−1− r⃗0|2

∑
N−1
i=1 |⃗ri− r⃗i−1|2

, (2.12)

the efficiency relates the square of the net displacement with the square of the trajectory length.

According to Wagner et al. (2017), if the particle’s initial and final positions r0 and rN−1 are the same,

the efficiency E f f = 0 for any trajectory length. On the other hand, for a given net displacement -

the numerator in Equation (2.12) - the more irregular the trajectory is, the smaller the value for E f f

in relation to a straight line. Figure 2.6 shows a comparison for the values of E f f for trajectories of

different diffusion types.

The next quantity present in TrajPy is the gaussianity of the trajectory. Simply put, this

quantity measures how similar to a Gaussian Distribution the trajectory is. The gaussianity is defined

38

Eff =0.0

Eff =1.0

Eff =0.0 Eff =0.0

Figure 2.6 – This image shows a comparison for different values of the efficiency Ee f f . The
blue, green, black and red lines refer to trajectories presenting the four basic
diffusion types: Confined diffusion, Direct motion with diffusion, Anomalous
diffusion and Normal diffusion. As we can see, E f f achieves the highest value
for a straight line and rapdly goes to zero as the trajectory becomes more
irregular.

Fonte: The author.

by Ernst, Köhler e Weiss (2014) as

G(τ) =
2⟨⃗r4

τ⟩
3⟨⃗r2

τ⟩2
−1, (2.13)

where ⟨rn
τ⟩ is the n-th moment of the distribution computed by

⟨⃗rn
τ⟩=

1
T − τ

T−τ

∑
t=1
|⃗r(t + τ)− r⃗(t)|n. (2.14)

In Equation (2.14), T is the total number of steps and τ is the time lag. The gaussianity is useful

when one wants to have an idea about the kind of diffusion a specific particle presents. For normal

diffusion, we expect G to be zero and for the other diffusion types, G will present values different than

zero (WAGNER et al., 2017). Figure 2.7 shows a direct comparison for values of the gaussianity for

different diffusion kinds.

The next feature we will discuss is the kurtosis. It measures the tailedness of the distribution

of positions once we project this distribution along the eigenvector corresponding to the highest

eigenvalue or the gyration tensor (HELMUTH et al., 2007). To compute this feature, we take the

scalar product between each position r⃗i and the main eigenvector e⃗1: rp
i = r⃗i · e⃗1 and calculate the

quartic moment of rp
i given by

K =
1
N

N

∑
i=1

(rp
i −⟨rp⟩)4

σ4
rp

. (2.15)

In equation (2.15), ⟨rp⟩ is the mean position of the projected trajectory and σ4
rp = (σ2

rp)2 is the

variance of rp
i . To put it in simple terms, the kurtosis measures how long the tails of the position

39

G =-0.99

G =1.67

G =2.62 G =22.35

Figure 2.7 – A comparison for different values of the efficiency G. The blue, green, black
and red lines refer to trajectories presenting the four basic diffusion types: Con-
fined diffusion, Direct motion with diffusion, Anomalous diffusion and Normal
diffusion.

Fonte: The author.

distribution are, it deals with the outliers - the data points far away from the expected value we usually

call the mean. The higher the value of the kurtosis, the longer the tails are, and, by extension, the

larger the number of outliers. Figure 2.8 provides a comparison for the values of kurtosis of four

different trajectories when projected along their corresponding main eigenvector.

K =2.93 K =1.8

K =4.22 K =4.09

Figure 2.8 – This image shows a comparison for different values of the efficiency K. The
blue, green, black and red lines refer to trajectories presenting the four basic
diffusion types: Confined diffusion, Direct motion with diffusion, Anomalous
diffusion and Normal diffusion when projectd along their corresponding main
eigenvector. The longer the tails, the larger the value of the kurtosis K

Fonte: The author.

40

The last feature of this subsection is the velocity. Given that, in TrajPy, we analyse trajectories

that are composed of discrete data points, we compute the approximate velocity as the ratio between

the displacement r⃗i+1− r⃗i and the time step ti+1− ti.

2.1.2 New Features

In the previous section, we discussed the attributes that were implemented in TrajPy by Moreira-

Soares (2020). In this section, we will discuss the ones implemented in the software throughout the

current research project.

We begin by discussing the Velocity Autocorrelation Function (VACF), a quantity that mea-

sures the correlation between velocities at different times (ALDER; WAINWRIGHT, 1970). According

to Despósito e Viñales (2009), the VACF is defined as

Cv(t) =
1
N

N

∑
i=1

(⃗vi(t) · v⃗i(t = 0)) = ⟨v(t)v(0)⟩, (2.16)

where v⃗i(t) is the velocity of the i-th particle at time t and N is the total number of particles of the

system. If we were to describe Equation (2.16) in simple terms, we could say that we take the scalar

product of the velocity vectors of the particle i at different times in order to calculate how similar both

vectors are8.

We care about this similarity - this correlation - because the way the velocity vectors differ

from one another gives us information about both the system’s thermodynamical equilibrium and

dynamics. Which means the Velocity Autocorrelation Function contains information about the

dynamical nature of the molecular process (LEVESQUE; ASHURST, 1974).

For forces with different magnitudes applied to different systems, such as solids and liquids,

the VACF presents different behaviors. For instance, we would expect it to be a straight line if there

are no forces acting on the system, since the momentum of each particle would remain the same over

time. On the other hand, for weak forces, the VACF decays exponentially over time because a weak

force gradually changes the momentum of the particles and, by extension their velocities became

gradually different9. For strong forces we may observe a few - or even several - oscilations10 of the

VACF between positive and negative values. This happens because strong forces make the particles

seek the position where the net force is as small as possible. Once the particles reach such state,

they oscilate back and forth around this equilibrium and these oscilations produce the oscilations in

the VACF (WILLIAMS et al., 2006). Figure 2.9 provides a comparison for the behavior of the VACF for

t = 100 time steps for four different trajectories.

As we can see in Figure 2.9, three of the four trajectories’s velocities’ decorrelate over time

whereas the green trajectory does precisely the opposite. This is observed because the trajectory

of the particle with Direct motion with diffusion was simulated in such a way that its velocities are

dependent of one another.

8 Notice that we compute the scalar product for different velocities for all N particles.
9 In Statistical Mechanics, we say the velocity decorrelates over time.
10 These oscilations are very similar to the ones we may observe in a Damped Harmonic Oscilator.

41

Figure 2.9 – This image shows a comparison for different behavior of the Velocity Autocor-
relation Function. The blue, green, black and red lines refer to trajectories
presenting the four basic diffusion types: Confined diffusion, Direct motion with
diffusion, Anomalous diffusion and Normal diffusion.

Fonte: The author.

We can make use of the VACF to discuss the next feature present in TrajPy, the Green-Kubo

Relation for the diffusion coefficient D. According to Frenkel e Smit (2002), this relation is defined as

D =
∫

∞

0
dτ⟨v(τ)v(0)⟩, (2.17)

where ⟨v(τ)v(0)⟩ is the VACF.

Equation (2.17) is the Green-Kubo Relation for the diffusion coefficient D. It connects the

macroscopic concept of diffusion with the microscopic movement of the particles. There are Green-

Kubo relations for multiple transport coefficients, such as diffusion. Simply put, transport coefficients

measure how quickly a perturbed system returns to equilibrium (ALLEN; TILDESLEY, 1989). So in

the case of the diffusion D, the system might be in equilibrium and a perturbation such as a drop of ink

in a glass of water will make the particles of the system rearrange themselves so that the equilibrium

is once again achieved11.

The next feature recently implemented in TrajPy is a statistical description of the velocity.

This feature takes as input the values of the velocity of each particle over time and computes the

mean, median, mode, variance, standard deviation, the distance between the largest and smallest

value of the velocity (called range), the kurtosis and skewness of the distribution - for a complete

discussion about these concepts and the equations we are about to provide, see Agarwal (2006).

Although these calculations are quite simple, they allow us to describe the velocity distribution using

some basic concepts from Statistics.

11 The movement of particles towards the opposite direction of the concentration gradient described in Subsection 1.2 is
a general way to say that the system will always seek equilibrium.

42

The mean ⟨v(i)⟩ of the velocity is the usual expected value defined as

⟨v(i)⟩= 1
n

n

∑
k=1

v(i)k , (2.18)

where n is the total number of data points12 for the velocity, i = x,y,z and k indicates the k-th value of

the velocity. From this point, we will ommit the vector notation for simplicity.

The median is the data point where one half of the data points lies above it and the other half

below it, when put in ascending order. The median m(i)
v of the velocity is mathematically defined as

m(i)
v =

v(i)n+1

2
if n is odd,

[
v(i)n

2
+ v(i)n

2+1

]
/2 if n is even.

(2.19)

where v(i)
(n+1)/2 is the (n+1)/2-th velocity data point in the i-th direction.

The mode is the velocity value that is repeated the most along the list of values for the velocity

in each direction- in cases where there is more than one mode, we consider all of them. To compute

this quantity, we used a Python module called Statsmodels (SEABOLD; PERKTOLD, 2010).

The velocity variance var(i)v describes the average squared distance between the velocity

data points and the mean ⟨v(i)⟩ and is mathematically defined as

var(i)v =
1
n

n

∑
k=1

(v(i)k −⟨v(i)⟩)2. (2.20)

The standard deviation std(i)
v of the velocity, on the other hand, is the square root of the variance so

that the average distance described in Equation (2.20) can be written in the same units as the velocity

itself. The standard deviation calculated for the velocity data points in the i-th direction is defined as

std(i)
v =

√
var(i)v . (2.21)

The range of the velocity ran(i)v is defined to be the absolute value of the difference between the

largest and the lowest observed values for the velocity in the i-th direction. It is simply defined as

ran(i)v = |max(i)v −min(i)v |. (2.22)

The skewness S(i) measures the lack of symmetry of the velocity probability distribution

function when the center point is considered. The more different the left and right sides of the

distribution are, the higher the skewness. For a Gaussian distribution, the skewness is null, since

perfect symmetry is observed. In the case of a distribution with a short left tail and a long right one, the

skewness will be positive. If the opposite is observed, the skewness will be negative. The skewness is

defined as

S(i) =
(var(i))v)3/2

std(i)
v

. (2.23)

12 In this case, we are considering that the velocity is composed of discrete data points.

43

The kurtosis measures the shape of the peak and tails of the velocity probability distribution

function. In TrajPy, we use what is called excess kurtosis, where the calculations are done in such a

way that a Gaussian Distribution has a kurtosis of zero - hence the value of three being subtracted in

Equation (2.24). When looking at a distribution, if its peak is sharper and its tails contain more data

then the ones of a Normal Distribution, the kurtosis will have a positive value. On the other hand, if

the distribution presents a flat peak with long tails, its associated kurtosis will be negative. The excess

kurtosis K(i) is defind as

K(i) =
(var(i))v)3/2

(std(i)
v)4

−3. (2.24)

Figure 2.10 provides an illustration for the behavior of probabilities distribution functions and

their respective values for the skewness and kurtosis. Notice that both of these measurements give

us insight about the overall behavior of the velocity.

Figure 2.10 – This figure provides the possible outcomes for both the skewness and kurtosis
of the intensity - here refered to as “height” - distribution function of pixels in a
topographic image. The velocity distribution function follows the same idea
regarding the values of kurtosis and skewness.

Fonte: (BONYÁR, 2015).

The last attribute implemented in TrajPy is the frequency spectrum performed by the Fourier

Transform - for a thorough discussion regarding the Fourier Transform, see Arfken (1985). The

integral transformation called Fourier Transform is one of the many of its kind and produces relevant

information about any function f (t), as long as the function is differentiable everywhere in its time

domain. The Fourier Transform is defined as

g(ω) =
1√
2π

∫
∞

−∞

f (t)eiωtdt, (2.25)

where g(ω) is the analogous of f (t) in the frequency domain ω .

We are particularly interested in the fact that the Fourier Transform reveals what are the

trigonometric functions sin(t) and cos(t) present in f (t) if represent such function as linear combina-

tions of both trigonometric functions. For an application of the Fourier Transform in the analysis of

hand tremors, see San-Segundo et al. (2020).

In TrajPy, we use this linear combination of trigonometric functions to get access to the

underlying frequencies of vibration of the system along with its amplitude. To do that, we use

44

the Python numerical library Numpy (HARRIS et al., 2020), specifically the Fast Fourier Transform

algorithm (MUQRI; WILSON; SHAKIB, 2015). By using this mathematical tool, we are able to provide

the trajectory of any particle, access the trigonometric linear combination and compute the following

attributes: the highest frequency and its associated amplitude, the mean frequency, the frequencies

above a given threshold specified by the user along with their amplitudes, the frequency spectrum and

amplitudes.

To compute these features, we apply the Fast Fourier Transform algorithm to every data

point of the trajectory and store the information. The dominant frequency µ is the highest frequency

and, by extension, the dominat amplitude is the amplitude of the wave with frequency µ . The mean

frequency is computed by taking the mean of all frequencies, whereas the main frequencies are

calculated once we provide a threshold and select the frequencies that are higher than or equal

to this threshold along with their corresponding amplitudes. The frequency spectrum is a list of all

frequencies calculated for every trajectory data point and the amplitudes are the absolute value of

each frequency in the spectrum. We take the absolute value of the frequencies so that we can get the

amplitudes. Figure 2.11 shows an application of the Fast Fourier Transform algorithm.

t [s]

0.0

0.2

0.4

0.6

0.8

1.0
f [Hz]

0
5

10
15

20
25

A
[c

m
]

20

10

0

10

20

Wave 1
Wave 2
Wave 3
Frequencies

Figure 2.11 – This figure shows a wave (blue) that is formed by the sum of two different
waves (green and yellow). The red line presenting two peaks is a visual
representation of the effects of applying the Fast Fourier Transform algorithm
to the blue wave, once the units of measurement of the red line is Hz, the unit
of frequency. The corresponding amplitudes of each wave can be verified by
looking at the Amplitude axis.

Fonte: The author.

45

2.2 Simulating trajectories for the four basic motion types

In this section, we will present the way we simulate the four motion types we have discussed

in Section 1.2. The algorithms used to simulate each motion type can be seen in Code A.2 of

Attachment A.

Let us begin by describing the simulation procedure for Normal Diffusion, as proposed

by Michalet (2010). In order to simulate a particle in φ dimensions whose trajectory is modeled by

Normal Diffusion, we simulate φ one-dimensional brownian motions and return the time steps and

associated one-dimensional trajectories. The φ one-dimensional brownian motions are then combined

as spatial components x,y and z, where each component is scaled to have unitary length.

In simple terms, for each of the one-dimensional brownian motions, we draw a random

number a out of a standard Gaussian distribution with unitary mean and standard deviation. Then

we set u = (0.5−a)dx, where dx is the maximum step length the particle is allowed to take in any

direction, and check whether a is greater than or equal to the absolute value of C(u), where C is the

Concentration we have defined in Equation 1.6. If any of the previous conditions is true, then the

particle takes a step of length u in a random direction. This process is repeated for all the given time

steps for all φ one-dimensional brownian motions.

As stated in the beginning of this chapter, we may change a set of parameters for each

simulation engine for the four basic motion types. In the case of Normal Diffusion, we may change

the number of displacements the particle will present, the number of dimensions13, the maximum

step length dx, the initial position, the diffusion coefficient D and the time step t that will be used in

Equation 1.6.

The next motion type we will discuss is the Confined Diffusion. To simulate it, we specify

the number of displacements, the number of dimenions, dx, the initial position, D and the time step.

For each displacement out of the total number of displacements determined as a parameter, the

particle will present Normal Diffusion behavior for 100 displacements. If the particle, after those 100
displacements, remains inside a sphere whose radius is also defined as a parameter, the new position

of the particle will be the position associated with the 100th displacement. Regarding the radius of

confinement of the sphere, we suggest using positive values up tp 0.5, since the larger the radius, the

more similar to Normal Diffusion the Confinement Diffusion becomes.

The third motion type is the Direct Motion with Diffusion, which is a combination of a simple

integration of a constant velocity v over time and Normal Diffusion. The direct motion with diffusion is

given by

r⃗(t) = Γ⃗(t)+ r⃗0 +
∫ T

t0
v⃗dt, (2.26)

where Γ⃗(t) is the position generated from Normal Diffusion at time t, r⃗0 is the initial position of the

particle determined as a parameter in the algorithm used to simulate Direct motion with diffusion and

v⃗ is the constant velocity also determined as a parameter. The remaining parameters are the number

13 We may set the number of dimensions as the product between the number of particles we wish to simulate and the
number of dimensions for each particle or loop over the number of particles simulating one at a time.

46

of displacements, the number of dimensions and the time step.

The combination of Direct Motion and Normal Diffusion yields different behaviors, depending

on the magnitude of the velocity v in Equation 2.26. For v≈ 0.01, the overall diffusion resembles a

Normal Diffusion. For v > 1.0, the same overall diffusion becomes more similar to the Direct Motion

modeled by Equation 2.26. Figure 2.12 provides a simple comparison of four different trajectories

presenting the behavior of Direct Motion with Diffusion for four different values of the velocity v.

v = 5.0 v = 1.0

v = 0.1

v = 0.01

Figure 2.12 – This figure presents the effect of the velocity’s magnitude on the overall
behavior of the Direct Motion with Diffusion. The smaller the velocity, the more
similar to a Random Walker the trajectory becomes.

Fonte: The author.

In the literature, there are different methods to simulate Anomalous Diffusion, such as obstruc-

tion of the particle’s path, fractional brownian motion and continuous-time random walk (SANDEV;

METZLER; CHECHKIN, 2018). In TrajPy, we have chosen to simulate this diffusion by means of the

Weierstrass-Mandelbrot function14 (BERRY; LEWIS; NYE, 1980) for the simplicity associated with its

computational calculation.

Put in simple terms, the Weierstrass-Mandelbrot function is continuous in its entire domain,

differentiable nowhere and mathematically defined as

W (t) =
∞

∑
n=−∞

cos(φn)− cos(γnt∗+φn)

γnβ/2 . (2.27)

In Equation 2.27, φn is a phase randomly chosen from the interval [0,2π] for every value of the

summation index n, γ = π1/2 and t∗ = 2πt/N, where N is the total number os steps the particle may

take in a simulation.

Every individual position of the trajectory is obtained by performing the summation in Equa-

tion 2.27 from n =−8 to n = 48, since, as determined by Saxton (2001), adding more positive and
14 In the present moment, we are solely interested in the practical aspect of such function from a computational

perspective. The Weierstrass-Mandelbrot function presents a connection with fractals and fractional browninan motion,
but its origins and meaning are beyond the scope of the current research project.

47

negative values has little to no effect in the position, i.e., the numerical value of the position does not

change much if the summation is performed over a larger interval than [−8,48] for n.

Regarding the parameters, they are the number of displacements, the number of dimensions,

the time step and the exponent β . We advise the user to use values of β within the interval (0,2],
where we must exclude the value of β = 1, since this specific value would yield a Normal Diffusion,

as we have discussed previously.

In the next section, we present the two graphical-user interfaces TrajPy offers to the user. The

first allows the user to upload a file containing the trajectory of interest and compute the attributes

discussed in Subsections 2.1.1 and 2.1.2. The second uses the idea of Computer Vision to perform

object tracking on video to extract the x− y coordinates of any moving object present in a video. As

we will discuss in details, this graphical-user interface was developed to be a first step to a general

solution to a technological bottleneck in the process of drug discovery.

2.3 Using Graphical-User Interfaces - attributes calculations and animal tracking for drug

discovery

The first graphical-user interface was implemented by Moreira-Soares (2020) and its objective

is to assist users who are interested in computing the attributes discussed in Subsections 2.1.1

and 2.1.2 but are not familiar with Python programming. Figure 2.13 shows what this interface looks

like.

Figure 2.13 – This figure presents the first graphical-user interface. The graph shown in this
figure is not generated automatically, the user must generate it by using the
“plot” button. We will discuss the function of each button shortly.

Fonte: The author.

Let us present the function of each button shown in Figure 2.13. The “Open file...” and “Open

48

directory...” buttons allow the user to load the file that contains the trajectory the user wishes to

analyse. Once the user clicks either of these buttons, a window will pop up on the screen and the user

should use this screen to select the trajectory file. The “Plot” button, once the trajectory file is loaded,

allows the user to make a graph of each coordinate of the trajectory, separated by colors - making this

graph is optional.

As soon as the trajectory file is loaded, the user may check the boxes corresponding to each

attribute to be computed and press the “Compute!” button. The graphical-user interface will then use

the attributes informed in the check boxes and compute the attributes. The numerical results will be

shown in the white box below the “Compute!” button. The order the user checks each box does not

matter, the results will be shown in the order they appear from the top to the bottom of the check

boxes. The “Select all” button allows the user to select all check boxes at once.

The second graphical-user interface, another contribution we have made to TrajPy, was

developed to be used as an object tracking computational tool, where we have used the Python

library called OpenCV to implement important ideas of Computer Vision (BRADSKI; KAEHLER, 2008).

Our main goal for this graphical-user interface is to provide to the scientific community, specially to

scientists involved in drug discovery research, a possible solution to the significant bottleneck regarding

effective chemobehavioral screening in drug discovery and neurotoxicology (HENRY; WLODKOWIC,

2020). The algorithm we developed to perform single object tracking can be seen in Code A.3 of

Attachment A.

Before we delve on into the funcitonality of the second graphical-user interface, let us briefly

discuss the bottleneck we previously mentioned, so that the reason we proposed this interface

becomes clear. According to Berdigaliyev e Aljofan (2020), the experimental use of animals for in

vivo testing is one of the steps a specific drug must take before being put on the market to be sold

as medication. The in vivo stage basically consists of analysing the overall behavior of an animal

under the treatment of a drug in order to assess how the animal is affected - according to Bhargava,

Pullaguri e Bhargava (2022), living cells are also used in a similar way. Depending on the outcomes of

the assessment, i.e., if the observed effect was desired or not, scientists involved in the process either

take the next step and move on to the clinical trials or go declare that the drug failed.

In order to analyse the behavior of the animal, specifically its trajectory, object tracking

techniques have been used as a tool to assist the analysis process. The bottleneck emerges,

according to Wlodkowic (2022), from the fact that there is a lack of automated video-based multiple

animal tracking techniques that can aid in multi-dimensional behavioral analysis. With this in mind,

we proposed the second graphical-user interface in combination with the attributes discussed in

Section 2.1 as a possible solution to this bottleneck.

The tracking algorithm we propose was set up to perform single object tracking only. We are

currently working on a generalized algorithm that allows the user to track multiple objects at once. If

we achieve such a goal, TrajPy will become a general framework for trajectory analysis in the broadest

sense of the word.

49

To perform the technique of object tracking, the user must provide a video feed15 of the object

in motion. The graphic-user interface will the use such video to extract the x and y coordinates of the

object and store them on an external trajectory file along with the time t.

Figure 2.14 shows the second graphic-user interface.

Figure 2.14 – This figure presents the second graphic-user interface where the user is able
to perform the technique of object tracking.

Fonte: The author.

In Figure 2.14, there are five entry fields where the user must provide the relevant information

in order to use this interface. The first, to the right of the “Cam Test” button, allows the user to discover

the code of the camera16 that will be used to perform the tracking of the object on a live video. The

user must provide integer numbers starting from zero and pressing the “Cam Test” button. If a live

video pops up on the screen showing the video being captured by the camera, the integer number

previously informed is the “cam code” the user should use to perform live object tracking. In order to

close such window, the user must press the key “q” on the keyboard. If the user wishes to provide a

previously recorded video, there is no need to use the “cam code”.

The second entry filed is located below the “Track!”, “Cam Test” and “Open File” buttons.

In this specific entry field, the user must inform whether the object tracking will be performed on a

live video (by writing the word “live”) or on a proviously recorded video (by writing the word “rec”).

Then, the user must inform either the “cam code” we discussed earlier, when using a live video feed,

or the “video path’, when providing a video that has been stored in the user’s computer. To inform

the “video path”, the user must inform the full path to the folder where the video is located, e.g.,

/home/videos/example.mp4. For simplicity, all videos must be in the .mp4 format. Lastly, the user

must inform the name of the file where the trajectory of the object will be stored. This “file name” will

be used to name both the .txt file containing the x and y coordinates along with the time t and a video

15 This video may be a live video feed or a previously recorded video.
16 This is particularly useful in situations where there are more than one camera involved. The user may need to use

different cameras in different situations, so mapping each camera to its “cam code” is important.

50

where the object tracking technique will be shown17. If a full path is provided for the “file name”, both

the .txt file and the.mp4 video will be saved in the specific location provided by the full path. For clarity,

we provide this example where we have informed the algorithm we are going to track an object using

a live video using a specific camera and we wish to save the trajectory file inside the “test” folder in

a file named “example_file”: live,0,/home/documents/test/example_file. Notice that we have not

used any of the .txt or .mp4 extensions after informing the name of the file we wish to use to save the

trajectory and the video.

The third entry box is located below the second. In this entry box, the user must inform the size

of the object being tracked. The “width” must be the largest dimension of the object and the “height”

the remaining dimension. These dimensions must be provided in centimeters separated by commas

with no space between each dimension and the comma. For clarity, we provide the following example:

5.5,4.9. Notice that we have not informed that the unit of each dimension is given in centimeters.

The fourth and fifth entry boxes are located below the third, one after the other, as we can

see in Figure 2.14. In each of them, the user must provide the x and y coordinates of a squared or

rectangular region. In the fourth entry box, the user must inform the corner coordinates of the region

where the time spent by the object inside this region will be computed. In the fifth entry box, the

coordinates of the corners of another region must be informd. However, the time the object spent

outside this reggion will be computed. Notice that these two regions might be different from each

other, since the user may want to compute the time spent at the center of the general area the object

is moving in and on the borders of such general area. For clarity, Figure 2.15 provides an illustration

of the two different regions along with the position of the origin the user must take into account when

measuring the coordinates of the corners of each region.

In order to track the object of interest, the user must fill the second and third input fields with

the required information and press the “Track!” button. Once the tracking technique starts, a new

window will pop up on the user’s screen showing the object being tracked by a restangle around it.

The x and y coordinates of the center of this rectangle will be the approximate coordinates of the

object that will be stored in the .txt file. To stop the object tracking, the user must press the letter “q”

on the keyboard.

Once the user finishes tracking the object of interest, both the .txt and .mp4 files containing

the object’s trajectory and the tracking on video, respectively, will be saved on the informed folder. To

open the trajectory file, the user must use the “Open File” button, locate the .txt file and open it. Once

this file is loaded into the graphic-user interface, the user is able to compute the total displacement of

the object, the time spent by the object inside the region bounded by the coordinates informed and the

time outside a region bounded by its corners’ coordinates, as we previously discussed. To compute

these features, the user must check the associated check boxes and press the “Compute” button. To

clear the results, the “Clear” button should be used.

Lastly, the “Plot” button reads the already loaded trajectory file and makes two graphs. The

17 This video showing the tracking algorithm will show a rectangle around the moving object. The user may want to see
this video in order to check if the tracking technique was perfomed correctly. If, for some reason, the algorithm failed,
the user will be able to notice that the rectangle is not being drawn around the object at all times.

51

(x3, y3)

x

y

(x4, y4)

(x1, y1)

(x2, y2)

Figure 2.15 – This figure presents the two regions the second graphic-user interface uses in
order to compute the time spent inside the region bounded by x1,y1,x2 and y2
and outside the region bounded by x3,y3,x4 and y4. The largest region
presenting two parallel lines on each side represents the arena the object is
allowed to move in. Notice the x and y axis orientation on the top left corner.

Fonte: The author.

first is the time evolution of the object’s position represented by a continuos line that changes colors

according to the value of the time t. The second graph is a two-dimensional histogram that computes

the amount of data points for each combination of xand y in the trajectory file. The amount of data

points is indicated by a change in color in the histogram. In order to save these graphs, the user must

click the button represented by a floppy disk in the top left corner of Figure 2.16.

52

Figure 2.16 – This figure presents the two graphs provided by the second graphical-user
interface, once the user presses the “Plot” button. The graph on the left shows
the time evolution of the trajectory indicated by different colors. The right
graph is a two-dimensional histogram that shows the number of data points
for every combination of x and y. The buttons on the top left corner, from
left to right, allow the user to: reset the graphs to their original size, in case
the user changed it, change figures when more than one is generated (this
is not the case for this graphic-user interface), move a specific graph to a
different direction as the user pleases, zoom in in a specific region of one
graph, change the overall figure’s settings (we advise the user to not do it),
change different configurations of the graphs, such as colors, axis limits and
so on (this is a great option to personalize your graphs) and, finally, save the
graphs as a single figure.

Fonte: The author.

53

3 TRAJECTORY ANALYSIS AND DIFFUSION CLASSIFICATION OF TWO-DIMENSIONAL POLY-

MER RINGS

In this chapter, we will present the physical aspects of the system we will analyse the dynamics

of in Section 3.1. Then, we will provide and discuss the results for each attribute we have obtained in

Section 3.2. Lastly, in Section 3.3 we offer a brief introduction to the idea of Machine Learning and

discuss the results for the diffusion classification.

3.1 The physical system of interest

3.1.1 General Overview

Amorphous solids, as glasses, probably are the materials most known and used by humans.

Obsidian volcanic glass was used for prehistoric tools and weapons. Now we can easily design

glasses with desired mechanical or optical properties on an industrial scale. Yet, a microscopic

understanding of the glassy state of matter remains a challenge for statistical physicists (BIROLI,

2007). Amorphous solids can be formed by two distinct process: cooling or jamming. In the first

one, called glass transition, the temperature is lowered, leading the dynamics to slow down to the

point where the system can no longer relax and becomes rigid. A similar state can be obtained when

the density is increased - this is the second process, the jamming transition. This transition can be

observed in hard spheres and in many other systems, such as foams, emulsionsand granular matter.

(LIU; NAGEL, 1998), (MAJMUDAR et al., 2007), (LIU; NAGEL, 2010), (ALTIERI, 2019).

Amorphous materials jamming transition remains an extremely challenging problem in Solid

State Physics (BIROLI,), (JAEGER, 2015), (CHARBONNEAU et al., 2017), (BRITO; LERNER; WYART,

2018), although there are many technological applications – besides glass related technologies –

that relays in the proper understanding of the jamming transition. For instance, we usually relate

the word "jamming" with traffic jamming. In this sense, in Social Physics the jamming transition is of

special interest for predict and prevent cars and airplanes jamming (NAGATANI, 1994), (NAGATANI,

1998), (HELBING, 2001), (LACASA; CEA; ZANIN, 2009), (IKEDA et al., 2020), (RAMANA; SAI;

JABARI, 2021), (JIANG et al., 2022). Also, pedestrian jamming has been investigated by Social

Physicists, including recent works on effects of corridors, wall-following (as in the case of blackout),

disabilities and social distance (MURAMATSU; IRIE; NAGATANI, 1999), (KRAMER; WANG, 2021), (FU

et al., 2021), (ZHOU et al., 2022), (THOMPSON et al., 2022), (WANG et al., 2022). Even information

traffic jamming in wifi networks - and how to prevent it - are being studied (OHIRA; SAWATARI,

1998), (LU; WANG; WANG, 2014), (HAN et al., 2020), (WANG et al., 2021a), (DUY; HUONG; HONG,

2022). Granular jamming has been identified as a fundamental mechanism for the development

of robotic grippers, soft robotics, wearable haptics and wearable robots, bioprinting, reversible con-

struction and fabrics with tunable properties and exoskeleton (BROWN et al., 2006), (STELTZ et al.,

2010), (AEJMELAEUS-LINDSTRÖM et al., 2016), (BRANCADORO et al., 2019), (PLOSZAJSKI et al.,

2019), (CHENG et al., 2020), (FITZGERALD; DELANEY; HOWARD, 2020), (LIU et al., 2021), (WANG

et al., 2021b), (GÖTZ et al., 2022), (JADHAV et al., 2022).

54

Therefore, jamming transitions have been widely studied in physics and material science.

However, their importance in a number of biological processes, including embryo development, tissue

homeostasis, wound healing, and disease progression, has only begun to be recognized in the past

few years (SADATI et al., 2014), (OSWALD et al., 2017), (LENNE; TRIVEDI, 2022). Specifically, cell

migration is an adaptive process that depends on and responds to physical and molecular triggers.

Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue

modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding,

proteolytic remodelling and jamming transitions. The fact that biological systems can undergo rigidity/-

jamming transitions is attractive, as it would allow these systems to change their material properties

rapidly and strongly (HELVERT; STORM; FRIEDL, 2018). However, how they are being regulated, and

what their physiological relevance might be is still being debated (HANNEZO; HEISENBERG, 2022).

Therefore, a better understanding about the dynamics of biological system in jamming transitions are

of special interest. The cell plasticity itself, including deformability and contractility, plays a key role in

the cell migration process (FRIEDL; ALEXANDER, 2011), (HAEGER et al., 2014), (BOEKHORST;

PREZIOSI; FRIEDL, 2016), (KANG et al., 2021), (ILINA et al., 2020), (ALMAGRO et al., 2022). In

this sense, we will apply the TrajPy package to explore the behavior of a simple drop-like model for

biological cells as the pressure is increased and it overcomes the jamming transition.

3.1.2 The Model and Simulation Details

3.1.2.1 The 2D drop-like model for deformable cells

Biological cells can deform and change its shape to overcome obstacles. In fact, the mechani-

cal properties of the cells can play an major role in their mobility. In a recent work (MOREIRA-SOARES

et al., 2020), a simple drop-like model was proposed, and here we show the 2D version of this model.

Briefly stated, each cell is represented by a bead-spring polymeric, where each bead is connected to

a ghost particle located at the cell center of mass (CM) by a harmonic potential,

Ucm =
1
2

kcm(R− rb-cm)
2 . (3.1)

Here, kcm is the spring constant, R is the cell radius and rb-cm is the distance between the polymer

bead and the cell CM. Two neighbour beads in the external ring are also connected by a harmonic

potential,

U ring =
1
2

kring(rij−σ)2 , (3.2)

where rij is the distance between the two neighbour beads i and j, σ is the bead diameter and

kring = 30.0ε/σ2 is the spring constant, and ε = kBT is the thermal energy.

Two beads i and j that do not belong to the same ring will interact by the purely repulsive

Weeks-Chandler-Andersen (WCA) potential (WEEKS; CHANDLER; ANDERSEN, 1971),

UWCA =

4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6

+
1
4

]
, ri j ≤ rc

0 ,ri j > rc.

(3.3)

55

which is nothing but a standard 6-12 Lennard-Jones (LJ) potential shifted by ε and cut at its minimum,

rWCA
c = 21/6σ . The total interaction for the ith bead is, therefore,

U =Ucm +U ring +UWCA . (3.4)

In this model, the cell deformation is ruled by the value of kcm. In this sense, we can see how

the cell dynamics in the jamming transition will be affected by its deformation just by varying kcm. In

Figure 3.1 we show a depiction of our model, and snapshots from the trajectories for low and high

values of kcm.

Figure 3.1 – Upper: Schematic depiction of the bead spring ring model.
Lower: system snapshots at low and high values of kcm.

Fonte: The author.

In this work, all the quantities are computed and presented in the standard Lennard Jones

(LJ) reduced units (ALLEN; TILDESLEY, 2017),

r∗ ≡ r
σ

, ρ
∗ ≡ ρσ

3 , and t∗ ≡ t
(

ε

mσ2

)1/2
, (3.5)

for distance, density of particles and time, respectively, and

p∗ ≡ pσ3

ε
and T ∗ ≡ kBT

ε
(3.6)

for the pressure and temperature, respectively, where σ = 1.0 µm.

3.1.2.2 Simulations Method and Details

Our initial system consists of ncell = 400 cells randomly displaced in a square box with initial

size L = 210. A distance criteria is used to avoid overlaps in the cell insertions, and the initial velocities

are obtained from a Gaussian distribution at temperature T = 0.5. To keep the initial temperature

constant and to mimic local hydrodynamic effects, we perform Langevin Dynamics (LD) simulations, a

special case of classical Molecular Dynamics (MD) simulations (ALLEN; TILDESLEY, 2017).

To use MD based techniques, we have to solve the classical equations of motion for conserva-

tive systems,

mi
d2⃗ri

dt2 =−∇⃗⃗riU (3.7)

56

where mi is the mass of the i-th particle and the right side of the equation is the force applied to the

atom due to interactions with the other particles. Therefore, MD consists in solving the differential

equation 3.7 for each particle of the studied system. Once the initial configuration has been defined,

the program is ready to perform a simulation step. Given a final simulation time, the program will

perform a series of calculations while performing the steps until reaching the final time. Typically,

the program calculates the resulting force on each particle of the system. This step depends on the

interaction potentials chosen for the system. Next, we integrate numerically the classical equations

of motion, thus obtaining the new positions and speeds of the particles in a time t +δ t, where δ t is

the time increment for each simulation step. After integrated the equations, the program calculates

properties of interests in the system under study, such as energy, pressure, temperature, diffusion,

radial distribution function and so on. Once the time limit has been reached, the program stops. The

trajectory can be then directly obtained at each time step, or at multiples time steps.

While the MD method is conservative, i.e., keeps the number of particles N, the system area

A (once we are analyzing a 2D system) and energy E fixed. On the other hand, in the LD method, at

each simulation step the particles of the system suffer the action of a viscosity force proportional to

their speeds and the coefficient of friction of the system, γ and random forces originated from a white

noise term, which simulate the effect of a continuous series of collisions between the particles of the

system and the particles of the solvent. Thus, we insert these two terms into the calculation of the

resulting force on each particle,

F⃗R =−∇⃗U−mγ v⃗i +W⃗i(t) (3.8)

where W is the random force originated from a white noise term (ALLEN; TILDESLEY, 2017), that

from the fluctuation-dissipation theorem is related to the system temperature through the second

moment of distribution,

⟨Wi(t)Wj(t ′)⟩= δi jδ (t− t ′)6kbT γ (3.9)

where δi j is the Kronecker delta, δ (t− t ′) is the Dirac delta, kb is the Boltzmann constant, T is the

temperature and γ is the coefficient of friction between the system and the thermostat. This expression

indicates to us that random forces are completely uncorrelated at different times. The first term of the

equation 3.8 corresponds to the forces derived from the interaction potential between the particles in

the system. This extra forces control the system temperature by allowing the energy exchange. Then,

LD simulations are in the NV T , or Canonical, Ensemble.

To simulate the jamming transition the system particle density, ρ = ncell/A has to be increased

along a isotherm. This can be done by increasing ncell or decreasing A in the NAT ensemble.

Alternatively, we can increase the system pressure, what would lead to a decrease in A and a increase

in ρ . To do so, simulations were performed at constant pressure p by employing the Andersen

barostat (ANDERSEN, 1980). Briefly stated, the barostat reescales the system size - and the particles

coordinates - according to a coupling to external pistons that acts in the system with pressure p. With

this, we will perform simulations in the N pT Ensemble for temperatures ranging from p = 0.10 uo to

p = 0.25, with interval of δ p = 0.01.

57

While would be possible to write a LD computer code from the scratch, in this work we perform

the simulations using the ESPREesSo1 package version 3.3.1 (LIMBACH et al., 2006),(ARNOLD

et al., 2013). The main code of this version is written in C, and a TCL script is necessary as

input for the executable. The script employed to perform this simulations is shown in Appendix

2. Each simulations consists in to run a isotherm along the pressure interval for a cell with a

value of kcm = 10.0,25.0,50.0,75.0,100.0,150.0,250.0,300.0, and 500.0. After the system been

randomly created, we run 1× 106 timesteps with δ t = 0.01 to thermalize the system, and extra

1× 106 timesteps for equilibration. After that, 1× 107 timesteps were performed in the results

production stage, in such way that the trajectory file consists in 401 frames. After that, we increase

the system pressure by δ p, run the equilibration and production steps, and repeat until we reach the

highest pressure. The algorithm written using ESPREesSo can be seen in Code A.4 of Attachent A.

3.1.3 Results and Discussion

3.1.3.1 Thermodynamic and Structural Analysis

0.1 0.15 0.2 0.25
p

0.018

0.019

0.02

0.021

0.022

0.023

0.024

ρ

Decreasing k
cm

(a)

0.12 0.14 0.16 0.18 0.2 0.22 0.24
p

0

1

2

3

4

β
T

Decreasing k
cm

(b)

Figure 3.2 – (a) Density ρ as function of pressure p∗ and (b) Isothermal compressibillity βT for all values
of kcm, ranging from kcm = 10.0 (black spheres) to kcm = 500.0 (magenta stars).

Fonte: The author.

We start our discussion showing how the system thermodynamic properties varies as rings

with distinct kcm are compressed. In Fig. 3.2(a) we show that deformable cell will have higher density

compared to rigid rings - whats is expected, once as the pressure increases the cell with lower kcm

will be compressed, leading to a smaller mean box size L̄. Interestingly, there is a discontinuity at

p∗ = 0.16, that is more pronounced as we decrease kcm. The derivative of density as function of

pressure along a isotherm gives the isothermal compressibillity,

βT =
1
ρ

(
∂ρ

∂ p

)
T
, (3.10)

1 ESPResSo stands for Extensible Simulation Package for Research on Soft Matter Systems.

58

whose behavior is shown in Figure 3.2(b). It indicates that at this pressure there is a phase transition.

To identify exactly the characteristics of the transition we must to analyze the system structural and

dynamical behavior.

Once the interactions are pairwise important quantities can be calculated explicitly as integrals

involving the radial distribution function (RDF) g(r) (HANSEN; MCDONALD, 2006). To check for

long range translational ordering using the RDF as basis we evaluate the cumulative two-body

entropy (KLUMOV; KHRAPAK, 2020)

Cs2(R) =−π

∫ R

0
[g(ri j)ln(g(ri j))−g(ri j)+1]ri jdri j . (3.11)

Here ri j is the distance and R is the upper integration limit. At this distance |Cs2| converges for fluid

or amorphous phases and diverges for the ordered phases. Is important to address that the two-body

excess entropy is a structural order metric which connects thermodynamics and structure, not a

thermodynamic property of the system. The translational ordering can also be characterized by the

translational order parameter, defined as (ERRINGTON; DEBENEDETTI, 2001)

ts ≡
∫

ξc

ξ

|g(ξ)−1|dξ , (3.12)

where ξ = rρ̄1/2 is the interparticle distance r divided by the mean separation between pair of

particles. ξc = L̄ρ̄1/2/2 is the cutoff distance, with L̄ the mean box side and ρ̄ the mean density. For

a ideal gas, g(ξ) = 1.0 and ts vanishes. For ordered systems, g(ξ) ̸= 1.0 once there is translational

long range order.

59

6 8 10 12 14 16

 r
0

1

2

3

4

5

6

7

g
(r

)

(a)

6 8 10 12 14 16

r
0

2

4

6

8

10

g
(r

)

(b)

4 8 16

R

10

100

1000

|C
s2

(R
)|

(c)

4 8 16

R

10

100

1000

|C
s2

(R
)|

(d)

0.1 0.15 0.2 0.25
p

6

8

10

12

t
s

Increasing k
cm

(e)

Figure 3.3 – Cell center of mass radial distribution functions for (a) kcm = 10.0 and (b) kcm = 500.0. Cumulative two-body
entropy (c) kcm = 10.0 and (d) kcm = 500.0. The dashed black lines are the curves for all pressures from
0.10 to 0.25, except the red solid curve, that corresponds to the p∗ = 0.16 point. (e) Translational order
parameter for all values of kcm, ranging from kcm = 10.0 (black spheres) to kcm = 500.0 (magenta stars).

Fonte: The author.

Is this sense, we show in Fig 3.3(a) and (b) the RDF between the cells center of mass for

the models with kcm = 10.0 and kcm = 500.0, respectively. We can notice the deformation effect by

looking to the shape of the first peak in the g(r). Once the cell diameter is 6.0 and the bead diameter

is 1.0, the hard-core effective separation between two cells center of mass if 7.0. For deformable cell,

Fig 3.3(a), there is a clear penetration in this hard-core separation. This indicates the softness of the

cells at low values of kcm. As expected, rings with higher values of kcm tends to keep the circular

shape, behaving more like a hard-core disks. Fig 3.3(b) shows how there is no penetration between

two cells, even at high pressures.

While the first coordination shell provided information about the cell softness, analyze the

60

longer range ordering can help to understand the system symmetry. To this end, we can look the

cumulative two-body entropy behavior in Fig 3.3(c) and (d) for cell models with kcm = 10.0 and

kcm = 500.0, respectively. For the kcm = 10.0 case there is a clear separation between a disordered

phase and a more ordered phase - the red line corresponds to the p∗ = 0.16 point, where βT

indicated a transition. Therefore, there is a structural change at this pressure. Going back to the RDF

curves, Figs 3.3(a) and (b), we can see that at p∗= 0.16 the second and third coordination shells

have the same height. Then this transition corresponds to a long range ordering, what is corroborated

by the increase in the translational order parameter, Fig. 3.3(e).

3.2 Trajectory analysis

Let us begin the trajectory analysis by discussing the way we will approach it. As we have

mentioned in the previous section, each system is formed by 400 rings simulated in a combination of

pressure p∗ and spring constant k∗. For each polymer ring of every system, we have calculated all

but one attribute2 of those described in Subsections 2.1.1 and 2.1.2.

We will then use the mean value of every feature computed - except for the MSD by Ensemble

average - to represent the average behavior of the system regarding the features themselves. Our

main interest is to observe what happens to the numerical results of each feature for different values

of p∗ and k∗. The results will be presented and discussed in such a way that we wish to develop

some intuition for both the meaning of each feature and the behavior of the system itself.

Let us begin by presenting the MSD by Ensemble average. As discussed in Subsection 2.1.1,

the MSD by Ensemble average calculates the average quadratic distance from the origin at time t for

the 400 polymer rings for each system. We can use such quantity to describe the average motion of

the polymer rings and gain some insight about the overall behavior of the system.

If we recall Equation (2.1), to compute the MSD by Ensemble average for each timestep we

sum the squared distances from the origin for each polymer ring and divide it by the number of polymer

rings. By analysing this a bit more carefully, we see that the MSD can increase, decrase of maintain

the same value from timestep to timestep. When it increases, it means that, on average, the polymer

rings got further away from the origin. If the MSD decreases, the polymer rings - again, on average

- get closer to the origing. And if it remains the same, it indicates that the polymer rings did not get

either further away from or closer to the origin. For subsequential timesteps, the MSD by Ensemble

average may oscilate around a specific value. When that happens, it means that the polymer rings, on

average, move away from the origin and then get closer to it - and the process is repeated. We begin

by analysing the MSD by Ensemble average for p∗= 0.1,0.110.12,0.13,0.14,0.150.16 and 0.17
for k∗= 10.0 presented in Figure 3.4.

In Figure 3.4 we notice that the MSD, in each timestep, gets smaller as the pressure increases.

This means that the polymer rings, on average, can no longer move away from the origin by a

2 We have not computed the frequency spectrum for every ring, since we are interested in the dynamics of the central
bead of each ring.

61

0 100 200 300 400

t

0

1

2

3

4
〈~r

2
〉(t

)

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure 3.4 – This figure provides the MSD by Ensemble average for pressure values of p∗ =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k∗= 10.0 for all 401 timesteps.

Fonte: The author.

significant amount once the pressure is high enough3. For p∗= 0.1,0.11 and 0.12, we see that the

MSD increases overall, even though we observe eventual slight decreases in subsequential timesteps.

For these three systems simulated the average quadratic distances at the last timestep are quite

similar to one another: 3.65,3.89 and 2.85, respectively. If we take the square root of these values

and multiply the result by σ = 1×10−6m to calculate the average squared distances given in meters,

we get 1.91−6m,1.68−6m and 1.91−6m, respectively.

If we analyse the curves for the MSD for the other values of pressure in Figure 3.4 we see

that the MSD increases a bit for the first 50 timesteps, approximately, and then it simply oscilates

around specific values for each curve. As we previously stated, oscilations of this kind indicate that

the olymer rings, on average, move away from the origin by a certain amount, get closer to it, and

repeat the same process for the next timesteps. This implies that the polymer rings for the systems

simulated for the remaning values of pressure shown in Figure 3.4 can not move away from a certain

region of the system, i.e., they are confined in that region.

We now provide the result of the MSD for the systems simulated for the remaining values

of pressure at k∗ = 10.0. Given that the overall behavior of the MSD is very similar4 for p∗ =
0.18,0.19,0.2,0.21,0.22,0.23,0.24 and 0.25, we provide a simple curve - in this case, for p= 0.25
- to show the results in a way that the graph is visually comprehensible in Figure 3.5.

3 In the case of Figure 3.4, we might say that pressures larger than 0.12 are considered high enough to impose phyical
limitations on the system.

4 The MSD basically oscilates around a specific value and may change the value it oscilates around of, in some ocasions.
However, it presents virtually the same overall behavior given than the possible changes of values regarding the
oscilations are minimal.

62

Figure 3.5 – This figure provides the MSD by Ensemble average for p∗= 0.25 and k∗= 10.0 for all the
401 time steps.

Fonte: The author.

Figure 3.5 shows that the MSD by Ensemble average for p∗= 0.25 oscilates around 0.4 and

then 0.6 throughout the timesteps. This means that the polymer rings, on average, are confined in

a given region of the system. We can say that, given the that the MSD oscilates around a certain

value and then this value increases a bit, the polymer rings may have moved in a way that they

became confined in a region that is a little further away from the origin. To visualize this, we have

simulated Confined Motion with a radius of confinement rc = 0.5 using the simulations we have

discussed in Section 2.2. This way, we can demonstrate that the MSD by Ensemble average does

in fact oscilate around a specific value and that the change from 0.4 to 0.6 we mentioned earlier

indicates the movement we described. Figure 3.6 provides the comparison for the MSD presented in

Figure 3.5 and the MSD calculated for the Confined Motion we have simulated. We provide the graphs

for p∗= 0.1 through p∗= 0.17 for the remaining values of k in Attachment B. The MSD for higher

pressures follows very similar behaviors to the one presented in Figure 3.5, so we will not provide the

resuls for simplicity.

The second attribute we will discuss is the MSD ratio. As stated in Subsection 2.1.1, we

expect the MSD ratio to be equal to zero for Normal Diffusion, positive for Confined or Anomalous

Diffusion and negative for Direct motion with Diffusion. Figure 3.7 provides the mean value of the MSD

ratio for each system. In every figure of this section, the points represent the mean of the attribute for

every combination of p∗ and k∗ and the error bars represent the standard deviation associated with

that mean.

As we can see in Figure 3.7, the MSD ratio increases as the pressure p∗ gets larger for every

value of k∗. Somewhat surprisingly, the average behavior of the MSD ratio does not seem to change

a considerable amount for each value of k, which indicates that the effects of the pressure on the

63

0 50 100 150 200 250 300 350 400

t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

〈~r
2
〉(t

)

p =0.25

rc = 0.5

Figure 3.6 – This figure provides a comparison between the MSD by Ensemble average for p∗= 0.25 and
k* = 10.0 and the MSD calculated from simulated Confined Motion with a radius of confinement
rc = 0.5.

Fonte: The author.

Figure 3.7 – This figure provides the average and the standard deviation of the MSD ratio for every system
of interest. We compared those averages for every pressure p∗ and spring constant k∗.

Fonte: The author.

system are greater than those of the springs’ constants.

In addition, the overall increase of the attribute observed in Figure 3.7 indicates that the

64

particles of each system could be represented by Random Walkers5 for low p∗ - which, in turn, are

associated with Normal Diffusion - and by confined Random Walkers for high values of p∗ - and, by

extension, the diffusion would be classified as Confined or Anomalous Diffusion. For p∗= 0.16, we

observe that the MSD ratio decreases momentarily. This is connected, in some way, to the phase

transition we discussed in Subsection 3.1.3.1. To fully understand this, we will simulate the same

systems for different temperatures in future works.

The next attribute we will discuss is the Anomalous Exponent. As discussed in Subsec-

tion 2.1.1, the Anomalous Exponent is calculated as the angular coefficient of a linear regression in

a log− log graph of the MSD as a function of time. The Anomalous Exponent β dictates the time

dependency of the MSD ⟨r2(t)⟩ ∝ tβ . If β = 1, the MSD is represented as a straight line and the

diffusion is classified as Normal Diffusion. On the other hand, β ̸= 1 represents either Subdiffusion or

Superdiffusion, as we have stated in Subsection 2.2. Figure 3.8 shows the average behavior of the

Anomalous exponent for every combination of p∗ and k∗.

Figure 3.8 – This figure provides the average and standard deviation of the Anomalous Exponent for every
system of interest.

Fonte: The author.

As we can see in Figure 3.8 the values of the Anomalous Exponent basically oscilate around

0.4 in the top graph and 0.5 in the bottom graph. In addition, the time dependency of the MSD lies

within the Normal and Subdiffusion regimes. In fact, we see that, for low p∗, the highest value of β is

usually achieved, which again indicates that the systems undergo a dynamical transition. Regarding

the negative values of β we have obtained,

5 We will use “Random Walker” and “Brownian Motion” interchangeably from now on.

65

The next attribute to be discussed is the Fractal Dimension. As we have established in

Subsection 2.1.1, the Fractal Dimension - in the context of TrajPy - provides a way for us to describe

how irregular the trajectory is. If the trajectory is a straight line, its Fractal Dimension is equal to 1.

If the trajectory resembles a Random Walker, the Fractal Dimension gets close to 2. Lastly, if the

trajectory undergoes some physical constraint, the Fractal Dimension gets larger than 2. Figure 3.9

shows the results we have obtained for each system.

Figure 3.9 – This figure provides the average and standard deviation of the Fractal Dimension for every
system of interest.

Fonte: The author.

In Figure 3.9 we can observe that for low p∗, the Fractal Dimension is equal to 2 and as the

pressure gets higher, it increases to values larger than 2. This means the mean value of the Fractal

Dimension for each system indicates a dynamical transition from Normal Diffusion to Confined or

Anomalous Diffusion. Regarding the effects of the spring constant k∗, its effects on the systems are

once again small compared to the effects of the pressure p∗. The decrease in the Fractal Dimension

observed for p = 0.16 will be analysed separately in future works, since we must simulate the systems

with different values of temperature in order to make sense of this decrease.

The next attribute we will discuss is the asymmetry. As we have stated in Subsection 2.1.1,

the asymmetry measures the possible tendency for a preferred direction in any trajectory. When

computed, the asymmetry for a symmetric trajectory is null, since there is no direction of preference -

the Random Walker satisfies this property. The closer to one the asymmetry becomes, the closer to a

straight line along an axis the trajectory becomes. Figure 3.10 provides the results we have obtained.

In Figure 3.10, we observe only small values for the asymmetry of each system. This means

that, on average, the particles of each system can be described as Random Walkers. The dynamical

66

Figure 3.10 – This figure provides the average and standard deviation of the Asymmetry for every system
of interest.

Fonte: The author.

transition we have been observing so far is not apparent in this case since Normal and Confined

Diffusion both present similar values for the asymmetry. For reference, see Figure 2.3.

But once we recall this fact, we immediately realise we should use other attributes in combi-

nation with the asymmetry in order to once again confirm the transition from Normal to Confined or

Anomalous Diffusion. This comes to show the importance of Feature Engineering, which is the basic

idea of TrajPy from a Machine Learning perspective.

The next attribute we will discuss is the anisotropy. As we have discussed in Subsection 2.1.1,

the anisotropy measures the distribution of positions regarding its symmetry to the origin. When

computed, the anisotropy is null for a symmetryc position distribution and yields 1 when the symmetry

is not observed. Figure 3.11 shows the mean anisotropy for each system.

As we can see in Figure 3.11, the mean anisotropy for each system oscilates around 0.5. This

means that the position distributions are somewhat symmetric in relation to the origin, as expected for

Random Walkers. For reference, see Figure 2.4.

Although the dynamical transition we previously observed is not apparent, the Anisotropy will

be useful once we decide to classify the diffusion of the systems using Machine Learning. Some of

the attributes of TrajPy - the Anisotropy being one of them - provide relevant information about specific

aspects of the systems in a particular way, which may be useful in certain situations. The fact that

we cannot observe dynamical transitions in this case should not be a surprise, since the process of

Feature Engineering allows us to analyse the systems from different perspectives, where some may

be more useful than others when we are looking for specific information.

67

Figure 3.11 – This figure provides the average and standard deviation of the Anisotropy for every system of
interest.

Fonte: The author.

The next attribute we will discuss is the straightness. In Subsection 2.1.1, we have estab-

lished that the straightness measures the similarity between the trajectory and a straight line. If the

straightness is equal to 1, the trajectory is a perfect straight line, whereas a null trajectory indicates

that the trajectory is not straight whatsoever. Figure 3.12 provides the results of the straightness

computed for every system.

As we expected from the results for the MSD ratio and the Fractal Dimension, Figure 3.12

shows that the mean straightness for each system is close to zero. This indicates that each trajectory

may be represented as a Random Walker, which is precisely what we have been stating so far. If we

had observed values for straightness close to 1 at some point, the diffusion of the system in question

would be classified as Direct Motion with small deviations from a straight line. This would only happen

for small p∗, since large pressures would compress the system to a point where the polymer rings

would not be able to move much, let alone move in a straight line.

Interestingly enough, the largest values of straightness are observed for low values of pressure.

This indicates that the polymer rings are able to move in a straight line for a very short period of time

between collisions, which should be expected since the pressure is low.

The next attribute we will discuss is the efficiency. In Subsection 2.1.1, we have defined

the efficiency of a trajectory to be a measurement that relates the length of the trajectory to its net

displacement. Figure 3.13 provides the average efficiency for every system.

The null average efficiency indicates that either the net displacement for each polymer ring is

very small or the trajectory lenght is very large. The fact that for every k∗ the efficiency is the same

68

Figure 3.12 – This figure provides the average and standard deviation of the Straightness for every system
of interest.

Fonte: The author.

Figure 3.13 – This figure provides the average and standard deviation of the Efficiency for every system of
interest.

Fonte: The author.

69

points out to what we had previously considered: the effects of the spring’s constant on the system

may be much smaller than the one of the pressure p∗.
The next attribute we will discuss is the gaussianity. As discussed in Subsection 2.1.1, the

gaussianity measures the similarity between the positions and the Gaussian distributions. The more

similar both distributions are, the closer to zero the gaussianity will be. Figure 3.14 shows the results

of the average gaussianity computed for every system.

Figure 3.14 – This figure provides the average and standard deviation of the Gaussianity for every system
of interest.

Fonte: The author.

When analysing Figure 3.14 we notice that both the average gaussianity and its standard

deviation are quite large, specially the latter. Before we consider discussing the meaning of these

results, let us analyse the value of the gaussianity for each polymer ring for each system so that we

can make sense of the large averages and standard deviations. To do that, we will count the number

of polymer rings, per system, whose gaussianity was measured to be larger than one. Figures 3.15

provides the results of the counting process, where for every value of pressure p∗ and k∗, we counted

the number of polymer rings that present a gaussianity larger than one.

As we can see in Figure 3.15, there is a certain amount of polymer rings per system whose

gaussianity is larger than one. We notice that such amount decreases as the pressure p∗ increases -

except for p∗= 0.16, where there is a momentarily increase, which is observed when we computed

the average gaussianity (and also the average of other attributes, where, for p∗= 0.16, there is a

change in behavior for that average). We now take a step further and display histograms for the values

of the gaussianity of those polymer rings whose gaussianity is larger than one. In Figure 3.16, we

70

Figure 3.15 – This figure provides the number of polymer rings whose gaussianity was
measured to be larger than one for all values of k∗ and p∗.

Fonte: The author.

show those histograms for k∗= 10.0 for every value of p∗. We have attached graphs of the same

kind for k∗= 25.0,50.0,75.0,100.0,150.0,200.0,250.0,300.0 and 500.0 in Attachment B.

When analysing Figure 3.16, we notice that the values of gaussianity, when larger than one,

are extremely large. According to our discussion on the meaning of the gaussianity, large values are

expected when the positions’ distribution does not resemble a Gaussian Distribution - for reference,

see Ernst, Köhler e Weiss (2014). Let us now discuss the meaning of the results for the gaussianity

presented in Figure 3.14. As we see, the gaussianity decreases significantly as the pressure increases

for all values of k∗. This means that the positions’ distributions get more similar to a Gaussian

Distribution as the pressure rises, i.e., the polymer rings, on average, present motions that resembles

more and more a Random Walker. Given that the large values of gaussianity have a significant effect

on the average value computed, we have calculated the average gaussianity once more, where we

have ignored those large values so that we can obtain the expected gaussianity for the majority of the

polymer rings for each system. Figure 3.17 presents the average gaussianity for this case.

We can clearly see in Figure 3.17 that the average gaussianity - when we ignore the large

values - decreases from values close to one to zero. This transition, once again, indicates that the

polymer rings, on average, behave as Random Walkers. We are not able to point out if such transiton

implies that we have a dynamical transition from Normal to Confined Diffusion, once both motion types

are quite similar, as discussed in Section 2.2. However, we do have a guarantee that the majority of

the polymer rings behave as expectd from the previous results discussed in this section.

The next feature we will discuss is the kurtosis. As stated in Subsection 2.1.1, the kurtosis

measures the taildness of the positions distribution once we project it along the main eigenvector of

the gyration tensor. Figure 3.18 provides the results we have obtained for the position kurtosis.

71

1.25 1.30
×104

0

20

N
ob

se
rv

at
io

n
s

p=0.1

1.275 1.300
×104

0

10

20 p=0.11

1.225 1.250 1.275
×104

0

10

20
p=0.12

1.200 1.225
×104

0

10

p=0.13

1.18 1.20
×104

0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

1.18 1.19
×104

0.0

2.5

5.0
p=0.15

1.18 1.20
×104

0

5

10

p=0.16

1.14 1.16
×104

0

5

10
p=0.17

1.14 1.16
×104

0

5

N
ob

se
rv

at
io

n
s

p=0.18

1.14 1.15
×104

0

5

p=0.19

1.13 1.14
×104

0

5

p=0.2

1.12 1.14
×104

0

5

p=0.21

1.12 1.13

G ×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

1.11 1.12

G ×104

0

5

p=0.23

1.11 1.12

G ×104

0

5

10
p=0.24

1.105 1.110 1.115

G ×104

0.0

2.5

5.0
p=0.25

Figure 3.16 – This figure provides the histograms for the observed gaussianity larger than
one for every value of p∗ for k∗= 10.0.

Fonte: The author.

A kurtosis equal to 3 indicates the position distribution is a Gaussian Distribution, whereas

a kurtosis lower and larger than 3 implies in a distribution with a sharp peak and short tails and a

short peak with long tails, respectively. We can easily notice that, on average, the kurtosis somewhat

oscilates around 8 for small p and, as the pressure increases, the oscilations present a smaller

amplitude and begin oscilating around 6. In addition, we observe once again large values for the

standard deviation. Let us investigate this a bit further.

As we see in Figure 2.8, a kurtosis of 4.5 would not be a surprise in the context we are

discussing in this dissertation. With that in mind, we will approach the problem of the standard

deviation in the same way as we did for the gaussianity. We will count the number of polymer rings for

each system that present a kurtosis larger than 5 and consider them to be large values. Figure 3.19

provides the results for each value of the springs’ constants k.

As we notice in Figures 3.19, the number of polymer rings that present a kurtosis larger than

5 are somewhat similar to the analogous case for the gaussianity. In addition, we once again observe

a decrease in the number of polymer rings that obey the condition we have used as the pressure

increases. The sharp increase for p∗= 0.16 is also noticed once more, as we did for the gaussianity.

We now present the histograms for the observed values of the kurtosis larger than 5 for k∗= 10.0 for

all values of p in Figure 3.20.

In Figure 3.20 we see that there are a few observations of a kurtosis that is actually large,

72

Figure 3.17 – This figure provides the average and standard deviation of the Gausianity for every system of
interest, once we ignore the large values we observe.

Fonte: The author.

Figure 3.18 – This figure provides the average and standard deviation of the Kurtosis for every system of
interest.

Fonte: The author.

73

Figure 3.19 – This figure provides the number of polymer rings for all values of p∗ and k∗ whose kurtosis
was measured to be larger than 5.

Fonte: The author.

0 100
0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

0 200
0

10

20

p=0.11

0 200
0

5

10

15 p=0.12

0 250
0

5

10

15
p=0.13

0 250
0.0

2.5

5.0

7.5

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

2

4

6
p=0.15

0 250
0

20

40
p=0.16

0 250
0.0

2.5

5.0

7.5 p=0.17

0 250
0.0

2.5

5.0

7.5

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

5

10
p=0.19

0 250
0

2

4

6
p=0.2

0 250
0

2

4

6
p=0.21

0 250

K

0

2

4

6

N
ob

se
rv

at
io

n
s

p=0.22

0 250

K

0

5

10
p=0.23

0 250

K

0.0

2.5

5.0

7.5 p=0.24

0 100

K

0

1

2

3
p=0.25

Figure 3.20 – This figure provides the histograms for the observed values of kurtosis larger
than 5 for every value of p∗ for k∗= 10.0.

Fonte: The author.

74

such as a kurtosis equal or close to 250. This is the reason we observe a large standard deviation

for the kurtosis, where in this case, the standard deviation is not as near as large as in the case for

the gaussianity. See Attachment B for the histograms for the remaing values of k∗ for all pressures

p∗. We now compute the average kurtosis for the case where we ignore the large values - the cases

where the kurtosis is larger than 5. Figure 3.21 provides the results so that we can discuss them.

Figure 3.21 – This figure provides the average and standard deviation of the kurtosis for every system of
interest, once we ignore the large values.

Fonte: The author.

When we analyse Figure 3.21, we see that the standard deviation has decreases significantly

and that there is a transition from values that are a bit smaller than 3 to 3 itself. This transitions indicates

that the polymer rings possess positions’ distributions that resembles a Gaussian Distributions as p

increases. That means the polymer rings, on average begin to behave as Random Walkers, which is

once again what we have been observing. This implies that the polymer rings follow the motion type

of Normal or Confined Diffusion. In order to specify which one, we will have to rely on the resuts of the

previous attributes as well.

The next attribute we will discuss is the velocity kurtosis. As we have established in

Subsection 2.1.2, the velocity kurtosis measures the shape of the velocity distribution in the same way

the kurtosis does. However, there is a slight difference regarding the values of both kurtosis. In the

case of the velocity kurtosis, a null kurtosis implies in a Gaussian distribution, whereas a positive and

negative kurtosis indicate the same shape of distributions as the kurtosis larger and smaller than 3.

Figure 3.22 shows the results for the velocity kurtosis.

When analysing Figure 3.22, we notice that the velocity kurtosis decreases significantly as

the pressure increases. We also notice, once again, large standard deviations. We will approach this

75

Figure 3.22 – This figure provides the average and standard deviation of the Velocity Kurtosis for every
system of interest.

Fonte: The author.

problem in the same way as before. First, we count the number of polymer rings, per system, that

present a velocity kurtosis larger than 2 - given that a velocity kurtosis may present positive values, we

will choose the value of 2 to be considered large values. Figure 3.23 presents the number of polymer

rings per system that obey this condition.

In Figure 3.23 we observe the same trend as before: the number of polymer rings that present

a velocity kurtosis larger than 2 decreases as the pressure increases and. In addition, the sharp

increase in the same number appears for p = 0.16. We now present the histograms for the outliers of

the velocity kurtosis for all pressures p∗ and k∗= 10.0 in Figure 3.24. The histograms for the outliers

of the velocity kurtosis for the remaining values of k can be seen in Attachment B.

Lastly, we provide the results for the average velocity kurtosis, once the outliers are ignored.

Figure 3.25 shows these results. When we analyse Figure 3.25, we see that the velocity kurtosis

decreases as the pressure p∗ increases. This decrease indicates that the polymer rings, on average,

present a velocity distribution that becomes more similar to a Gaussian Distribution as the pressure

rises.

The next attribute we will discuss is the velocity skewness. In Subsection 2.1.2, we have

defined the velocity skewness to be the measurement of symmetry of the distribution when its center

point is considered. A Gaussian distribution of velocities yields a null skewness, since it is symmetric.

A velocity distribution with positive skewness indicates that this distribution presents a short left tail

and a long right tail, whereas a negative skewness implies that the opposite is true. Figure 3.26

provides the results for the average velocity skewness for every system.

76

Figure 3.23 – This figure provides, for all values of k∗ and p∗, the number of polymer rings whose velocity
kurtosis was measured to be larger than 2.

Fonte: The author.

0 250
0

20

40

N
ob

se
rv

at
io

n
s

p=0.1

0 200
0

10

20

30
p=0.11

0 250
0

20

40
p=0.12

0 200
0

10

20
p=0.13

0 200
0

5

10

15

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0

5

10
p=0.15

0 200
0

10

20

30
p=0.16

0 250
0

5

10

15 p=0.17

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

5

10

15 p=0.19

0 200
0

5

10

p=0.2

0 200
0

5

10

15 p=0.21

0 200

V Klarge

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V Klarge

0

10

20 p=0.23

0 200

V Klarge

0

5

10

p=0.24

0 50

V Klarge

0

2

4
p=0.25

Figure 3.24 – This figure provides the histograms for the observed values of velocity kurtosis
larger than 2 for every value of p∗ for k∗= 10.0.

Fonte: The author.

77

Figure 3.25 – This figure provides the average and standard deviation of the velocity kurtosis for every
system of interest, once we ignore the large values.

Fonte: The author.

Figure 3.26 – This figure provides the average and standard deviation of the Velocity Skewness for every
system of interest.

Fonte: The author.

78

As we can see in Figure 3.26, the average skewness for each system decreases as the

pressure increases. This means that the velocity distributions become more similar to a Gaussian

distribution. For low p∗, the average positive skewness implies that the distributions present a long

right tail, which, in turn, indicates that we are more likely to encounter a particle with small velocities.

At this point, we observe that the increase of the quantity being measured for p∗= 0.16 is once again

present.

The last attribute we will discuss is the diffusion coefficient. As discussed in Subsection 2.1.2,

we use the Green-kubo Relation to compute the diffusion coefficient for each particle. Such coefficient

indicates how fast each particle can swipe out a unit of area. Figure 3.27 shows the average diffusion

coefficient we have computed for each system.

Figure 3.27 – This figure provides the average and standard deviation of the Diffusion Coefficient for every
system of interest.

Fonte: The author.

As we can see in Figure 3.27, the average diffusion coefficient decreases as the pressure p∗
increases. In addition, we observe a large standard deviation once more. To analyse the values for

the diffusion coefficient, we can no longer look for large values as before, since there are no base

values we can use for our analysis. To work around this fact, we have generated histograms for all

values of the Diffusion Coefficient D for every system and came to the conclusion that every value of

D > 5.0 may be considered to be large, given that approximately 350 values for D were calculated

to be less than 5. Considering this threshold, we may proceed as before. Figure 3.28 provides the

number of polymer rings per system that present a diffusion coefficient larger than 5.

When we analyse Figures 3.28, we observe the same pattern we have been noticing. The

number of polymer rings that present a diffusion coefficient larger than 5 decrases as the pressure

79

Figure 3.28 – This figure provides , for value of p∗ and k∗, the number of polymer rings whose diffusion
coefficient was measured to be larger than 5.

Fonte: The author.

increases. In addition, we see that this number increases momentarily for p = 0.16 as well. We now

present the histograms for the values of the diffusion coefficient considered to be outliers for all values

of p for k = 0.10 in Figure 3.29. The histograms for the other values of k can be seen in Attachment B.

Lastly, let us present the average diffusion coefficient once we ignore the large values.

Figure 3.30 presents the results. It is clear that the diffusion coefficient decreases as the pressure

increases, which comes to show that, for high pressures, the polymer rings can no longer move as

much as they did when the pressure was low. We may use this analysis to point out that the polymer

rings are probably confined in a small space, which points to the direction of Confine Diffusion.

We have now finished discussing the results of each attribute. As discussed, there is an

apparent dynamical transition from Normal Diffusion to Confined or Anomalous Diffussion. We must

now classify the diffusion for each polymer ring of each system. The classification procedure involving

Machine Learning and the results we have obtained will be discussed in the next section.

3.3 Machine Learning and diffusion classification

In this section we will discuss the idea of Machine Learning and present the Diffusion Clas-

sification results. In Subsection 3.3.1 we provide a brief introduction to the three main classes of

algorithms in Machine Learning. Lastly, in Subsection 3.3.2 we discuss the diffusion classification

results we have obtained.

80

0 1000
0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

0 1000
0

5

10

15
p=0.11

0 1000
0

10

20
p=0.12

0 1000
0

5

10
p=0.13

0 1000
0

2

4

6

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0.0

2.5

5.0

7.5
p=0.15

0 1000
0

5

10

p=0.16

0 1000
0

5

10 p=0.17

0 1000
0.0

2.5

5.0

7.5

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0

5

10 p=0.19

0 1000
0

5

10 p=0.2

0 1000
0

2

4

6
p=0.21

0 1000

D

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0

2

4
p=0.23

0 1000

D

0

2

4
p=0.24

500 1000

D

0

2

4
p=0.25

Figure 3.29 – This figure provides the histograms for the observed values of the diffusion
coefficient larger than 5 for every value of p for k = 10.0.

Fonte: The author.

3.3.1 A general description of Machine Learning

Machine Learning algorithms are a great computational tool to deal with massive amounts

of data. Due to the technological advance in the last decades, regular computers are now able to

perform the statistical computations involved in such algorithms. This has made the Machine Learning

usage a common topic of discussion in our everyday lives and specially in Science. A quick search

online will reveal that many scientific papers have now adopted the topic of this subsection in their

methodology (MJOLSNESS; DECOSTE, 2001). Machine Learning can be used in any context, such

as Material Science (WEI et al., 2019) and molecular biophysic (MATEUS; SAVITSKI; PIAZZA, 2021),

which comes to show how versatile and useful these algorithms are.

In order to classify the diffusion of each polymer ring, we must first explain what is meant by

“classification" in the context of Machine Learning. To do that, we will describe in general terms the

three main classes of Machine Learning algorithms - Supervised, Unsupervised and Reinforcement

Learning - and move on to a simple explanation of Classification and Regression algorithms.

Simply put, Supervised Learning is a class of algorithms that seek the correct answer to

a question by means of performing a fit using the data to known answers of that question, e.g.,

a company that needs to predict the probability of a certain client buying their product given that

the client is fifty years old. The data in question would be the client’s age and the known answers

81

Figure 3.30 – This figure provides the average and standard deviation of the diffusion coefficient for every
system of interest, once we ignore the large values.

Fonte: The author.

would be a large list of clients that bought the company’s product and their associated age. The

fit previously mentioned may be the attempt to fit a certain function, say f (t), to the data in order

to predict the outcome of a certain situation. This mathematical function may take different forms,

such as the classical Linear Regression performed in Statistics (SU; YAN; TSAI, 2012) or the Logistic

Regression (NICK; CAMPBELL, 2007). On the other hand, the fit may take a different form, such as

the Ensemble Method (DIETTERICH, 2000), which will be the method used to classify the diffusion of

all polymer rings.

The Unsupervised Learning, on the other hand, is a class of algorithms that also seek the

answer to a question, perhaps that of the needs of the company, but without making use of known

answer- possibly because there are no known answers. In order to use the data as input to make

predictions, these algorithms look for similarities between the data points. A famous way to acquire

such similarities is the Nearest Neighbors approach (GHAHRAMANI, 2004), where the algorithm

looks for similar information using a given number of data points in the vicinities of a specific data

point. This approach is also known as Data Clustering.

Lastly, let us briefly discuss the main idea of the third class of machine Learning algorithms.

Reinforcement Learning is a class of algorithms that, given the proper context, seek the best action

that leads a so called agent to a state with the highest reward (SUTTON; BARTO, 2018). These

techniques are widely used in state of the art technologies such as chat bots that guide us through

a company’s website or self-driving cars. The agent in question could be interpreted as a ficticious

man and the state is the situation he’s encoutered in any given environment. The action he takes will

82

produce a consequence we call a reward. The goal of Reinforcement Learning is to maximize this

reward by taking multiple actions over multiple processes and deciding which set of actions, taken in a

specific order, optimizes the reward.

Now that we have provided a brief description of the three main Machine Learning algorithm

classes, it is time for us to discuss the Supervised Learning in more details, for the classification

algorithm we are going to use belongs to this specific class.

In Supervised Learning, there are two kinds of algorithms called Regression and Classifica-

tion6. While Regression algorithms look for numerical answers to a problem such as that probability of

a specific client buying a company’s product we previously discussed, Classification algorithms seek

categorical answers - in the client and company example, the categorical answer could be the gender

of the client that is most likely to buy the product.

3.3.2 Diffusion classification

Among the many algorithms for classification, we have decided to use the Random Forest

algorithm. For a thorough discussion of its mathematical formulation, see (HASTIE; TIBSHIRANI;

FRIEDMAN, 2009).

Put in simple terms, the diffusion classification process relies on three steps. First, we compute

the attributes such as the Gaussianity and Fractal Dimension for the trajectories we wish to classify the

diffusion of. We then simulate many different trajectories for each diffusion class. Once the simulations

are performed, we compute the same attributes we used in the first step.

Lastly, we use Machine Learning algorithms - in this case we will use Supervised Learning -

in order to classify the diffusion of each polymer ring of each system. In this particular step, a fit7 is

performed so that the Random Forest algorithm finds the pattern within the data we provide.

In the previous sections, we have discussed both the physical system of interest and each teh

results of the attribute we have computed using TrajPy. Now we must briefly discuss the data we have

provided to the classification algorithm so that it can seek the pattern we previously mentioned.

The dataset8 consists of 9 attributes computed for 106584 two dimensional particles, where

26520 were simulated with Normal Diffusion, 34270 with Anomalous Diffusion, 19998 with Confined

Diffusion and 25796 with Direct motion with diffusion. The attributes in this dataset are the Anomalous

Exponent, MSD Ratio, Fractal Dimension, Anisotropy, Kurtosis, Straightness, Gaussianity,

Diffusion Coefficient and the Efficiency. Figure 3.31 shows a scatter matrix, a simple way to

compare such attributes at once in order to visualize the clustering of data points according to the

diffusion class.

In order to provide this data to the Random Forest algorithm, we separated the dataset in

two parts, where 70% of it was used to find the pattern and the remaining 30% was used to test

6 If we were to be precise, we should refer to both kinds of algorithms as “Regression”. This separation in two different
types is usually introduced in textbooks for simplicity.

7 This fit may be interpreted in the same way as a statistical fit, since Machine Learning algorithms are simply statistical
approaches used in a computer.

8 This dataset is currently online and opened to whoever wishes to use it. To access it, see Moreira-Soares (2022).

83

Figure 3.31 – This figure provides the scatter matrix for the 9 attributes we used to perform diffusion
classification. Each color represents a diffusion class. The grouping of data points by color
shows that these attributes are a good choice of parameters to classification. The labels
in the x-axis - from left to right- represent the Anomalous Exponent, MSD Ratio, Fractal
Dimension, Anisotropy, Kurtosis, Straightness, Gaussianity, Diffusion Coefficient and the
Efficiency, respectively.

Fonte: The author.

the overall accuracy9 of the algorithm. This test consists of us providing to the algorithm - once it

found the pattern - the remaining 30% of the dataset containing the attributes calculated. Once we do

that, we are able to predict the diffusion class for the particles associated with those 30% remaining

pieces of information. Given that the classification algorithm has never had access to the remaining

30% of the dataset, when we provide such data to the algorithm, we will be, essencially, classifying

9 By accuracy, we mean the number of times the algorithm correctly classified the diffusion of the particles in the dataset.

84

the diffusion of new particles. As a simple way to visualize the algorithm’s accuracy for classifying the

diffusion of particles it has never had access to, we use the Confusion Matrix shown in Figure 3.32.

Anomalous Confined Normal Direct

Anomalous

Confined

Normal

Direct

10156.0 0.0 0.0 0.0

0.0 5990.0 1.0 0.0

0.0 0.0 8014.0 6.0

0.0 0.0 2.0 7807.0

Figure 3.32 – This figure provides the Confusion Matrix for the diffusion classification per-
formed in the 30% of the dataset. Simply put, we are comparing the known
number of samples for each diffusion class in the x-axis to the predictions
performed by the Random Forest algorithm in the y-axis. The main diagonal
of this Confusion Matrix shows us the number of times the algorithm correctly
classified the diffusion of the particles simulated. The other elements of the
matrix show us the number of times the diffusion was classified as the wrong
type.

Fonte: The author.

As we can see in Figure 3.32, the algorithm was able to correctly predict the diffusion class of

the majority of particles, which shows that the Random Forest algorithm has actually found a pattern

within the 70% of the dataset we provided and that this pattern does provide a good description of

the data. Once we used the Random Forest algorithm to find the pattern within the data, we are able

to predict the diffusion class of each polymer ring for every system. We may now use the Confusion

Matrix to calculate two important metrics to measure the quality of the predictions: the True and False

Positive Rates10.

In the context we are discussing, the True Positive Rate (TPR) measures the proportion

of polymer rings whose diffusion was correctly classified, whereas the False Positive Rate (FPR)

measures the analogous proportion regarding the number of times the diffusion was incorrectly

classified. According to Jaskowiak, Costa e Campello (2022), these concepts are mathematically

defined as

TPR =
True Positives

True Positives + False Negatives
, (3.13)

FPR =
False Positives

False Positives + True Negatives
. (3.14)

Let us explain the meaning of the four variables True and False Positives and True and False

Negatives presented in Equation (3.13) and (3.14) by imagining a particle we simulated using TrajPy
10 These two metrics are sometimes called “Sensitivity” and “Specificity”.

85

that presents Normal Diffusion. Given that this particle presents this specific motion type, we will

consider to be positive the classification the algorithm made when it classified the motion type of this

particle as Normal Diffusion and negative for the three other types.

A True Positive is observed when the algorithm classifies the motion type of that particle

as Normal Diffusion and this classification is correct. A False Positive happens when that same

classification is incorrect. On the other hand, a True Negative happens when the algorithm classifies

the motion type to be other than Normal Diffusion and this classification is true. A False Negative

is observed when the same classification is false, i.e., the motion type for that particle was, in fact,

Normal Diffusion. All four variables for each class - in this case, the motion types - can be seen in the

Confusion Matrix generateg by a classification model.

These four concepts, True and False Positives and True and False Negatives, will change

according to a certain threshold for the classification model. For every value of this threshold, that lies

within zero and one, we will calculate the True and False Positives and True and False Negatives and,

lastly, compute the TPR and FPR.

In the classification procedure, we calculate the probability of each class being the one the

polymer ring presents. The threshold we just mentioned is used to determine how high this probability

must be in order to assign a given diffusion class to a polymer ring. That is the reason this threshold

lies within zero and one. Since we are working with four motion types, the one with the highest

probability above the threshold will be the the one we assign to each polymer ring. For each value of

the threshold, we have a pair of results for the TPR and FPR. The curve that connects each pair of

results is called the Receiver Operating Characteristic (ROC) curve. The reason we change the value

of the threshold is to evaluate how well the classification model performs in different scenarios.

According to Spackman (1989), the TPR and FPR should be as close to one and zero as

possible, respectively, for our classification model to provide good results. Figure 3.33 provides the

ROC curve for each motion type for the Random Forest algorithm we have used to classify the diffusion

of each polymer ring, where the Area Under the Curve (AUC) is used as a simple metric to relate both

the TPR and FPR for each motion type - the closer to one the area under the curve, the better the

classification model classified the diffusion class of those 30% of the dataset.

Figure 3.33 shows that our classification model indeed returned good values for the TPR and

FPR, since the rate of incorrectly classifications is much lower than the rate for correct ones. If we

had used more than one model to classify the diffusion of the polymer rings, we would have one ROC

curve for each motion type for every classification model. Figure 3.34 presents such case for the use

of multiple Machine Learning classification models to predict cardiac surgical operative mortality.

As we can see in Figures 3.32 and 3.33, our classification model performed well on the tests

for prediction. Now, before we actually provide the classification procedure results, let us recall the

results we expect.

We have established in the previous section that there is an apparent dynamical transition

from Normal Diffusion to Confined or Anomalous Diffusion, where the Confined Diffusion is more likely

to be observed, given the results we have gathered. As the pressure increases, the polymer rings

become trapped, since the pressure makes them get closer and closer to each other in a way that

86

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

anomalous vs REST (AUC=1.00)

confined vs REST (AUC=1.00)

normal vs REST (AUC=1.00)

superdiffusion vs REST (AUC=1.00)

Figure 3.33 – This figure provides the ROC curve for the Random Forest
classification algorithm we have used to classify the diffusion
of each polymer ring for all systems, where we compare the
TRP and FPR for a specific motion type with the remaining
three. The black diagonal line shows where the TPR and FPR
are equal.

Fonte: The author.

Figure 3.34 – This figure provides the ROC curves for multiple classification
algorithms used to predict cardiac surgical operative mortality.
The diagonal line shows where the TPR and FPR are equal.

Fonte: (DUAN et al., 2022)

87

each polymer rings becomes an obstacle to others. When we discussed Figure 3.4, we stated that

for the systems simulated using k∗= 10.0, the ones where the pressures are higher than p = 0.12
already present the confinement effect we have been observing. By making the same analysis for the

graphs for the MSD by Ensemble average for the other values of k we have provided in Attachment B,

we have come to the conclusion that this pressure threshold is basically the same, where it may vary

a bit but not by a significant amount.

With this information in mind, we expect to observe a decrease in the number of polymer rings

whose diffusion is classified as Normal Diffusion and an increase in the amount of Confined Diffusion

as the pressure gets larger11. We also wish to verify our claim that the springs’ constants k∗ will not

have a significant effect in the number of polymer rings diffusion classification. Figure 3.35 shows the

number of polymer rings classified as each diffusion class for each system.

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

0

200

N
or

m
al

D
iff

u
si

on

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

200

400

C
on

fi
n

ed
D

iff
u

si
on

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

p

0

10

20

30

A
n

om
al

ou
s

D
iff

u
si

on

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

p

0

2

4

6

D
ir

ec
t

m
ot

io
n

w
it

h
d

iff
u

si
on

k = 10.0

k = 25.0

k = 50.0

k = 75.0

k = 100.0

k = 150.0

k = 200.0

k = 250.0

k = 300.0

k = 500.0

Figure 3.35 – This figure provides, for each system indicated by a combination of p∗ in the x-axis and k∗ in different colors,
the number of polymer rings whose diffusion was classified as either Normal, Anomalous, Confined or Direct
motion with diffusion in the y-axis. Each point corresponds to the number of polymer rings associated with
each classification and the curves are linear interpolations performed over the data points.

Fonte: The author.

As we can see in Figure 3.35, the number of polymer rings whose diffusion was classified

as Normal Difusion decreases as the pressure p∗ increases. In a similar way, we observe a great

increase in the number of samples classified as Confined Diffusion - which is what the attributes

computed and discussed in Subsection 3.2 pointed to.

11 Perhaps we will observe an increase in Anomalous diffusion as well.

88

Interestingly, we see that the number of samples classified as each diffusion class does

not seem to change much regarding the values of k∗, which is the conclusion we arrived at when

discussing the results of the attributes in Subsection 3.2. Lastly, for Anomalous we observe that there

is in deed an increase in the number of polymer rings with Anomalous Diffusion, whereas a decrease

is perceived for Direct motion with diffusion. This decrease is expected, once the polymer rings get

trapped as the pressure increases.

The sharp increase in the number of polymer rings whose diffusion was classified as Normal

Diffusion - and, by extension, a decrease for Confined Diffusion - for p∗= 0.16 denotes that there

is in fact something different about the systems simulated for this specific value of pressure. We

showed in Subsection 3.1.3.1 that there is a phase transition happening in the systems for p∗= 0.16,

which explains, in some sense, the abrupt changes we observe in Figure 3.35. We have now finished

discussing the results obtained in the present research project. Our main goal in this dissertation,

presenting and showing TrajPy’s capabilities, is now complete. In the next chapter, we will provide a

review of the entire discussion we made in this work along with the next steps we intend to take in the

near future regarding the development of TrajPy and its applications.

89

4 CONCLUSION

In the present research project, we presented, discussed and improved a physics based

feature engineering framework for trajectory analysis called TrajPy. As stated in Chapter 1, the

quantitative description of trajectories is crucial to the understanding of the underlying mechanisms of

any system, whether the system is based on ideas of Economics, Biology, Physics or any other field

of knowledge.

Regarding physical systems, we showed that the concept of diffusion is used to model the

motion of systems where the movement of its constituents depends on the concentration of matter in

different locations. We described the concept of the MSD and the four basic motion types regarding

diffusion: Normal, Confined, Anomalous and Direct Motion with Diffusion. In addition, we demonstrated

that the time dependency of the MSD, specifically its time exponent β , may not be sufficient to classify

the diffusion of the system as one of the four basic motion types. As a possible solution to this problem,

we described the computational approach that TrajPy offers to trajectory analysis as a whole.

In Chapter 2 we described the three components of TrajPy. The first allows us to compute

several quantities to describe any trajectory, where this trajectory may be generated in a computer

simulation or taken from experiments. These quantities, as we mentioned, are part of the feature

engineering procedure, where we transform a single piece of information - in this case, the trajectory

being analysed - into several different quantities that can be used in Machine Learning algorithms.

Regarding the first component of TrajPy, we have made contributions by implementing the

calculations of fourteen new quantities, in total. The Velocity Autocorrelation Function that measures

the similarity between velocity vectors in different times, the Green-Kubo relation that allows us to

compute the diffusion coefficient for any trajectory, a statistical description of the velocity, where

we compute central tendencies, spreads, the skewness and kurtosis of the velocity distribution and

a discrete version of the Fourier Transform that allows us to calculate the main frequencies of the

trajectory. These contributions transform TrajPy into a more general trajectory analysis framework that

can be used to describe the trajectory in both the time and frequency domain.

The second component of TrajPy allows us to simulate the four basic motion types. We

may use these simulation engines as a way to generate the four basic motion types with a range of

parameters such as the number of dimensions, displacements, timesteps and more. We can use

these simulated trajectories and compute all the attributes described in Subsections 2.1.1 and 2.1.2

to produce a dataset that can be used to classify the diffusion of the system, where we make use

of more attributes than just the time exponent β - and, by extension, solve the problem related to

diffusion classification we previously described.

The third component of TrajPy consists of two graphical-user interfaces. The first allows us

to compute the attributes to describe the trajectory in a way that we do not need to be familiar with

Python programming. The second interface - another contribution we have made to TrajPy - was

developed to be a possible solution to the bottleneck present in the process of drug discovery. This

process usually involves the study of the effects of a specific drug in the physical behavior of rodents,

where this study relies on the analysis of the animal’s trajectory.

90

In the literature, the use of computational tracking techniques to extract the animal’s trajectory

from a video feed has been proposed and put in practice. However, the lack of automated video-based

multiple animal tracking techniques - the lack of such techniques is the bottleneck we mentioned - has

been a problem that has not been fully solved. As a first step to a solution to this very problem, we

have developed the second graphical-user interface using different ideas from the field of Computer

Vision.

In Chapter 3 we described the simple drop-like model for biological cells we chose as an

application of TrajPy’s methodology and performed trajectory analysis and diffusion classification

for each system simulated with a constant pressure p∗ and a spring constant k∗. As stated in

Subsection 3.1.1, the process of cell migration is influenced by the plasticity of the cells involved. To

explore the behavior of a simple drop-like model for biological cells for different p∗ and k∗, we applied

the TrajPy package.

In Section 3.2 we began the process of trajectory analysis by computing many attributes for the

trajectory of each polymer ring for each system and then calculated the mean and standard deviation

for that attribute. We then used the mean as way to describe the expected value of each attribute

for each system and discussed the results we obtained. As a whole, the results of the attributes

described a dynamical transition from Normal to Confined diffusion. This transition happened as the

pressure increased and did not seem to change much for different values of k∗ for the same pressure.

For p∗= 0.16 we observed a different behavior that came to be explained when we analysed the

structure and Thermodynamics of the systems with such pressure, where we observed a phase

transition in those systems.

In Subsection 3.3.1 we provided a brief overview of the field of Machine Learning. In Subsec-

tion 3.3.2 we used the Random Forest Classifier algorithm to classify the diffusion of each polymer

ring of every system into one of the four basic motion types. Regarding the results, we observed that

for systems simulated with any value of k∗ for the lowest pressures, the number of polymer rings

whose diffusion was classified as Normal Diffusion was virtually 400 - the total number of polymer

rings in the systems.

For larger values of pressure, say, p∗= 0.12 onward, we obtained a sharp decrease in the

number of polymer rings for Normal Diffusion and a corresponding increase in the number of Confined

Diffusion classifications. We also observed a mild increase in Anomalous Diffusion while the Direct

Motion with Diffusion dropped to zero. Every one of these results were expected from the trajecory

analysis we performed prior to the diffusion classification procedure.

As for the next steps of the development of TrajPy, we wish to implement new features to make

the trajectory analysis an even more general aspect of the software. Regarding the second graphical-

user interface, we aim to extend the object tracking algorithm to be used for multiple animals at

once, so that TrajPy becomes a solution to the bottleneck in the process of effective chemobehavioral

screening in drug discovery and neurotoxicology.

91

BIBLIOGRAPHY

AEJMELAEUS-LINDSTRÖM, Petrus et al. Jammed architectural structures: towards large-scale
reversible construction. Granular Materials, v. 18, p. 28, 2016.

AGARWAL, Basant Lal. Basic Statistics. [s. l.]: New Age International, 2006.

ALDER, Berni Julian; WAINWRIGHT, T. E. Decay of the velocity autocorrelation function. Physical
Review A, American Physical Society, v. 1, p. 18–21, 1970. DOI: 10.1103/PhysRevA.1.18.

ALLEN, Michael P.; TILDESLEY, Dominic J. Computer Simulation of Liquids. USA: Clarendon
Press, 1989.

ALLEN, Michael P.; TILDESLEY, Dominic J. Computer Simulation of Liquids: Second Edition.
OUP Oxford, 2017. Disponível em: https://books.google.com.br/books?id=WFExDwAAQBAJ.

ALMAGRO, Jorge et al. Tissue architecture in tumor initiation and progression. Trends in Cancer,
v. 8, n. 6, p. 494–505, 2022. DOI: https://doi.org/10.1016/j.trecan.2022.02.007.

ALTIERI, Ada. The jamming transition. In: ALTIERI, Ada. Jamming and Glass Transitions: In
Mean-Field Theories and Beyond. Cham: Springer International Publishing, 2019. p. 45–64.

ANDERSEN, Hans C. Molecular dynamics simulations at constant pressure and/or temperature. The
Journal of Chemical Physics, v. 72, n. 4, p. 2384–2393, 1980. DOI: 10.1063/1.439486.

ARFKEN, George. Mathematical Methods for Physicists. Third. San Diego: Academic Press Inc.,
1985.

ARNOLD, Axel et al. Espresso 3.1: Molecular dynamics software for coarse-grained models.
In: GRIEBEL, Michael; SCHWEITZER, Marc Alexander (Ed.). Meshfree Methods for Partial
Differential Equations VI. [s. l.]: Springer Berlin Heidelberg, 2013, (Lecture Notes in Computational
Science and Engineering, v. 89). p. 1–23.

BANASZAK, Michal et al. Self-organisation in spatial systems-from fractal chaos to regular patterns
and vice versa. PloS one, Public Library of Science, v. 10, n. 9, 2015.

BENHAMOU, Simon. How to reliably estimate the tortuosity of an animal’s path:: straightness,
sinuosity, or fractal dimension? Journal of Theoretical Biology, v. 229, n. 2, p. 209–220, 2004. DOI:
https://doi.org/10.1016/j.jtbi.2004.03.016.

BERDIGALIYEV, Nurken; ALJOFAN, Mohamad. An overview of drug discovery and development.
Future Medicinal Chemistry, v. 12, n. 10, p. 939–947, 2020. DOI: 10.4155/fmc-2019-0307.

BERRY, Michael Victor; LEWIS, Z. V.; NYE, John Frederick. On the weierstrass-mandelbrot fractal
function. Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, The Royal Society, v. 370, n. 1743, p. 459–484, 1980.

BHARGAVA, Anamika; PULLAGURI, Narasimha; BHARGAVA, Yogesh. Zebrafish as a
xenotransplantation model for studying cancer biology and cancer drug discovery. In: . Zebrafish
Model for Biomedical Research. [s. l.]: Springer Nature Singapore, 2022. p. 43–59.

BIROLI, Giulio. Glass and jamming transitions. Séminaire Pincaré, v. 13, p. 37–67.

BIROLI, Giulio. A new kind of phase transition? Nature Physics, v. 3, p. 222–223, 2007.

http://10.1103/PhysRevA.1.18
https://books.google.com.br/books?id=WFExDwAAQBAJ
http://https://doi.org/10.1016/j.trecan.2022.02.007
http://10.1063/1.439486
http://https://doi.org/10.1016/j.jtbi.2004.03.016
http://10.4155/fmc-2019-0307

92

BOAS, Mary L. Mathematical methods in the physical sciences, 2nd ed. American Journal of
Physics, v. 67, n. 2, p. 165–169, 1999. DOI: 10.1119/1.19218.

BOEKHORST, Veronika te; PREZIOSI, Luigi; FRIEDL, Peter. Plasticity of cell migration in vivo and in
silico. Annual Review of Cell and Developmental Biology, v. 32, n. 1, p. 491–526, 2016. DOI:
10.1146/annurev-cellbio-111315-125201.

BONYÁR, Attila. Application of localization factor for the detection of tin oxidation with afm. In: . [S. l.:
s. n.], 2015.

BRADSKI, Gary; KAEHLER, Adrian. Learning OpenCV: Computer vision with the OpenCV library.
[s. l.]: O’Reilly Media, Inc., 2008.

BRANCADORO, Margherita et al. Toward a variable stiffness surgical manipulator based on fiber
jamming transition. Frontiers in Robotics and AI, v. 6, 2019. DOI: 10.3389/frobt.2019.00012.

BRITO, Carolina; LERNER, Edan; WYART, Matthieu. Theory for swap acceleration near the glass and
jamming transitions for continuously polydisperse particles. Physical Review X, American Physical
Society, v. 8, 2018. DOI: 10.1103/PhysRevX.8.031050.

BROWN, Eric et al. Universal robotic gripper based on the jamming of granular material. PNAS,
v. 107, p. 18809–18814, 2006.

BURADA, Poornachandra Sekhar et al. Diffusion in confined geometries. ChemPhysChem, v. 10, p.
45–54, 2009. DOI: https://doi.org/10.1002/cphc.200800526.

CAMPBELL, Eric; BAGCHI, Prosenjit. A computational model of amoeboid cell swimming. Physics of
Fluids, v. 29, n. 10, 2017. DOI: 10.1063/1.4990543.

CASPI, Avi; GRANEK, Rony; ELBAUM, Michael. Diffusion and directed motion in cellular transport.
Physical Review E, American Physical Society, v. 66, 2002. DOI: 10.1103/PhysRevE.66.011916.

CHARBONNEAU, Patrick et al. Glass and jamming transitions: From exact results to finite-dimensional
descriptions. Annual Review of Condensed Matter Physics, v. 8, n. 1, p. 265–288, 2017. DOI:
10.1146/annurev-conmatphys-031016-025334.

CHENG, Wei et al. Granular hydrogels for 3d bioprinting applications. VIEW, v. 1, n. 3, 2020. DOI:
https://doi.org/10.1002/VIW.20200060.

CHOWDHURY, Pranali Roy; BANERJEE, Malay; PETROVSKII, Sergei. Canards, relaxation
oscillations, and pattern formation in a slow-fast ratio-dependent predator-prey system. Applied
Mathematical Modelling, v. 109, p. 519–535, 2022. DOI: https://doi.org/10.1016/j.apm.2022.04.022.

CODLING, Edward; PLANK, Michael; BENHAMOU, Simon. Random walks in biology. Journal of the
Royal Society, v. 5, p. 813–834, 2008. DOI: 10.1098/rsif.2008.0014.

COLIN, Jacques et al. Evidence for anisotropy of cosmic acceleration. Astronomy and Astrophysics,
v. 631, 2019. DOI: 10.1051/0004-6361/201936373.

CUNHA, Pedro Vieira Pinto da et al. Chaotic lensing around boson stars and kerr black
holes with scalar hair. Physical Review D, American Physical Society, v. 94, 2016. DOI:
10.1103/PhysRevD.94.104023.

http://10.1119/1.19218
http://10.1146/annurev-cellbio-111315-125201
http://10.3389/frobt.2019.00012
http://10.1103/PhysRevX.8.031050
http://https://doi.org/10.1002/cphc.200800526
http://10.1063/1.4990543
http://10.1103/PhysRevE.66.011916
http://10.1146/annurev-conmatphys-031016-025334
http://https://doi.org/10.1002/VIW.20200060
http://https://doi.org/10.1016/j.apm.2022.04.022
http://10.1098/rsif.2008.0014
http://10.1051/0004-6361/201936373
http://10.1103/PhysRevD.94.104023

93

DAYANANDA, Mysore A. A direct derivation of fick’s law from continuity equation
for interdiffusion in multicomponent systems. Scripta Materialia, v. 210, 2022. DOI:
https://doi.org/10.1016/j.scriptamat.2021.114430.

DESPÓSITO, M. A.; VIÑALES, A. D. Subdiffusive behavior in a trapping potential: Mean square
displacement and velocity autocorrelation function. Physical Review E, American Physical Society,
v. 80, 2009. DOI: 10.1103/PhysRevE.80.021111.

DIETTERICH, Thomas G. Ensemble methods in machine learning. In: ultiple Classifier Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. p. 1–15.

DUAN, Chongfeng et al. Comparison of radiomic models based on different machine learning
methods for predicting intracerebral hemorrhage expansion. Clinical Neuroradiology, v. 32, p. 1–9,
2022. DOI: 10.1007/s00062-021-01040-2.

DUY, Pham Thanh; HUONG, Hoang Giang Thi; HONG, Ic-Pyo. Anti-jamming ris communications using
dqn-based algorithm. IEEE Access, p. 28422–28433, 2022. DOI: 10.1109/ACCESS.2022.3158751.

EINSTEIN, Albert. Investigations on the Theory of the Brownian Movement. [s. l.]: Courier
Corporation, 1956.

ERNST, Dominique; KöHLER, Jürgen; WEISS, Matthias. Probing the type of anomalous diffusion with
single-particle tracking. Physical Chemistry Chemical Physics, Royal Society of Chemistry, v. 16,
n. 17, p. 7686–7691, 2014.

ERRINGTON, J. R.; DEBENEDETTI, P. D. Relationship between structural order and the anomalies of
liquid water. Nature, v. 409, p. 318, 2001.

FANG, Yuqiang et al. An active biomechanical model of cell adhesion actuated by intracellular
tensioning-taxis. Biophysical Journal, v. 118, 2020. DOI: 10.1016/j.bpj.2020.04.016.

FICK, Dr. Adolph. V. on liquid diffusion. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, Taylor Francis, v. 10, n. 63, p. 30–39, 1855. DOI:
10.1080/14786445508641925.

FITZGERALD, Seth G.; DELANEY, Gary W.; HOWARD, David. A review of jamming actuation
in soft robotics. Actuators, v. 9, n. 4, 2020. DOI: 10.3390/act9040104. Disponível em:
https://www.mdpi.com/2076-0825/9/4/104.

FIXMAN, Marshall. Radius of gyration of polymer chains. The Journal of Chemical Physics, v. 36,
n. 2, p. 306–310, 1962. DOI: 10.1063/1.1732501.

FRENKEL, Daan; SMIT, Berend. Understanding Molecular Simulation: From Algorithms to
Applications. Second. San Diego: Academic Press, 2002. v. 1. (Computational Science Series, v. 1).

FRIEDL, Peter; ALEXANDER, Stephanie. Cancer invasion and the microenvironment: Plasticity and
reciprocity. Cell, v. 142, p. 992–1009, 2011.

FU, Libi et al. Dynamics of bidirectional pedestrian flow in a corridor including individuals
with disabilities. Physica A: Statistical Mechanics and its Applications, v. 580, 2021. DOI:
https://doi.org/10.1016/j.physa.2021.126140.

FUENTE, Ildefonso M. De la; LOPEZ, José I. Cell motility and cancer. Cancers, v. 12, n. 8, 2020.

http://https://doi.org/10.1016/j.scriptamat.2021.114430
http://10.1103/PhysRevE.80.021111
http://10.1007/s00062-021-01040-2
http://10.1109/ACCESS.2022.3158751
http://10.1016/j.bpj.2020.04.016
http://10.1080/14786445508641925
http://10.3390/act9040104
https://www.mdpi.com/2076-0825/9/4/104
http://10.1063/1.1732501
http://https://doi.org/10.1016/j.physa.2021.126140

94

GENTHON, Arthur. The concept of velocity in the history of brownian motion. The European
Physical Journal H, v. 45, p. 49–105, 2020. DOI: 10.1140/epjh/e2020-10009-8.

GHAHRAMANI, Zoubin. Unsupervised learning. In: . Advanced Lectures on Machine
Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tubingen,
Germany, August 4 - 16, 2003, Revised Lectures. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004. p. 72–112.

GÖTZ, Holger et al. Soft particles reinforce robotic grippers: robotic grippers based on granular
jamming of soft particles. Granular Materials, v. 24, 2022.

HAEGER, Anna et al. Cell jamming: Collective invasion of mesenchymal tumor cells imposed by
tissue confinement. Biochimica et Biophysica Acta, v. 1840, n. 8, p. 2386–2395, 2014. DOI:
https://doi.org/10.1016/j.bbagen.2014.03.020.

HAN, Chen et al. Spatial anti-jamming scheme for internet of satellites based on the deep
reinforcement learning and stackelberg game. IEEE Transactions on Vehicular Technology, v. 69,
n. 5, p. 5331–5342, 2020. DOI: 10.1109/TVT.2020.2982672.

HANNEZO, Edouard; HEISENBERG, Carl-Philipp. Rigidity transitions in development and disease.
Trends in Cell Biology, v. 32, n. 5, p. 433–444, 2022. DOI: https://doi.org/10.1016/j.tcb.2021.12.006.

HANSEN, J.P.; MCDONALD, I.R. Theory of simpleliquids. [s. l.]: Elsevier Academic Press, London
Burlington, MA, 2006.

HARRIS, Charles R. et al. Array programming with numpy. Nature, Springer Science and Business
Media LLC, v. 585, p. 357–362, 2020. DOI: 10.1038/s41586-020-2649-2.

HASTIE, Trevor; TIBSHIRANI, Robert; FRIEDMAN, Jerome. The elements of statistical learning:
data mining, inference and prediction. 2. ed. [s. l.]: Springer, 2009.

HECK, Tommy et al. The role of actin protrusion dynamics in cell migration through a degradable
viscoelastic extracellular matrix: Insights from a computational model. PLOS Computational Biology,
Public Library of Science, v. 16, n. 1, p. 1–34, 2020. DOI: 10.1371/journal.pcbi.1007250.

HELBING, Dirk. Traffic and related self-driven many-particle systems. Review of Modern Physics,
American Physical Society, v. 73, p. 1067–1141, 2001. DOI: 10.1103/RevModPhys.73.1067.

HELMUTH, Jo A et al. A novel supervised trajectory segmentation algorithm identifies distinct types of
human adenovirus motion in host cells. Journal of structural biology, Elsevier Inc, v. 159, n. 3, p.
347–358, 2007.

HELVERT, Sjoerd van; STORM, Cornelis; FRIEDL, Peter. Mechanoreciprocity in cell migration.
Nature Cell Biology, v. 20, p. 8–20, 2018.

HENRY, Jason; WLODKOWIC, Donald. High-throughput animal tracking in chemobehavioral
phenotyping: Current limitations and future perspectives. Behavioural Processes, v. 180, 2020. DOI:
https://doi.org/10.1016/j.beproc.2020.104226.

HIRAKAWA, Hiromasa et al. Relationship between self-diffusion and interdiffusion in gaseous
systems. Bulletin of the Chemical Society of Japan, v. 46, n. 9, p. 2659–2662, 1973. DOI:
10.1246/bcsj.46.2659.

http://10.1140/epjh/e2020-10009-8
http://https://doi.org/10.1016/j.bbagen.2014.03.020
http://10.1109/TVT.2020.2982672
http://https://doi.org/10.1016/j.tcb.2021.12.006
http://10.1038/s41586-020-2649-2
http://10.1371/journal.pcbi.1007250
http://10.1103/RevModPhys.73.1067
http://https://doi.org/10.1016/j.beproc.2020.104226
http://10.1246/bcsj.46.2659

95

HUBICKA, Katarzyna; JANCZURA, Joanna. Time-dependent classification of protein diffusion types:
A statistical detection of mean-squared-displacement exponent transitions. Physical Review E,
American Physical Society, v. 101, 2020. DOI: 10.1103/PhysRevE.101.022107.

HUET, S’ebastien et al. Analysis of transient behavior in complex trajectories: application to secretory
vesicle dynamics. Biophysical journal, v. 91, n. 9, p. 3542–3559, 2006.

IKEDA, Harukuni et al. Jamming with tunable roughness. Physical Review Letters, American
Physical Society, v. 124, 2020. DOI: 10.1103/PhysRevLett.124.208001.

ILINA, O. et al. Cell–cell adhesion and 3d matrix confinement determine jamming transitions in breast
cancer invasion. Nature cell biology, v. 22, n. 9, p. 1103–1115, 2020.

JACKSON, Meyer B. Molecular and Cellular Biophysics. [s. l.]: Cambridge University Press, 2006.

JADHAV, Saurabh et al. Variable stiffness devices using fiber jamming for application in soft robotics
and wearable haptics. Soft Robotics, v. 9, n. 1, p. 173–186, 2022. DOI: 10.1089/soro.2019.0203.

JAEGER, Heinrich M. Celebrating soft matter’s 10th anniversary: Toward jamming by design. Soft
Matter, The Royal Society of Chemistry, v. 11, p. 12–27, 2015. DOI: 10.1039/C4SM01923G.

JASKOWIAK, Pablo A.; COSTA, Ivan G.; CAMPELLO, Ricardo J. G. B. The area under the roc curve
as a measure of clustering quality. Data Mining and Knowledge Discovery, v. 36, p. 1219–1245,
2022.

JIANG, Yanqun et al. Estimation of traffic emissions in a polycentric urban city based on a
macroscopic approach. Physica A: Statistical Mechanics and its Applications, v. 602, 2022. DOI:
https://doi.org/10.1016/j.physa.2022.127391.

JIN, Suoqin et al. Inference and analysis of cell-cell communication using cellchat. Nature
Communications, v. 12, 2021. DOI: 10.1038/s41467-021-21246-9.

KANG, Wenying et al. A novel jamming phase diagram links tumor invasion to non-equilibrium phase
separation. iScience, v. 21, 2021.

KATZ, Michael J.; GEORGE, Edwin B. Fractals and the analysis of growth paths. Bulletin
of Mathematical Biology, v. 47, n. 2, p. 273–286, 1985. DOI: https://doi.org/10.1016/S0092-
8240(85)90053-9.

KIRKBY, M.J. The fractal geometry of nature. [S. l.: s. n.], 1983.

KLAFTER, Joseph; SOKOLOV, Igor M. Anomalous diffusion spreads its wings. Physics World,
IOP Publishing, v. 18, n. 8, p. 29–32, aug 2005. DOI: 10.1088/2058-7058/18/8/33. Disponível em:
https://doi.org/10.1088/2058-7058/18/8/33.

KLUMOV, Boris A.; KHRAPAK, Sergey A. Two-body entropy of two-dimensional fluids. Results in
Physics, v. 17, p. 103020, 2020.

KRAMER, Kelby B.; WANG, Gerald J. Social distancing slows down steady dynamics in pedestrian
flows. Physics of Fluids, v. 33, n. 10, 2021. DOI: 10.1063/5.0062331.

KRAPF, Diego. Chapter five - mechanisms underlying anomalous diffusion in the plasma membrane.
In: KENWORTHY, Anne K. (Ed.). Lipid Domains. [s. l.]: Academic Press, 2015, (Current Topics in
Membranes, v. 75). p. 167–207.

http://10.1103/PhysRevE.101.022107
http://10.1103/PhysRevLett.124.208001
http://10.1089/soro.2019.0203
http://10.1039/C4SM01923G
http://https://doi.org/10.1016/j.physa.2022.127391
http://10.1038/s41467-021-21246-9
http://https://doi.org/10.1016/S0092-8240(85)90053-9
http://https://doi.org/10.1016/S0092-8240(85)90053-9
http://10.1088/2058-7058/18/8/33
https://doi.org/10.1088/2058-7058/18/8/33
http://10.1063/5.0062331

96

LACASA, Lucas; CEA, Miguel; ZANIN, Massimiliano. Jamming transition in air transportation
networks. Physica A: Statistical Mechanics and its Applications, v. 388, n. 18, p. 3948–3954,
2009. DOI: https://doi.org/10.1016/j.physa.2009.06.005.

LEE, M. Howard. Fick’s law, green-kubo formula, and heisenberg’s equation of motion.
Physical Review Letters, American Physical Society, v. 85, p. 2422–2425, 2000. DOI:
10.1103/PhysRevLett.85.2422.

LENNE, Pierre-François; TRIVEDI, Vikas. Sculpting tissues by phase transitions. Nature
Communication, v. 13, p. 664, 2022.

LEVESQUE, D.; ASHURST, W. T. Long-time behavior of the velocity autocorrelation function for a fluid
of soft repulsive particles. Physical Reiew. Letters, American Physical Society, v. 33, p. 277–280,
1974. DOI: 10.1103/PhysRevLett.33.277.

LI, Qian. sctour: a deep learning architecture for robust inference and accurate prediction of cellular
dynamics. bioRxiv, Cold Spring Harbor Laboratory, 2022. DOI: 10.1101/2022.04.17.488600.

LIMBACH, Hans-Jorg et al. Espresso - an extensible simulation package for research on soft matter
systems. Computer Physics Communication, v. 174, p. 704–727, 2006.

LIU, Andrea J.; NAGEL, Sidney R. Jamming is not just cool any more. Nature, v. 396, p. 21–22, 1998.

LIU, Andrea J.; NAGEL, Sidney R. The jamming transition and the marginally jammed
solid. Annual Review of Condensed Matter Physics, v. 1, n. 1, p. 347–369, 2010. DOI:
10.1146/annurev-conmatphys-070909-104045.

LIU, Tianxin et al. A positive pressure jamming based variable stiffness structure and its application
on wearable robots. IEEE Robotics and Automation Letters, v. 6, n. 4, p. 8078–8085, 2021. DOI:
10.1109/LRA.2021.3097255.

LU, Zhuo; WANG, Wenye; WANG, Cliff. Modeling, evaluation and detection of jamming attacks
in time-critical wireless applications. IEEE Transactions on Mobile Computing, v. 13, n. 8, p.
1746–1759, 2014. DOI: 10.1109/TMC.2013.146.

MAJMUDAR, T. S. et al. Jamming transition in granular systems. Physical Review Letters, American
Physical Society, v. 98, 2007. DOI: 10.1103/PhysRevLett.98.058001.

MARIANI, Paolo et al. Labour market inclusion and economic well-being: a trajectory analysis
for some european countries (1995–2019). Quality & Quantity, Springer, p. 1–22, 2022. DOI:
https://doi.org/10.1007/s11135-021-01301-9.

MATEUS, Andre; SAVITSKI, Mikhail M; PIAZZA, Ilaria. The rise of proteome-wide biophysics.
Molecular Systems Biology, v. 17, n. 7, 2021. DOI: https://doi.org/10.15252/msb.202110442.

MICHALET, Xavier. Mean square displacement analysis of single-particle trajectories with localization
error: Brownian motion in an isotropic medium. Physical Review E, American Physical Society, v. 82,
2010. DOI: 10.1103/PhysRevE.82.041914.

MICHAUD-AGRAWAL, Naveen et al. Mdanalysis: A toolkit for the analysis of molecular dynamics
simulations. Journal of Computational Chemistry, v. 32, n. 10, p. 2319–2327, 2011. DOI:
https://doi.org/10.1002/jcc.21787.

MJOLSNESS, Eric; DECOSTE, Dennis. Machine learning for science: State of the art and future
prospects. Science, v. 293, n. 5537, p. 2051–2055, 2001. DOI: 10.1126/science.293.5537.2051.

http://https://doi.org/10.1016/j.physa.2009.06.005
http://10.1103/PhysRevLett.85.2422
http://10.1103/PhysRevLett.33.277
http://10.1101/2022.04.17.488600
http://10.1146/annurev-conmatphys-070909-104045
http://10.1109/LRA.2021.3097255
http://10.1109/TMC.2013.146
http://10.1103/PhysRevLett.98.058001
http://https://doi.org/10.1007/s11135-021-01301-9
http://https://doi.org/10.15252/msb.202110442
http://10.1103/PhysRevE.82.041914
http://https://doi.org/10.1002/jcc.21787
http://10.1126/science.293.5537.2051

97

Moreira-Soares, Maurício. Multi-Phase-Field Models for Biological Systems. 2020. Tese
(Doutorado) – University of Coimbra - Physics Department, School of Science and Technology, 2020.

Moreira-Soares, Maurício. Open access training dataset for trajectory classification. 2022.
https://zenodo.org/record/3627650.YtBRCFvMJhF.

MOREIRA-SOARES, Maurício et al. Adhesion modulates cell morphology and migration within dense
fibrous networks. Journal of Physics: Condensed Matter, IOP Publishing, v. 32, n. 31, p. 314001,
2020. DOI: 10.1088/1361-648x/ab7c17.

MUQRI, Mohammad Rafiq; WILSON, Eric John; SHAKIB, Javad. A taste of python – discrete and fast
fourier transforms. In: 2015 ASEE Annual Conference amp Exposition. Seattle, Washington: ASEE
Conferences, 2015. Https://peer.asee.org/23464.

MURAMATSU, Masakuni; IRIE, Tunemasa; NAGATANI, Takashi. Jamming transition in pedestrian
counter flow. Physica A: Statistical Mechanics and its Applications, v. 267, n. 3, p. 487–498, 1999.
DOI: https://doi.org/10.1016/S0378-4371(99)00018-7.

NAGATANI, Takashi. Dynamical jamming transition induced by a car accident in traffic-flow model of a
two-lane roadway. Physica A: Statistical Mechanics and its Applications, v. 202, n. 3, p. 449–458,
1994. DOI: https://doi.org/10.1016/0378-4371(94)90471-5.

NAGATANI, Takashi. Thermodynamic theory for the jamming transition in traffic flow. Physical Review
E, American Physical Society, v. 58, p. 4271–4276, 1998. DOI: 10.1103/PhysRevE.58.4271.

NICK, Todd G.; CAMPBELL, Kathleen M. Logistic regression. In: . Topics in Biostatistics. [s. l.]:
Humana Press, 2007. p. 273–301.

OHIRA, Toru; SAWATARI, Ryusuke. Phase transition in a computer network traffic model. Physical
Review E, American Physical Society, v. 58, p. 193–195, 1998. DOI: 10.1103/PhysRevE.58.193.

OLGAR, Handan; JANKE, Wolfhard. Gyration tensor based analysis of the shapes of polymer
chains in an attractive spherical cage. The Journal of chemical physics, v. 138, 02 2013. DOI:
10.1063/1.4788616.

OLIVEIRA, Fernando A. et al. Anomalous diffusion: A basic mechanism for the evolution of
inhomogeneous systems. Frontiers in Physics, v. 7, 2019. DOI: 10.3389/fphy.2019.00018.
Disponível em: https://www.frontiersin.org/article/10.3389/fphy.2019.00018.

OLIVEIRA, Fernando A. et al. Anomalous diffusion: A basic mechanism for the evolution of
inhomogeneous systems. Frontiers in Physics, 2019. DOI: 10.3389/fphy.2019.00018.

OSWALD, Linda et al. Jamming transitions in cancer. Journal of Physics D: Applied Physics, IOP
Publishing, v. 50, n. 48, 2017. DOI: 10.1088/1361-6463/aa8e83.

PANCERASA, Mattia et al. Reconstruction of long-distance bird migration routes using advanced
machine learning techniques on geolocator data. Journal of The Royal Society Interface, v. 16,
n. 155, 2019. DOI: 10.1098/rsif.2019.0031.

PLOSZAJSKI, Anna R. et al. 4d printing of magnetically functionalized chainmail for exoskeletal
biomedical applications. MRS Advances, v. 4, p. 1361–1366, 2019.

RACCIS, Riccardo et al. Confined diffusion in periodic porous nanostructures. ACS Nano, v. 5, n. 6, p.
4607–4616, 2011. DOI: 10.1021/nn200767x.

http://10.1088/1361-648x/ab7c17
http://https://doi.org/10.1016/S0378-4371(99)00018-7
http://https://doi.org/10.1016/0378-4371(94)90471-5
http://10.1103/PhysRevE.58.4271
http://10.1103/PhysRevE.58.193
http://10.1063/1.4788616
http://10.3389/fphy.2019.00018
https://www.frontiersin.org/article/10.3389/fphy.2019.00018
http://10.3389/fphy.2019.00018
http://10.1088/1361-6463/aa8e83
http://10.1098/rsif.2019.0031
http://10.1021/nn200767x

98

RAMANA, Venkata; SAI, A.; JABARI, Saif Eddin. Power laws and phase transitions in heterogenous
car following with reaction times. Physical Review E, American Physical Society, v. 103, Mar 2021.
DOI: 10.1103/PhysRevE.103.032202.

ROE, Daniel; CHEATHAM, Thomas. Ptraj and cpptraj: Software for processing and analysis of
molecular dynamics trajectory data. Journal of Chemical Theory and Computation, v. 9, n. 7, p.
3084–3095, 2013. DOI: 10.1021/ct400341p.

RUDNICK, JOSEPH; GASPARI, GEORGE. The shapes of random walks. Science (American
Association for the Advancement of Science), The American Association for the Advancement of
Science, v. 237, n. 4813, p. 384–389, 1987.

SADATI, Monirosadat et al. Glass-like dynamics in the cell and in cellular collectives. WIREs Systems
Biology and Medicine, v. 6, n. 2, p. 137–149, 2014. DOI: https://doi.org/10.1002/wsbm.1258.

SAN-SEGUNDO, Rubén et al. Parkinson’s disease tremor detection in the wild using wearable
accelerometers. Sensors, v. 20, n. 20, 2020. DOI: https://doi.org/10.3390/s20205817.

SANDEV, Trifce; METZLER, Ralf; CHECHKIN, Aleksei. From continuous time random walks to the
generalized diffusion equation. Fractional Calculus and Applied Analysis, v. 21, n. 1, p. 10–28,
2018. DOI: doi:10.1515/fca-2018-0002.

SANTOS, M. A. F. dos; JUNIOR, Luis Menon; CIUS, Danilo. Superstatistical approach
of the anomalous exponent for scaled Brownian motion. arXiv, 2022. Disponível em:
https://arxiv.org/abs/2206.07820.

SAXTON, Michael J. Anomalous subdiffusion in fluorescence photobleaching recovery: A monte carlo
study. Biophysical Journal, v. 81, n. 4, p. 2226–2240, 2001. DOI: https://doi.org/10.1016/S0006-
3495(01)75870-5. ISSN 0006-3495.

SAXTON, Michael J.; JACOBSON, Ken. Single-particle tracking: Applications to membrane dynamics.
Annual Review of Biophysics and Biomolecular Structure, v. 26, n. 1, p. 373, 1997.

SCHUETT, Timo et al. Dialysis diffusion kinetics in polymer purification. Macromolecules, v. 54,
n. 20, p. 9410–9417, 2021. DOI: 10.1021/acs.macromol.1c01241.

SEABOLD, Skipper; PERKTOLD, Josef. statsmodels: Econometric and statistical modeling with
python. In: 9th Python in Science Conference. [S. l.: s. n.], 2010.

SHI, Xiu et al. Sik2 promotes ovarian cancer cell motility and metastasis by phosphorylating
mylk. Molecular Oncology, v. 16, n. 13, p. 2558–2574, 2022. DOI: https://doi.org/10.1002/1878-
0261.13208.

SPACKMAN, Kent A. Signal detection theory: Valuable tools for evaluating inductive learning. In:
SEGRE, Alberto Maria (Ed.). Proceedings of the Sixth International Workshop on Machine
Learning. San Francisco (CA): Morgan Kaufmann, 1989. p. 160–163. ISBN 978-1-55860-036-2.

STELTZ, E. et al. Jamming as an enabling technology for soft robotics. In: BAR-COHEN, Yoseph
(Ed.). Electroactive Polymer Actuators and Devices (EAPAD) 2010. [s. l.]: SPIE, 2010. v. 7642, p.
640 – 648.

STROGATZ, Steven H. Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering: With Applications to Physics, Biology, Chemistry, and
Engineering. 2. ed. [s. l.]: Westview Press, 2014. 513 p.

http://10.1103/PhysRevE.103.032202
http://10.1021/ct400341p
http://https://doi.org/10.1002/wsbm.1258
http://https://doi.org/10.3390/s20205817
http://doi:10.1515/fca-2018-0002
https://arxiv.org/abs/2206.07820
http://https://doi.org/10.1016/S0006-3495(01)75870-5
http://https://doi.org/10.1016/S0006-3495(01)75870-5
http://10.1021/acs.macromol.1c01241
http://https://doi.org/10.1002/1878-0261.13208
http://https://doi.org/10.1002/1878-0261.13208

99

SU, Xiaogang; YAN, Xin; TSAI, Chih-Ling. Linear regression. WIREs Computational Statistics, v. 4,
n. 3, p. 275–294, 2012. DOI: https://doi.org/10.1002/wics.1198.

SUTTON, Richard S.; BARTO, Andrew G. Reinforcement Learning: An Introduction. Second. [s. l.]:
The MIT Press, 2018.

THOMPSON, Peter et al. Experimental analyses of step extent and contact buffer in pedestrian
dynamics. Physica A: Statistical Mechanics and its Applications, v. 593, 2022. DOI:
https://doi.org/10.1016/j.physa.2022.126927.

VSOLC, Karel. Shape of a random-flight chain. Journal of Chemical Physics, v. 55, p. 335–344,
1971.

VYMĚTAL, Jiří; VONDRÁŠEK, Jiří. Gyration- and inertia-tensor-based collective coordinates for
metadynamics. application on the conformational behavior of polyalanine peptides and trp-cage
folding. The Journal of Physical Chemistry A, v. 115, n. 41, p. 11455–11465, 2011. DOI:
10.1021/jp2065612.

WAGNER, Thorsten et al. Classification and segmentation of nanoparticle diffusion trajectories in
cellular micro environments. PLOS ONE, Public Library of Science, v. 12, n. 1, p. 1–20, 01 2017.
Disponível em: https://doi.org/10.1371/journal.pone.0170165.

WANG, Guanning et al. Wall-following searching or area coverage searching? simulation study of the
panic evacuation considering the guidance of a single rescuer. Physica A: Statistical Mechanics
and its Applications, v. 603, 2022. DOI: https://doi.org/10.1016/j.physa.2022.127638.

WANG, Ximing et al. Decentralized reinforcement learning based anti-jamming communication for
self-organizing networks. In: 2021 IEEE Wireless Communications and Networking Conference
(WCNC). [S. l.: s. n.], 2021. p. 1–6.

WANG, Yifan et al. Structured fabrics with tunable mechanical properties. Nature, v. 596, p. 238–243,
2021.

WEEKS, John D.; CHANDLER, David; ANDERSEN, Hans C. Role of repulsive forces in determining
the equilibrium structure of simple liquids. The Journal of Chemical Physics, v. 54, n. 12, p.
5237–5247, 1971. DOI: 10.1063/1.1674820.

WEI, Jing et al. Machine learning in materials science. InfoMat, v. 1, n. 3, p. 338–358, 2019. DOI:
https://doi.org/10.1002/inf2.12028.

WILLIAMS, Stephen R. et al. Velocity autocorrelation functions of hard-sphere fluids: Long-time
tails upon undercooling. Physical Review Letters, American Physical Society, v. 96, 2006. DOI:
10.1103/PhysRevLett.96.087801.

WLODKOWIC, Donald. Future prospects of accelerating neuroactive drug discovery with
high-throughput behavioral phenotyping. Expert Opinion on Drug Discovery, Taylor & Francis, v. 17,
n. 4, p. 305–308, 2022. DOI: 10.1080/17460441.2022.2031971.

WU, Xiao-Lun; LIBCHABER, Albert. Particle diffusion in a quasi-two-dimensional bacterial
bath. Physical Review Letters, American Physical Society, v. 84, p. 3017–3020, 2000. DOI:
10.1103/PhysRevLett.84.3017.

XINGYUAN, Wang; CHAO, Luo; JUAN, Meng. Nonlinear dynamic research on eeg signals in
hai experiment. Applied Mathematics and Computation, v. 207, n. 1, p. 63–74, 2009. DOI:
https://doi.org/10.1016/j.amc.2007.10.064.

http://https://doi.org/10.1002/wics.1198
http://https://doi.org/10.1016/j.physa.2022.126927
http://10.1021/jp2065612
https://doi.org/10.1371/journal.pone.0170165
http://https://doi.org/10.1016/j.physa.2022.127638
http://10.1063/1.1674820
http://https://doi.org/10.1002/inf2.12028
http://10.1103/PhysRevLett.96.087801
http://10.1080/17460441.2022.2031971
http://10.1103/PhysRevLett.84.3017
http://https://doi.org/10.1016/j.amc.2007.10.064

100

ZABURDAEV, V.; DENISOV, S.; KLAFTER, J. Lévy walks. Review of Modern Physics, American
Physical Society, v. 87, p. 483–530, 2015. DOI: 10.1103/RevModPhys.87.483.

ZHANG, Ya-Ru et al. Strategies to improve tumor penetration of nanomedicines through nanoparticle
design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, v. 11, 2018.
DOI: 10.1002/wnan.1519.

ZHOU, Jibiao et al. Stability analysis of pedestrian traffic flow in horizontal channels: A numerical
simulation method. Physica A: Statistical Mechanics and its Applications, v. 587, 2022. DOI:
https://doi.org/10.1016/j.physa.2021.126528.

http://10.1103/RevModPhys.87.483
http://10.1002/wnan.1519
http://https://doi.org/10.1016/j.physa.2021.126528

ATTACHMENTS

103

ATTACHMENT A – ALGORITHMS

Code A.1 – Codes for the computation of each attribute.

1 import numpy as np

2 from sc ipy . s t a t s import l i n r e g r e s s

3 import t r a j p y . a u x i l i a r _ f u n c t i o n s as aux

4 import warnings

5

6 class T r a j e c t o r y (object) :

7 " " "

8 This i s the main c lass ob jec t i n t r a j p y . I t can be i n i t i a l i z e d

9 as a dummy ob jec t f o r c a l l i n g i t s f u nc t i o ns or you can i n i t i a l i z e

10 i t w i th a t r a j e c t o r y ar ray or csv f i l e .

11 " " "

12 def _ _ i n i t _ _ (s e l f , t r a j e c t o r y =np . zeros ((1 , 2)) , box_length=None , * * params

) :

13 " " "

14 I n i t i a l i z a t i o n f u n c t i o n t h a t can be l e f t b lank f o r using

sta t icmethods .

15 I t can be i n i t i a l i z e d wi th an ar ray w i th shape (N, dim)

16 where dim i s the number o f s p a t i a l dimensions p lus the t ime component

.

17 The f i r s t column must be the time , fo l l owed by the x− and y−ax is .

18 I t a lso accepts tup les (t , x , y) or csv f i l e s .

19

20 The t r a j e c t o r y w i l l be s p l i t between the temporal component s e l f . _ t

21 and the s p a t i a l ax is s e l f . _r .

22

23 : param t r a j e c t o r y : 2D t r a j e c t o r y as a f u n c t i o n o f t ime (t , x , y)

24 : param params : use params f o r passing parameters i n t o np . genf romtx t ()

25 " " "

26 i f type (t r a j e c t o r y) == st r :

27 t r a j e c t o r y = np . genf romtx t (t r a j e c t o r y , * * params)

28

29 i f type (t r a j e c t o r y) == np . ndarray :

30 s e l f . _t , s e l f . _r = t r a j e c t o r y [: , 0] , t r a j e c t o r y [: , 1 :]

31 e l i f type (t r a j e c t o r y) == tuple :

32 s e l f . _t , s e l f . _r = np . asarray (t r a j e c t o r y [0]) , np . asarray (

t r a j e c t o r y [1 :])

33 else :

34 raise TypeError (’ t r a j e c t o r y rece ives an ar ray or a f i lename as

104

i npu t . ’)

35 i f box_length != None :

36 s e l f . _r = aux . un fo ld (s e l f . _r [0] , s e l f . _r , box_length)

37

38 s e l f . msd_ta = None # time −averaged mean squared displacement

39 s e l f . msd_ea = None # ensemble−averaged mean squared displacement

40 s e l f . msd_rat io = None

41 s e l f . anomalous_exponent = None

42 s e l f . f r ac ta l_d imens ion = None

43 s e l f . e igenvalues = None

44 s e l f . gy ra t i on_ rad ius = None

45 s e l f . e igenvalues = None

46 s e l f . e igenvectors = None

47 s e l f . asymmetry = None

48 s e l f . s t r a i gh t ness = None

49 s e l f . an iso t ropy = None

50 s e l f . k u r t o s i s = None

51 s e l f . gauss ian i t y = None

52 s e l f . msd_rat io = None

53 s e l f . e f f i c i e n c y = None

54 s e l f . con f i nemen t_p robab i l i t y = None

55 s e l f . d i f f u s i v i t y = None

56 s e l f . _r0 = None # maximum dis tance between any two po in t s o f the

t r a j e c t o r y

57 s e l f . v e l o c i t y = None

58 s e l f . v e l o c i t y _ d e s c r i p t i o n = None

59 s e l f . frequency_spectrum = None

60

61 def compute_features (s e l f) :

62 " " "

63 Compute every fea tu re f o r the t r a j e c t o r y saved i n s e l f . _r .

64

65 : r e t u r n fea tu res : r e t u r n the values o f the fea tu res as a s t r i n g .

66 " " "

67 s e l f . msd_ta = s e l f . msd_time_averaged_ (s e l f . _r , np . arange (len (s e l f . _r)

))

68 s e l f . msd_ea = s e l f . msd_ensemble_averaged_ (s e l f . _r)

69 s e l f . msd_rat io = s e l f . msd_rat io_ (s e l f . msd_ta , n1=2 , n2=10)

70 s e l f . anomalous_exponent = s e l f . anomalous_exponent_ (s e l f . msd_ea , s e l f .

_ t)

71 s e l f . f rac ta l_d imens ion , s e l f . _r0 = s e l f . f rac ta l_d imens ion_ (s e l f . _r)

72

105

73 s e l f . gy ra t i on_ rad ius = s e l f . gy ra t i on_ rad ius_ (s e l f . _r) . get (’ gy ra t i on

tensor ’)

74 s e l f . e igenvalues = s e l f . gy ra t i on_ rad ius_ (s e l f . _r) . get (’ e igenvalues ’)

75 s e l f . e igenvectors = s e l f . gy ra t i on_ rad ius_ (s e l f . _r) . get (’ e igenvectors ’

)

76

77 s e l f . k u r t o s i s = s e l f . k u r t o s i s_ (s e l f . _r , s e l f . e igenvectors [: , 0])

78 s e l f . an iso t ropy = s e l f . an iso t ropy_ (s e l f . e igenvalues)

79 s e l f . v e l o c i t y = s e l f . v e l o c i t y _ (s e l f . _r , s e l f . _ t)

80 s e l f . vacf = s e l f . s t a t i o n a r y _ v e l o c i t y _ c o r r e l a t i o n _ (s e l f . v e l o c i t y , s e l f .

_t , np . arange (i n t (len (s e l f . v e l o c i t y) / 2)))

81 s e l f . s t r a i gh t ness = s e l f . s t ra igh tness_ (s e l f . _r)

82 s e l f . gauss ian i t y = s e l f . gauss ian i t y_ (s e l f . _r)

83 s e l f . e f f i c i e n c y = s e l f . e f f i c i e n c y _ (s e l f . _r)

84 s e l f . d i f f u s i v i t y = s e l f . green_kubo_ (s e l f . v e l o c i t y , s e l f . _t ,

85 s e l f . s t a t i o n a r y _ v e l o c i t y _ c o r r e l a t i o n _ (s e l f .

v e l o c i t y , s e l f . _t , np . arange (i n t (len (s e l f .

v e l o c i t y) / 2))))

86 s e l f . v e l o c i t y _ d e s c r i p t i o n = s e l f . v e l o c i t y _ d e s c r i p t i o n _ (s e l f . v e l o c i t y)

87 s e l f . frequency_spectrum = s e l f . frequency_spectrum_ (s e l f . _r , s e l f . _ t)

88

89 # s e l f . con f i nemen t_p robab i l i t y = s e l f . con f i nemen t_p robab i l i t y_ (2 , s e l f .

d i f f u s i v i t y , s e l f . _ t [−1])

90

91

92 f ea tu res = (st r (np . round (s e l f . anomalous_exponent , 4)) + ’ , ’ +

93 st r (np . round (s e l f . msd_rat io , 4)) + ’ , ’ +

94 st r (np . round (s e l f . f rac ta l_d imens ion , 4)) + ’ , ’ +

95 st r (np . round (s e l f . an iso t ropy , 4)) + ’ , ’ +

96 st r (np . round (s e l f . ku r t os i s , 4)) + ’ , ’ +

97 st r (np . round (s e l f . s t ra igh tness , 4)) + ’ , ’ +

98 st r (np . round (s e l f . gauss ian i ty , 4)) + ’ , ’ +

99 st r (np . round (s e l f . e f f i c i e n c y , 4)) + ’ , ’ +

100 st r (np . round (s e l f . d i f f u s i v i t y , 4)))

101

102 return f ea tu res

103

104

105 @staticmethod

106 def msd_time_averaged_ (spat ial_components , tau) :

107 " " "

108 c a l c u l a t e s the time −averaged mean squared displacement

106

109

110 . . math : :

111 \ \ l ang le \ \ mathbf { r } _ { \ \ tau }^2 \ \ rang le = \ \ f r a c { 1 } { T − \ \ tau } \ \

sum_{ t =1}^ {N− \ \ tau } | \ \ mathbf { x } _ { t + \ \ tau } − \ \ mathbf { x } _ { \ \

tau } | ^2

112

113 where : math : ‘ \ \ tau ‘ i s the t ime i n t e r v a l (t ime lag) between the two

p o s i t i o n s and : math : ‘ T i s t o t a l t r a j e c t o r y t ime leng th .

114

115 : param spat ia l_components : a r ray con ta in ing t r a j e c t o r y s p a t i a l

coord ina tes

116 : param tau : t ime lag , i t can be a s i n g l e value or an ar ray

117 : r e t u r n msd : time −averaged MSD

118 " " "

119 i f type (tau) == i n t :

120 tau = np . asarray ([tau])

121

122 msd = np . zeros (len (tau))

123 t ime_lag = 0

124 for value in tau :

125

126 dx = []

127

128 for n in range (0 , len (spat ia l_components) − value) :

129 dx . append (spat ia l_components [n + value] − spat ia l_components [

n])

130

131 dx = np . asarray (dx)

132

133 msd [t ime_lag] = np .sum(np . power (dx , 2)) / (spat ia l_components .

s i ze − value + 1)

134 t ime_lag += 1

135

136 return msd

137

138 @staticmethod

139 def msd_ensemble_averaged_ (spat ia l_components) :

140 " " "

141 c a l c u l a t e s the ensemble−averaged mean squared displacement

142

143 . . math : :

144 \ \ l ang le \ \ mathbf { r }^2 \ \ rang le (t) = \ \ f r a c { 1 } {N−1} \ \ sum_{ n=1}^

107

N | \ \ mathbf { x } _ { n } − \ \ mathbf { x } _0 | ^2

145

146 where : math : ‘N‘ i s the number o f t r a j e c t o r i e s , : math : ‘ \ \ mathbf { r } _n (

t) ‘ i s the p o s i t i o n o f the t r a j e c t o r y : math : ‘ n ‘ a t t ime : math : ‘ t ‘ .

147

148 : param spat ia l_components : a r ray con ta in ing t r a j e c t o r y s p a t i a l

coord ina tes

149 : r e t u r n msd : ensemble−averaged msd

150 " " "

151

152 msd = np . zeros (len (spat ia l_components))

153 for n in range (0 , len (spat ia l_components)) :

154 msd [n] = np .sum(np . power (spat ia l_components [n] −

spat ia l_components [0] , 2))

155 msd = msd / (len (spat ia l_components) − 1)

156

157 return msd

158

159 @staticmethod

160 def msd_rat io_ (msd_ta , n1 , n2) :

161 " " "

162 Rat io o f the ensemble averaged mean squared displacements .

163

164 . . math : :

165 \ \ l ang le r ^2 \ \ rangle_ { \ \ tau_1 , \ \ tau_2 } = \ \ f r a c { \ \ l ang le r ^2 \ \

rangle_ { \ \ tau_1 } }

166 { \ \ l ang le r ^2 \ \ rangle_ { \ \ tau_2 } } − \ \ f r a c { \ \ tau_1 } { \ \ tau_2 }

167

168 wi th

169

170 . . math : :

171 \ \ tau_1 < \ \ tau_2

172

173 : r e t u r n msd_rat io :

174 " " "

175

176 msd_rat io = msd_ta [n1] / msd_ta [n2] − n1 / n2

177 return msd_rat io

178

179 @staticmethod

180 def anomalous_exponent_ (msd, t ime_lag) :

181 " " "

108

182 Calcu la tes the d i f f u s i o n anomalous exponent

183

184 . . math : :

185 \ \ beta = \ \ f r a c { \ \ p a r t i a l \ \ log { \ \ l e f t (\ \ l ang le x^2 \ \ rang le

\ \ r i g h t) } } { \ \ p a r t i a l (\ \ log { (t) }) }

186

187 : param msd : mean square displacement

188 : param t ime_lag : t ime i n t e r v a l

189 : r e t u r n : d i f f u s i o n nomalous exponent

190 " " "

191

192 msd_log = np . log (msd [1 :])

193 t ime_log = np . log (t ime_lag [1 :])

194

195 x , y = t ime_log , msd_log

196

197 slope , i n t e r c e p t , r_value , p_value , s td_e r r = l i n r e g r e s s (x , y)

198

199 anomalous_exponent = np . round (slope , decimals =2)

200

201 return anomalous_exponent

202

203 @staticmethod

204 def f rac ta l_d imens ion_ (t r a j e c t o r y) :

205 " " "

206 Est imates the f r a c t a l dimension o f the t r a j e c t o r y

207

208 . . math : :

209 \ \ f r a c { \ \ log { (N) } } { \ \ log { (dNL^{ −1}) } }

210

211 : r e t u r n f rac ta l_d imens ion : re tu rns the f r a c t a l dimension

212 " " "

213 dr = np . zeros (np . power (len (t r a j e c t o r y) , 2))

214

215 # c a l c u l a t i n g the d is tance between each p a i r o f po in t s i n the

t r a j e c t o r y

216 n_distance = 0

217 for i_pos in range (0 , len (t r a j e c t o r y) − 1) :

218 for j_pos in range (i_pos + 1 , len (t r a j e c t o r y) − 1) :

219 dr [n_distance] = np .sum(np . power (t r a j e c t o r y [i_pos] −

t r a j e c t o r y [j_pos] , 2))

220 n_distance += 1

109

221

222 d_max = np . s q r t (np .max(dr)) # maximum dis tance between any two

po in t s o f the t r a j e c t o r y

223 n_poin ts = t r a j e c t o r y . s ize

224 l eng th = 0

225 d i f f = np . zeros (t r a j e c t o r y . shape)

226

227 for i_pos in range (0 , len (t r a j e c t o r y) − 1) :

228 d i f f [i_pos] = np . round (t r a j e c t o r y [i_pos + 1] , decimals =2) \

229 − np . round (t r a j e c t o r y [i_pos] , decimals =2)

230 l eng th += np . s q r t (np .sum(np . power (d i f f [i_pos] , 2)))

231

232 f r ac ta l_d imens ion = np . round (np . log (n_poin ts) / (np . log (n_poin ts)

233 + np . log (d_max * np . power (length , −1))) ,

decimals =2)

234

235 return f rac ta l_d imens ion , d_max

236

237 @staticmethod

238 def gy ra t i on_ rad ius_ (t r a j e c t o r y) :

239 " " "

240 Calcu la tes the gy ra t i on rad ius tensor o f the t r a j e c t o r y

241

242 . . math : :

243 R_{mn} = \ \ f r a c { 1 } { 2N^2} \ \ sum_{ i =1}^N \ \ sum_{ j =1}^N \ \ l e f t (r_ {

m} ^ { (i) } − r_ {m} ^ { (j) } \ \ r i g h t) \ \ l e f t (r_ { n } ^ { (i) } − r_ { n

} ^ { (j) } \ \ r i g h t) \ \ , ,

244

245 where : math : ‘N‘ i s the number o f segments o f the t r a j e c t o r y , : math

: ‘ \ \ mathbf { r } _ i ‘ i s the : math : ‘ i ‘ − th p o s i t i o n vec to r along the

t r a j e c t o r y ,

246 : math : ‘m‘ and : math : ‘ n ‘ assume the values o f the corresponding

coord ina tes along the d i r e c t i o n s : math : ‘ x , y , z ‘ .

247

248 : r e t u r n gy ra t i on_ rad ius : gy ra t i on_ rad ius d i c t i o n a r y con ta in ing the

tensor , e igenvalues i n descending order

249 and the corresponding e igenvectors by column

250 " " "

251

252 dim = t r a j e c t o r y . shape [1] # number o f dimensions

253 r_gyr = np . zeros ((dim , dim)) # gy ra t i on rad ius tensor

254 r_mean = np . mean(t r a j e c t o r y , ax is =0)

110

255

256 for m in range (0 , dim) :

257 for n in range (0 , dim) :

258 r_gyr [m, n] = np .sum(np . matmul (t r a j e c t o r y [: , m] − r_mean [m] ,

259 t r a j e c t o r y [: , n] − r_mean [n]))

260

261 g_radius = np . s q r t (np . abs (r_gyr / t r a j e c t o r y . s i ze)) # gy ra t i on rad ius

tensor

262

263 eigenvalues , e igenvectors = np . l i n a l g . e ig (g_radius) #computes the

eigenvalues and e igenvectors

264 id = eigenvalues . a rgso r t () [: : − 1]

265 eigenvalues = eigenvalues [id] #eigenvalues i n descending order

266 e igenvectors = e igenvectors [: , id] # e igenvectors corresponding to the

descending order

267 gy ra t i on_ rad ius = { ’ gy ra t i on tensor ’ : g_radius ,

268 ’ e igenvalues ’ : eigenvalues ,

269 ’ e igenvectors ’ : e igenvectors }

270 return gy ra t i on_ rad ius # d i c t i o n a r y

271

272 @staticmethod

273 def asymmetry_ (eigenvalues) :

274 " " "

275 Takes the eigenvalues o f the gy ra t i on rad ius tensor

276 to est imate the asymmetry between ax is .

277

278 . . math : :

279 a = − \ \ log { \ \ l e f t (1 − \ \ f r a c { (\ \ lambda_1 − \ \ lambda_2) ^2} {2 (

\ \ lambda_1 + \ \ lambda_2) ^2} \ \ r i g h t) }

280

281 : param eigenvalues : e igenvalues o f the gy ra t i on rad ius tensor

282 : r e t u r n : asymmetry c o e f f i c i e n t

283 " " "

284

285 i f len (e igenvalues) == 2:

286 eigenvalues [: : − 1] . s o r t () # the eigen values must the i n the

descending order

287

288 asymmetry = − np . log (1 . − np . power (e igenvalues [0] − eigenvalues

[1] , 2) /

289 (2 . * np . power (e igenvalues [0] + eigenvalues

[1] , 2)))

111

290 else :

291 raise IndexEr ror (" This f u n c t i o n i s meant f o r 2D t r a j e c t o r i e s only

. ")

292

293 return asymmetry

294

295 @staticmethod

296 def an iso t ropy_ (eigenvalues) :

297 " " "

298 Calcu la tes the t r a j e c t o r y an iso t ropy using the eigenvalues o f the

gy ra t i on rad ius tensor .

299

300 . . math : :

301 a^2 = 1 − 3 \ \ f r a c { \ \ lambda_1 \ \ lambda_2 + \ \ lambda_2 \ \ lambda_3 +

\ \ lambda_3 \ \ lambda_1 } { (\ \ lambda_1 + \ \ lambda_2 + \ \ lambda_3) ^2}

302

303 " " "

304

305 eigenvalues [: : − 1] . s o r t () # the eigenvalues must the i n the descending

order

306

307 i f len (e igenvalues) == 2:

308 eigenvalues = np . concatenate ((eigenvalues , np . ar ray ([0 . 0])) , ax is

=0)

309 an iso t ropy = 1. − 3 . * ((e igenvalues [0] * e igenvalues [1]

310 + eigenvalues [1] * e igenvalues [2]

311 + eigenvalues [2] * e igenvalues [0])

312 / np . power (np .sum(e igenvalues [:]) , 2))

313

314 return an iso t ropy

315

316 @staticmethod

317 def s t ra igh tness_ (t r a j e c t o r y) :

318 " " "

319 Est imates how much s t r a i g h t i s the t r a j e c t o r y

320

321 . . math : :

322 S = \ \ f r a c { | \ \ mathbf { x } _ {N−1} − \ \ mathbf { x } _0 | }

323 { \ \ sum_{ i =1}^ {N−1} | \ \ mathbf { x } _ i − \ \ mathbf { x } _ { i − 1 } | }

324

325 : r e t u r n s t r a i gh tn ess : measure o f l i n e a r i t y

326 " " "

112

327 summation = 0.

328

329 for i_pos in range (1 , len (t r a j e c t o r y)) :

330 summation += np . s q r t (np . dot (t r a j e c t o r y [i_pos] − t r a j e c t o r y [i_pos

− 1] ,

331 t r a j e c t o r y [i_pos] − t r a j e c t o r y [i_pos

− 1]))

332

333 s t r a i gh tne ss = np . s q r t (np . dot (t r a j e c t o r y [−1] − t r a j e c t o r y [0] ,

334 t r a j e c t o r y [−1] − t r a j e c t o r y [0])) /

summation

335 return s t r a i gh tne ss

336

337 @staticmethod

338 def k u r t os i s _ (t r a j e c t o r y , e igenvector) :

339 " " "

340 We obta in the k u r t o s i s by p r o j e c t i n g each p o s i t i o n o f the t r a j e c t o r y

along the main p r i n c i p a l e igenvector o f the rad ius o f gy ra t i on

tensor

341 : math : ‘ r _ i ^p = \ \ mathbf { r } \ \ cdot \ \ hat { e } _1 ‘ and then c a l c u l a t i n g

the q u a r t i c moment

342

343 . . math : :

344 K = \ \ f r a c { 1 } {N} \ \ sum_{ i =1}^N \ \ f r a c { \ \ l e f t (r _ i ^p − \ \ l ang le r ^

p \ \ rang le \ \ r i g h t) ^ 4 } { \ \ sigma_ { r ^p } ^ 4 } \ \ , ,

345

346 where : math : ‘ \ \ l ang le r ^p \ \ rangle ‘ i s the mean p o s i t i o n o f the

pro jec ted t r a j e c t o r y and : math : ‘ \ \ sigma_ { r ^p } ^2 ‘ i s the var iance .

347 The k u r t o s i s measures the peakiness o f the d i s t r i b u t i o n o f po in t s i n

the t r a j e c t o r y .

348

349 : r e t u r n k u r t o s i s : K

350 " " "

351 N = len (t r a j e c t o r y)

352 r _ p r o j e c t i o n = np . zeros (N)

353 for n , p o s i t i o n in enumerate (t r a j e c t o r y) :

354 r _ p r o j e c t i o n [n] = np . dot (pos i t i on , e igenvector)

355

356 mean_ = r _ p r o j e c t i o n . mean ()

357 std_ = r _ p r o j e c t i o n . s td ()

358 r _ p r o j e c t i o n −= mean_

359 k u r t o s i s = (1 . /N) * np .sum(np . power (r _ p r o j e c t i o n , 4)) / np . power (std_ ,

113

4)

360

361

362 return k u r t o s i s

363

364 @staticmethod

365 def gauss ian i t y_ (t r a j e c t o r y) :

366 " " "

367 measure o f how close to a gaussian d i s t r i b u t i o n i s the t r a j e c t o r y .

368

369 . . math : :

370 g (n) = \ \ f r a c { \ \ l ang le r_n ^4 \ \ rang le } { 2 \ \ l ang le r_n ^2 \ \

rang le ^2}

371

372 : r e t u r n gauss ian i t y : measure o f s i m i l a r i t y to a gaussian f u n c t i o n

373 " " "

374 f ou r t h_o rde r = aux . moment_ (t r a j e c t o r y , 4)

375 second_order = aux . moment_ (t r a j e c t o r y , 2)

376

377 gauss ian i t y = (2 / 3) * (f ou r th_o rde r / second_order) − 1

378

379 return gauss ian i t y

380

381 @staticmethod

382 def con f i nemen t_p robab i l i t y_ (r0 , D, t , N=100) :

383 " " " new

384 Est imate the p r o b a b i l i t y o f Brownian p a r t i c l e w i th

385 d i f f u s i v i t y : math : ‘D‘ being trapped i n the i n t e r v a l : math : ‘ [− r0 , +r0

] ‘ a f t e r a per iod o f t ime t .

386

387 . . math : :

388 P(r , D, t) = \ \ i n t _ { − r_0 } ^ { r_0 } p (r , D, t) \ \ mathrm { d } r

389

390 : param r : p o s i t i o n

391 : param D: d i f f u s i v i t y

392 : param t : t ime leng th

393 : r e t u r n p r o b a b i l i t y : p r o b a b i l i t y o f the p a r t i c l e being conf ined

394 " " "

395 p = np . zeros (N)

396 X = np . l i nspace (− r0 , r0 , N)

397 dx = X[1] −X [0]

398 for n , x in enumerate (X) :

114

399 p [n] = aux . e i n s t e i n _ d i f f u s i o n _ p r o b a b i l i t y (x , D, t)

400 p r o b a b i l i t y = np .sum(p) * dx

401 return 1− p r o b a b i l i t y

402

403 @staticmethod

404 def e f f i c i e n c y _ (t r a j e c t o r y) :

405 " " "

406 Calcu la tes the e f f i c i e n c y o f the movement , a measure t h a t i s

r e l a t e d to

407 the s t r a i g h tness .

408

409 . . math : :

410 E = \ \ f r a c { | \ \ mathbf { x } _ {N−1} − \ \ mathbf { x } _ { 0 } | ^ 2 }

411 { (N−1) \ \ sum_{ i =1}^ {N−1} | \ \ mathbf { x } _ { i } − \ \ mathbf { x } _ { i −1} |^2

}

412

413 : r e t u r n e f f i c i e n c y : t r a j e c t o r y e f f i c i e n c y .

414 " " "

415 den = 0.

416

417 for n in range (1 , len (t r a j e c t o r y)) :

418 den += np .sum(np . power (t r a j e c t o r y [n] − t r a j e c t o r y [n − 1] , 2))

419

420 e f f i c i e n c y = np .sum(np . power (t r a j e c t o r y [−1] − t r a j e c t o r y [0] , 2)) / \

421 ((len (t r a j e c t o r y) − 1) * den)

422

423 return e f f i c i e n c y

424

425 @staticmethod

426 def v e l o c i t y _ (pos i t i on , t ime) :

427 " " "

428 Computes the v e l o c i t y assoc iated wi th the t r a j e c t o r y

429 " " "

430

431 v e l o c i t y = np . d i f f (pos i t i on , ax is =0) / (t ime [1] − t ime [0])

432

433 return v e l o c i t y

434

435 @staticmethod

436 def s t a t i o n a r y _ v e l o c i t y _ c o r r e l a t i o n _ (v e l o c i t y , t , taus) :

437 " " "

438 Computes the s t a t i o n a r y v e l o c i t y a u t o c o r r e l a t i o n f u n c t i o n by t ime

115

average

439 . . math :

440 \ \ l ang le \ \ vec { v (t + \ \ tau) } \ \ vec { v (t) } \ \ rang le

441 : param v e l o c i t y : v e l o c i t y ar ray

442 : param t : t ime ar ray

443 : param taus : s i n g l e or ar ray o f non−negat ive i n t e g e r values

represen t ing the t ime lag

444 : r e t u r n t ime_averaged_cor r_ve loc i ty : v e l o c i t y a u t o c o r r e l a t i o n

f u n c t i o n output

445 " " "

446 t ime_averaged_cor r_ve loc i ty = np . zeros (len (taus))

447 N = len (v e l o c i t y)

448 for tau in taus :

449 t ime_averaged_cor r_ve loc i ty [tau] = (np .sum(np . einsum (’ i j , i j −> i ’ ,

450 np . take (a= v e l o c i t y , i nd i ces =np . arange (0 ,N−tau) +tau , ax is =0) ,

451 np . take (a= v e l o c i t y , i nd i ces =np . arange (0 ,N−tau) , ax is =0))) +

452 t ime_averaged_cor r_ve loc i ty [tau −1]) * (t [1] − t [0]) / (N−tau)

453 return t ime_averaged_cor r_ve loc i ty

454

455 @staticmethod

456 def green_kubo_ (v e l o c i t y , t , vacf) :

457 " " "

458 Computes the genera l i sed Green−Kubo ’ s d i f f u s i o n constant

459 : r e t u r n d i f f u s i v i t y : d i f f u s i o n constant obta ined by the Green−

Kubo r e l a t i o n

460 " " "

461

462 d i f f u s i v i t y = 0 .

463 N = len (v e l o c i t y)

464 dt = t [1] − t [0]

465 d i f f u s i v i t y = sum(vacf) * (d t / v e l o c i t y . shape [1])

466 return d i f f u s i v i t y

467

468 @staticmethod

469 def v e l o c i t y _ d e s c r i p t i o n _ (v e l o c i t y) :

470 " " "

471 Computes the main fea tu res o f the v e l o c i t y d i s t r i b u i t i o n : mean ,

median , mode , var iance ,

472 standard dev ia t ion , range , skewness and k u r t o s i s

473

474 : param v e l o c i t y : v e l o c i t y ar ray

475 r e t u r n v e l o c i t y _ d e s c r i p t i o n : re tu rns a d i c t i o n a r y where the

116

values are bounded

476 to a key o f the same name

477 " " "

478 mean = np . mean(v e l o c i t y , ax is =0)

479 median = np . median (v e l o c i t y , ax is =0)

480 s tandard_dev ia t ion = np . s td (v e l o c i t y , ax is =0)

481 var iance = np . var (v e l o c i t y , ax is =0)

482 ran = np . abs (np .max(v e l o c i t y , ax is =0) − np . min (v e l o c i t y , ax is =0))

483 i f v e l o c i t y . shape [1] == 1:

484 skewness = (sum ((v e l o c i t y −mean) * * 3) / len (v e l o c i t y)) / ((sum ((

v e l o c i t y [: , :] − mean) * * 2) / len (v e l o c i t y)) * * 1 . 5)

485 k u r t o s i s = (sum ((v e l o c i t y −mean) * * 4) / len (v e l o c i t y)) / (

s tandard_dev ia t ion * * 4) − 3

486 mode = np . empty (v e l o c i t y . shape [1] , dtype=object)

487 for co l in range (v e l o c i t y . shape [1]) :

488 vel_values , ve l _ f r eq = np . unique (np . round (v e l o c i t y , 2) ,

re tu rn_counts=True , ax is =0)

489 i f max(ve l _ f r eq) ==1:

490 mode [co l] = ’ no mode ’

491 else :

492 mode [co l] = ve l_va lues [np . where (ve l_ f r eq ==max(ve l _ f r eq))]

493 else :

494 skewness = (sum ((v e l o c i t y [: , :] − mean) * * 3) / len (v e l o c i t y)) / ((sum ((

v e l o c i t y [: , :] − mean) * * 2) / len (v e l o c i t y)) * * 1 . 5)

495 k u r t o s i s = (sum ((v e l o c i t y [: , :] − mean) * * 4) / len (v e l o c i t y)) / (

s tandard_dev ia t ion * * 4) − 3

496 mode = np . empty (v e l o c i t y . shape [1] , dtype=object)

497 for co l in range (v e l o c i t y . shape [1]) :

498 vel_values , ve l _ f r eq = np . unique (np . round (v e l o c i t y [: , co l] , 2) ,

re tu rn_counts=True , ax is =0)

499 i f max(ve l _ f r eq) ==1:

500 mode [co l] = ’ no mode ’

501 else :

502 mode [co l] = ve l_va lues [np . where (ve l_ f r eq ==max(ve l _ f r eq))]

503

504 v e l o c i t y _ d e s c r i p t i o n = { ’mean ’ : mean ,

505 ’ median ’ : median ,

506 ’mode ’ : mode ,

507 ’ s tandard_dev ia t ion ’ : s tandard_dev ia t ion ,

508 ’ var iance ’ : var iance ,

509 ’ range ’ : ran ,

510 ’ k u r t o s i s ’ : ku r t os i s ,

117

511 ’ skewness ’ : skewness }

512 return v e l o c i t y _ d e s c r i p t i o n

513

514 @staticmethod

515 def frequency_spectrum_ (pos i t i on , t , f r eq_ th resho ld) :

516 " " "

517 Computes the Frequency Spectrum using the Fast Four ie r Transform

a lgo r i t hm

518 param p o s i t i o n : s p a t i a l coord ina tes

519 param t : t ime

520 r e t u r n frequency_spectrum_ : re tu rns a d i c t i o n a r y con ta in ing the

dominant frequency and the ampl i tude assoc iated wi th i t ,

521 the mean and main f requencies , the main ampl i tude and two ar rays −

one conta ins the f requenc ies and the other the ampl i tudes .

522 " " "

523 dt = t [1] − t [0]

524 n = len (t)

525 yvalues = p o s i t i o n

526 xvalues = range (len (yvalues))

527 yvalues_detrended = np . zeros (shape=yvalues . shape)

528 for co l in range (yvalues . shape [1]) :

529 z1 = np . p o l y f i t (xvalues , yvalues [: , co l] , deg=1)

530 p1 = np . poly1d (z1)

531 yvalues_detrended [: , co l] = yvalues [: , co l] − p1 (xvalues)

532 f o u r i e r = np . f f t . f f t (yvalues_detrended , ax is =0 ,n=n)

533 l i m i t = np . arange (1 , np . f l o o r (n / 2) , dtype= ’ i n t ’)

534 power = 2*np . abs (f o u r i e r) / n

535 power = power [1 :max(l i m i t) , :]

536 f = (1 / (d t *n)) *np . arange (n)

537 f = f [1 :max(l i m i t)]

538 dominant_frequency = f [np . argmax (power [: max(l i m i t)] , ax is =0)]

539 dominant_amp = np .max(power [: max(l i m i t)] , ax is =0)

540 main_frequencies = np . empty (shape=yvalues_detrended . shape [1] , dtype=

object)

541 main_amplitudes = np . empty (shape=yvalues_detrended . shape [1] , dtype=

object)

542 mean_frequency = np . zeros (yvalues_detrended . shape [1])

543 for co l in range (yvalues_detrended . shape [1]) :

544 i n d i c e = np . where (power [: , co l] >= f req_ th resho ld)

545 main_amplitudes [co l] = power [ind ice , co l]

546 main_frequencies [co l] = f [i n d i c e]

547 mean_frequency [co l] = np . mean(i n d i c e)

118

548 f requency_spectrum = { ’ dominant frequency ’ : dominant_frequency ,

549 ’ dominant ampl i tude ’ : dominant_amp ,

550 ’mean frequency ’ : mean_frequency ,

551 ’ main f requenc ies ’ : main_frequencies ,

552 ’ main ampl i tudes ’ : main_amplitudes ,

553 ’ x ’ : f ,

554 ’ y ’ : power }

555 return f requency_spectrum

Code A.2 – Codes for the simulation of trajectories for the four basic motion types.

1 import numpy as np

2 def weiers t rass_mandelbrot (t , n_displacements , alpha) :

3 " " "

4 Calcu la tes the we ie rs t rass mandelbrot f u n c t i o n

5

6 . . math : :

7 W(t) = \ \ sum_{ n= −\ \ i n f t y } ^ { \ \ i n f t y } \ \ f r a c { \ \ cos { (\ \ phi_n) } − \ \ cos

{ (\ \ gamma^n t ^* + \ \ phi_n) } } { \ \ gamma^{ n \ \ alpha / 2 } } \ \ , .

8

9 : param t : t ime step

10 : param n_displacements : number o f displacements

11 : param alpha : anomalous exponent

12 : r e t u r n : anomalous step

13 " " "

14 gamma = np . s q r t (np . p i)

15 t _ s t a r = (2 . * np . p i * t) / n_displacements

16

17 wsm = 0.

18

19 for i t e r a t i o n in range (−8 , 49) : # [−8 , 48]

20 phi = 2 . * np . random . rand () * np . p i

21 wsm += (np . cos (ph i) − np . cos (np . power (gamma, i t e r a t i o n) * t _ s t a r +

ph i)) / \

22 (np . power (gamma, i t e r a t i o n * (alpha / 2 .)))

23 return wsm

24

25

26 def anomalous_di f fus ion (n_steps , n_samples , t ime_step , alpha) :

27 " " "

28 Generates an ensemble o f anomalous t r a j e c t o r i e s .

29

119

30 : param n_steps : t o t a l number o f steps

31 : param n_samples : number o f s imu la t i ons

32 : param t ime_step : t ime step

33 : param alpha : anomalous exponent

34 : r e t u r n x , y : t ime , ar ray con ta in ing N_sample t r a j e c t o r i e s w i th Nsteps

35 " " "

36 x = np . zeros (n_steps) * t ime_step

37 y = np . zeros ((n_steps , n_samples))

38

39 for i_sample in range (0 , n_samples) :

40

41 for i _s tep in range (0 , n_steps) :

42 t = i _s tep * t ime_step

43 y [i_s tep , i_sample] = weiers t rass_mandelbrot (t , n_steps , alpha=

alpha)

44 x [i _s tep] = t

45

46 i f n_samples == 1:

47 y = y . t ranspose () [0]

48

49 return x , y

50

51

52 def n o r m a l _ d i s t r i b u t i o n (u , D, d t) :

53 " " "

54 This i s the s tep leng th p r o b a b i l i t y dens i t y f u n c t i o n f o r normal d i f f u s i o n .

55

56 : param u : abso lu te d is tance t r a v e l l e d by the p a r t i c l e d u r i n t the t ime

i n t e r v a l d t

57 : param D: d i f f u s i v i t y

58 : param dt : t ime i n t e r v a l

59 : r e t u r n pdf : p r o b a b i l i t y dens i t y f u n c t i o n

60

61 " " "

62 d i f f = 4 . * D * d t

63 pdf = ((2 . * u) / np . s q r t (d i f f)) * np . exp(−np . power (u , 2) / d i f f)

64 return pdf

65

66

67 def norma l_d i f f us ion (n_steps , n_samples , dx , y0 , D, d t) :

68 " " "

69 Generates an ensemble o f normal d i f f u s i o n t r a j e c t o r i e s .

120

70

71 : param n_steps : t o t a l steps

72 : param n_samples : number o f t r a j e c t o r i e s

73 : param dx : maximum step leng th

74 : param y0 : s t a r t i n g p o s i t i o n

75 : param D: d i f f u s i v i t y

76 : param dt : t ime step

77 : r e t u r n x , y : t ime , ar ray con ta in ing N_samples t r a j e c t o r i e s w i th N_steps

78 " " "

79

80 y = np . zeros ((n_steps , n_samples))

81 x = np . l i nspace (0 , n_steps , n_steps)

82 y [0 , :] = y0

83

84 for i_sample in range (0 , n_samples) :

85 i _s tep = 1

86 while True :

87

88 i f i _s tep >= n_steps :

89 break

90

91 random_number = np . random . rand ()

92 u = (0 .5 − random_number) * dx # step leng th and d i r e c t i o n

93 i f random_number >= n o r m a l _ d i s t r i b u t i o n (np . abs (u) , D, d t) :

94 y [i_s tep , i_sample] = y [i_s tep −1 , i_sample] + u

95

96 i _s tep += 1

97 return x , y

98

99

100 def c o n f i n e d _ d i f f u s i o n (radius , n_steps , n_samples , dx , y0 , D, d t) :

101 " " "

102 Generates t r a j e c t o r i e s under conf inement .

103

104 : param rad ius : conf inement rad ius

105 : param n_steps : number o f displacements

106 : param n_samples : number o f t r a j e c t o r i e s

107 : param dx : displacement

108 : param y0 : i n i t i a l p o s i t i o n

109 : param D: d i f f u s i o n c o e f f i c i e n t

110 : param dt : t ime step

111 : r e t u r n x , y : t ime , ar ray con ta in ing N_samples t r a j e c t o r i e s w i th N_steps

121

112 " " "

113 y = np . zeros ((n_steps , n_samples))

114 x = np . l i nspace (0 , n_steps , n_steps)

115 y [0 , :] = y0

116 sub_step = 0.0

117 for i_sample in range (0 , n_samples) :

118

119 for i _s tep in range (0 , n_steps) :

120

121 sub_x , sub_y = norma l_d i f f us ion (n_steps =100 , n_samples=1 , dx=dx ,

y0=sub_step , D=D, d t=d t)

122

123 i f sub_y [−1] < rad ius :

124 t = i _s tep * d t

125 y [i_s tep , i_sample] = sub_y [−1]

126 sub_step = sub_y [−1]

127 x [i _s tep] = t

128

129 return x , y

130

131

132 def s u p e r d i f f u s i o n (v e l o c i t y , n_steps , n_samples , y0 , d t) :

133 " " "

134 Generates d i r e c t d i f f u s i o n t r a j e c t o r i e s .

135 Combine pa i rw ise wi th normal d i f f u s i o n components .

136

137 : param v e l o c i t y : constant v e l o c i t y

138 : param n_steps : number o f t ime steps

139 : param n_samples : number o f t r a j e c t o r i e s

140 : param y0 : i n i t i a l p o s i t i o n

141 : param dt : t ime i n t e r v a l

142 : r e t u r n x , y : t ime , ar ray con ta in ing N_samples t r a j e c t o r i e s w i th N_steps

143 " " "

144 y = np . zeros ((n_steps , n_samples))

145 x = np . l i nspace (0 , n_steps , n_steps)

146 y [0 , :] = y0

147

148 for i_sample in range (0 , n_samples) :

149

150 for i _s tep in range (1 , n_steps) :

151 y [i_s tep , i_sample] = y [i_s tep −1 , i_sample] + v e l o c i t y * d t

152 x [i _s tep] = i_s tep * d t

122

153

154 return x , y

155

156

157 def s a v e _ t o _ f i l e (y , param , path) :

158 " " "

159 Saves the t r a j e c t o r i e s to a f i l e .

160

161 : param y : t r a j e c t o r y ar ray

162 : param param : a parameter t h a t cha rac te r i zes the k ind o f t r a j e c t o r y

163 : param path : path to the f o l d e r where the f i l e w i l l be saved

164 " " "

165 dims = [’ x ’ , ’ y ’]

166 np . save tx t (path + ’ / t r a j _ ’ + st r (param) + ’ . csv ’ , y , d e l i m i t e r = ’ , ’ ,

167 header= ’ t , ’ +(" , " . j o i n (dims [: y . shape [1]] * i n t ((y . shape [1]) / 2))) , comments=

’ ’)

Code A.3 – Code for single object tracking.

1 import cv2

2 import numpy as np

3

4

5 def capture (kind , camera , f i le_name , number1 , number2) :

6 i f k ind == ’ l i v e ’ :

7 cap = cv2 . VideoCapture (camera)

8 e l i f k ind == ’ rec ’ :

9 cap = cv2 . VideoCapture (st r (camera))

10 he igh t = i n t (cap . get (cv2 .CAP_PROP_FRAME_HEIGHT))

11 width = i n t (cap . get (cv2 .CAP_PROP_FRAME_WIDTH))

12 fps = cap . get (cv2 .CAP_PROP_FPS)

13

14 sa l va r = cv2 . V ideoWr i ter (st r (f i le_name) + ’ .mp4 ’ , cv2 . V ideoWr i te r_ fourcc (* ’

mp4v ’) , fps , (width , he igh t) , i sCo lo r =True)

15 back_sub = cv2 . createBackgroundSubtractorKNN ()

16 kerne l = np . ones ((30 ,30) , np . u i n t8)

17 arqu ivo = open (st r (f i le_name) + ’ . t x t ’ , ’w ’)

18 numero_frames = 0

19 while (True) :

20 numero_frames += 1

21 re t , frame = cap . read ()

22 i f not r e t :

123

23 break

24

25

26 fg_mask = back_sub . apply (frame)

27

28 fg_mask = cv2 . morphologyEx (fg_mask , cv2 .MORPH_CLOSE, kerne l)

29

30 fg_mask = cv2 . medianBlur (fg_mask , 5)

31

32 _ , fg_mask = cv2 . th resho ld (fg_mask ,127 ,255 , cv2 .THRESH_BINARY)

33

34 fg_mask_bb = fg_mask

35 contours , h ie ra rchy = cv2 . f indContours (fg_mask_bb , cv2 .RETR_TREE, cv2 .

CHAIN_APPROX_SIMPLE) [− 2 :]

36 areas = [cv2 . contourArea (c) for c in contours]

37

38

39 i f len (areas) < 1 :

40

41 continue

42

43 else :

44

45 max_index = np . argmax (areas)

46

47 cnt = contours [max_index]

48 x , y ,w, h = cv2 . boundingRect (cnt)

49 cv2 . rec tang le (frame , (x , y) , (x+w, y+h) , (0 ,0 ,255) ,3)

50

51 i f w > h :

52 px_per_cm = w/ f l o a t (number1)

53 e l i f w < h :

54 px_per_cm = h / f l o a t (number1)

55

56 x2 = x + i n t (w/ 2)

57 y2 = y + i n t (h / 2)

58 arqu ivo . w r i t e (st r (np . round (numero_frames / fps , 2)) + ’ , ’ +st r (np . round (x2 /

px_per_cm , 1)) + ’ , ’ +st r (np . round (y2 / px_per_cm , 1)) + ’ \ n ’)

59

60 cv2 . c i r c l e (frame , (x2 , y2) ,4 , (0 ,255 ,0) , −1)

61

62 t e x t = " x : " + st r (np . round (x2 / px_per_cm , 1)) + " , y : " + st r (np . round (

124

y2 / px_per_cm , 1))

63 cv2 . putText (frame , tex t , (x2 , y2) , cv2 .FONT_HERSHEY_SIMPLEX, 0 .8 , (0 , 0

,255) , 2)

64

65 f p s _ t e x t = ’Tempo = ’ + st r (np . round (numero_frames / fps , 2))

66 cv2 . putText (frame , fps_ tex t , (120 ,80) , cv2 .FONT_HERSHEY_SIMPLEX, 0 .8 ,

(0 ,0 ,255) , 2)

67

68 s top_ tex t = ’ Press " q " to stop t r a c k i n g ’

69 cv2 . putText (frame , s top_ tex t , (120 ,120) , cv2 .FONT_HERSHEY_SIMPLEX, 0 .8 ,

(0 ,0 ,255) , 2)

70

71 sa l va r . w r i t e (frame)

72 cv2 . l i n e (frame , (0 , 0) , (511 ,0) , (255 ,0 ,0) ,5)

73 cv2 . l i n e (frame , (0 , 0) , (0 ,511) , (255 ,0 ,0) ,5)

74 cv2 . imshow (’ frame ’ , frame)

75 i f cv2 . waitKey (1) & 0xFF == ord (’ q ’) :

76 break

77

78 cap . re lease ()

79 cv2 . destroyAl lWindows ()

80 arqu ivo . c lose ()

81 sa l va r . re lease ()

82

83 i f __name__ == ’ __main__ ’ :

84 capture ()

Code A.4 – ESPResSo code of the simulation.

1 #

###

2 ######### MD simulation of a 2D cell model

###########

3 ######### Script by J. R. Bordin - Apr 2022

###########

4 ######### Powered by ESPRESSO

###########

5 #

###

125

6 set systemTime [clock seconds]

7 puts "The␣initial␣time␣is:␣[clock␣format␣$systemTime␣-

format␣%H:%M:%S]"

8 puts "The␣initial␣date␣is:␣[clock␣format␣$systemTime␣-

format␣%D]"

9

10

11 set pi [expr 4.* atan (1.0)];#set value of pi

12 t_random seed [pid] ;#starts the random number generator

13 set sigma 1.0 ;#distance unit , in micrometers

14

15 #Set the simulation box

16 set box_lx 210.0 ;# in units of sigma

17 set box_ly 210.0 ;# in units of sigma

18 set box_lz 210.0

19 setmd box_l $box_lx $box_ly $box_lz;#defines the initial

simulation box

20 setmd periodic 1 1 0 ;#PBC in x and y directions

21 set Atot [expr box_lx*box_ly]

22

23 #Set the cell radius and number of cells

24 set radius 3.0 ;#cell radius in units of sigma

25 set n_cell 400 ;#total number of cells

26 set Acell [expr $pi*($radius +0.5)*($radius +0.5)] ;#are of

one cell

27 set Acell [expr n_cell*Acell] ;#area occupied by the

cells

28 set kstr 500.0 ;#coil strength for the bond between the

central ghost bead and the ring. It controls the cell

deformation

29

30 cellsystem domain_decomposition

31

32

33 #set the temperature and pressure range

34 set temp 0.50

35 set p_ini 0.16; #initial pressure

36 set p_fin 0.30; #final pressure

37 set dp 0.01 ;#temperature step

126

38 set Np [expr (($p_fin -$p_ini)/$dp)+1] ;#number of points in

the isotherm

39 set gamma_0 1.0 ;#same dumping parameter from Langevin/DPD

thermostat

40 set gamma_v 0.001 ;#coupling parameter for the volume

control

41 set piston_mass 0.0001 ;#mass of the piston that will

control the pressure

42 setmd skin 0.4;#for thermostat

43

44

45 #set the integration data

46 set time_step 0.01

47 setmd time_step $time_step; #MD time step

48 #warm up steps

49 set integ_steps_warm 1000000

50 #equilibration steps

51 set integ_steps_equil 1000000

52 #production cycles

53 set integ_steps 25000

54 set total_cycles 400

55 set run_time [expr $integ_steps*$total_cycles*$time_step]

56

57

58

59 #each species needs a number to "define" his type. here I

set a number to each species.

60 set cell 0 ;#the polymer ring

61 set ghost 1 ;#the central bead

62 set insert 2 ;#for insertion try

63

64

65

66 ###################### defining the bonded interactions

67

68

69 #bond interaction for two neighbour cell beads

70 set sig 1.0 ;#size of each bead

71 set ring 21

127

72 set lambda 1.0

73 inter $ring harmonic 100.0 $lambda [expr 3.* $lambda]

74

75 #bond with the central bead

76 set rigid 22

77 inter $rigid harmonic $kstr $radius [expr 3.* $radius]

78

79 #################################### defining the non -

bonded interactions

80

81 set WCA_cut [expr pow (2 ,1./6.)] ;#repulsive WCA interaction

82 set eps 1.0 ;#interaction parameter

83

84 inter $cell $cell lennard -jones 1.0 1.0 $WCA_cut auto

85

86 #placing the ring -like cell

87 set nions_per_ring [expr int (((2.* $pi*$radius)/$lambda))]

88 set teta [expr 2.0* $pi/($nions_per_ring -1)]

89 set innerangle 41 ;#inner angular interaction to keep the

ring structure

90 set k_angle 100

91 inter $innerangle angle $k_angle $teta

92 set ns 0

93 for {set cell_counter 0} { $cell_counter < $n_cell } {incr

cell_counter 1} {

94 #insert the i-th ring

95 if {$cell_counter == 0} {

96 set posy0 [expr $box_ly *[t_random]]

97 set posx0 [expr $box_lx *[t_random]]

98 set posz0 [expr $box_lz *0.5]

99 part $ns pos $posx0 $posy0 $posz0 q 0 type $ghost mass

1.0 fix 0 0 1;# first include the central bead for

each ring

100 part $ns mol $cell_counter

101 }

102 if {$cell_counter > 0} {

103 set overlap 1

104 set try 0

105 while { $overlap == 1} {

128

106 incr try 1

107 if {$try > 100000} {

108 puts "more␣than␣100000␣attempts␣were␣made␣to␣include␣

the␣cell␣$cell_counter"

109 puts "try␣to␣put␣fewer␣cells ...␣bye␣bye"

110 exit

111 }

112 set posy0 [expr $box_ly *[t_random]]

113 set posx0 [expr $box_lx *[t_random]]

114 set posz0 [expr $box_lz *0.5]

115 part $ns pos $posx0 $posy0 $posz0 q 0 type $ghost

mass 1.0 fix 0 0 1;# first include the central

bead for each ring

116 part $ns mol $cell_counter

117 set overlap_test [analyze mindist $ghost $ghost]

118 # puts "$overlap_test"

119 if {$overlap_test > [expr 2.* $radius +0.5]} {

120 set overlap 0

121 }

122

123 }

124 }

125 set gid $ns

126 set ns [expr $ns+1]

127 for {set j 1 } { $j < [expr $nions_per_ring] } {incr j

1} {

128 #insert the ring

129 set posz [expr $box_lz *0.5]

130 set posy [expr $posy0 +($radius)*cos($j*$teta)]

131 set posx [expr $posx0 +($radius)*sin($j*$teta)]

132 part $ns pos $posx $posy $posz q 0 type $cell mass 1.0

fix 0 0 1

133 part $ns mol $cell_counter

134 part $ns bond $rigid $gid ;#bond the bead with the inner

monomer

135 if { $j > 1 } {

136 part $ns bond $ring [expr $ns -1]

137 part $ns exclude [expr $ns -1]

138 part $gid bond $innerangle [expr $ns -1] $ns;#bond

129

two adjacent beads with the inner monomer by a

angular constraint

139 }

140 set ns [expr $ns+1]

141 }

142 }

143

144 for {set j 0 } { $j < [setmd n_part] } {incr j [expr

$nions_per_ring]} {

145 part [expr $j+1] bond $ring [expr $nions_per_ring+$j -1]

146 part $j bond $innerangle [expr $j+1] [expr $j+1]

147 part [expr $j+1] exclude [expr $nions_per_ring+$j -1]

148 }

149

150 set n_cell_part [setmd n_part]

151 set n_part [setmd n_part]

152

153 set systemTime [clock seconds]

154 puts "End␣of␣insertion␣step:␣[clock␣format␣$systemTime␣-

format␣%H:%M:%S]"

155

156 analyze set chains 0 $n_cell $nions_per_ring

157

158 set Nmolecules [setmd n_part]

159 set id "k-$kstr"

160 set rhofile [open "rho -$id.dat" "w"] ;#open the rho x p

file

161 set rg_file [open "rg -$id.dat" "w"];#open the rg x p file

162

163 ######################### Initial warm steps at the lowest

pressure ###

164 thermostat set npt_isotropic $temp $gamma_0 $gamma_v ;# set

the NPT simulation

165 integrate set npt_isotropic $p_ini $piston_mass 1 1 0

166 inter forcecap 200.0

167 integrate $integ_steps_warm

168 inter forcecap 0

169 ###################### End of Warm steps

###

130

170

171 #simulations along the isothem

172 for { set Pcount 0 } { $Pcount < $Np} {incr Pcount 1} {

173 #define a random number for each pressure

174 t_random seed [pid]

175 #define the pressure for this simulation

176 set press [format %1.4g [expr p_ini+Pcount*$dp]]

177 #sets the thermosthat

178 thermostat set npt_isotropic $temp $gamma_0 $gamma_v ;#

set the NPT simulation

179 integrate set npt_isotropic $press $piston_mass 1 1 0

180 #open the files

181 set id "k-$kstr -p-$press"

182 set xyzfile [open "snap -$id.xyz" "w"] ;#open the xyz

file

183 set trajfile [open "traj -$id.xyz" "w"] ;#open the CM

trajectory file

184 set velfile [open "vel -$id.dat" "w"] ;#open the CM

velocity file

185 puts $velfile [expr ($n_cell*$total_cycles)]

186 set obsfile [open "obs -$id.dat" "w"] ;#open the

observable file

187

188 ######################### Equilibration steps

###

189 integrate $integ_steps_equil

190 set equil_time [setmd time]

191 #print the initial positions to the trajectory file

192 for {set nion 0} { $nion < [setmd n_part] } { incr nion

} {

193 set x1 [expr $sigma *[lindex [part $nion print

folded_position] 0]]

194 set y1 [expr $sigma *[lindex [part $nion print

folded_position] 1]]

195 set z1 [expr $sigma *[lindex [part $nion print

folded_position] 2]]

196 if { [lindex [part $nion] 6] == $ghost } {

197 puts $trajfile "␣[expr␣([setmd␣time]␣-␣$equil_time)]

␣␣␣$x1␣␣␣$y1␣␣␣$z1"

131

198 flush $trajfile

199 }

200 }

201 ###################### End of Equilibration steps

###

202

203 puts $obsfile "\# Langevin␣Dynamics␣simulation␣of␣2D␣

cells␣in␣a␣solvent"

204 puts $obsfile "\# Powered␣by␣Espresso!␣-␣tcl␣script␣by␣J

.␣R.␣Bordin␣-␣April␣22"

205 puts $obsfile "

\#---

"

206 puts $obsfile "\#␣$n_cell␣cells"

207 puts $obsfile "\#␣Total␣number␣of␣particles␣is␣[setmd␣

n_part]␣"

208 puts $obsfile "\#␣Temperature␣=␣$temp␣and␣damping␣

parameter␣=␣$gamma_0␣and␣pressure␣=␣$press"

209

210 set vel [observable new particle_velocities type [list

$ghost]]

211 set vacf [correlation new obs1 $vel corr_operation

scalar_product tau_max [expr 2000.* $time_step] dt [

expr $time_step]]

212 correlation $vacf autoupdate start

213

214 ################### main simulation steps - production

of results

##

215 set rho 0.0

216 set rgsum 0.0

217 for {set i 1} { $i <= $total_cycles} { incr i} {

218

219 integrate $integ_steps

220

221 analyze append

222

223

224 set rg [analyze rg 0 $n_cell $nions_per_ring]

132

225 set rg2 [expr [lindex $rg 0]]

226 set rgsum [expr $rgsum+$rg2]

227 set lxnow [expr [lindex [setmd box_l] 0]]

228 set lynow [expr [lindex [setmd box_l] 1]]

229 set rho [expr $rho + ($n_cell /($lxnow*$lynow))]

230 puts $obsfile "␣[expr␣([setmd␣time]␣-␣$equil_time)]␣[

expr␣$n_cell /($lxnow*$lynow)]␣$rg2"

231 flush $obsfile

232

233 puts $xyzfile "␣␣␣$n_cell_part␣"

234 puts $xyzfile "␣␣␣␣Atoms␣␣␣"

235 for {set nion 0} { $nion < [setmd n_part] } { incr nion

} {

236 set x1 [expr $sigma *[lindex [part $nion print

folded_position] 0]]

237 set y1 [expr $sigma *[lindex [part $nion print

folded_position] 1]]

238 set z1 [expr $sigma *[lindex [part $nion print

folded_position] 2]]

239 if { [lindex [part $nion] 6] == $cell } {

240 puts $xyzfile "␣O␣␣␣$x1␣␣␣$y1␣␣␣$z1"

241 }

242 if { [lindex [part $nion] 6] == $ghost } {

243 puts $xyzfile "␣H␣␣$x1␣␣␣$y1␣␣␣$z1"

244 set vx1 [expr [lindex [part $nion print v] 0]]

245 set vy1 [expr [lindex [part $nion print v] 1]]

246 set v2 [expr $vx1*$vx1+$vy1*$vy1]

247 puts $velfile "[expr␣(pow($v2 ,1./2.))]"

248 flush $velfile

249 puts $trajfile "␣[expr␣([setmd␣time]␣-␣$equil_time)]␣

␣␣$x1␣␣␣$y1␣␣␣$z1"

250 flush $trajfile

251 }

252

253 flush $xyzfile

254 }

255 }

256 ################################## end of main steps

257

133

258 correlation $vacf write_to_file "vacf -cor -$id.dat"

259

260 set systemTime [clock seconds]

261 puts "Production␣end␣time␣is:␣[clock␣format␣$systemTime

␣-format␣%H:%M:%S]"

262 puts "Production␣end␣date␣is:␣[clock␣format␣$systemTime

␣-format␣%D]"

263

264

265 #close $vacf_file

266 close $xyzfile

267 close $velfile

268 close $obsfile

269 puts $rhofile "␣$press␣[expr␣$rho/$total_cycles]␣"

270 flush $rhofile

271 puts $rg_file "␣$press␣[expr␣$rgsum/$total_cycles]␣"

272 flush $rg_file

273 }

274 ################# end of program ######################

275 exit

135

ATTACHMENT B – SUPLEMENTARY MATERIAL

1.350 1.375
×104

0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

1.30 1.35
×104

0

5

10 p=0.11

1.26 1.28
×104

0

10

p=0.12

1.25 1.26 1.27
×104

0

5

10
p=0.13

1.23 1.24 1.25
×104

0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

1.21 1.22 1.23
×104

0

5

p=0.15

1.23 1.24 1.25
×104

0.0

2.5

5.0

p=0.16

1.20 1.22
×104

0.0

2.5

5.0
p=0.17

1.18 1.20
×104

0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

1.185 1.190 1.195
×104

0.0

2.5

5.0
p=0.19

1.17 1.18 1.19
×104

0

5

p=0.2

1.17 1.18
×104

0

5

p=0.21

1.1651.1701.175

G ×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.22

1.165 1.170

G ×104

0

2

4
p=0.23

1.16 1.17

G ×104

0

2

4
p=0.24

1.160 1.165

G ×104

0

2

4
p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =25.0

Figure B.1 – This figure the histograms for gaussianity values larger than one for k = 25.0 for all pressures
p.

Fonte: o autor (2022).

136

1.375 1.400
×104

0

10

N
ob

se
rv

at
io

n
s

p=0.1

1.30 1.35
×104

0

5

10
p=0.11

1.300 1.325
×104

0

5

p=0.12

1.275 1.300
×104

0

5

p=0.13

1.25 1.26 1.27
×104

0

5

N
ob

se
rv

at
io

n
s

p=0.14

1.25 1.26
×104

0.0

2.5

5.0
p=0.15

1.24 1.26
×104

0

5

10
p=0.16

1.23 1.24
×104

0.0

2.5

5.0

p=0.17

1.22 1.23
×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.18

1.21 1.22
×104

0

2

4
p=0.19

1.21 1.22
×104

0

5

10
p=0.2

1.20 1.21
×104

0.0

2.5

5.0
p=0.21

1.19 1.20

G ×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

1.195 1.200

G ×104

0

2

4
p=0.23

1.190 1.195

G ×104

0

2

4
p=0.24

1.18 1.19

G ×104

0.0

2.5

5.0
p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =50.0

Figure B.2 – This figure the histograms for gaussianity values larger than one for k = 50.0 for all pressures
p.

Fonte: o autor (2022).

137

1.35 1.40
×104

0

5

10

N
ob

se
rv

at
io

n
s

p=0.1

1.325 1.350
×104

0

5

10
p=0.11

1.31 1.32
×104

0.0

2.5

5.0
p=0.12

1.28 1.30
×104

0

5

p=0.13

1.27 1.28
×104

0

5

N
ob

se
rv

at
io

n
s

p=0.14

1.26 1.27
×104

0

5

p=0.15

1.26 1.27
×104

0.0

2.5

5.0

p=0.16

1.22 1.24
×104

0

5

10
p=0.17

1.23 1.24
×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

1.2251.2301.235
×104

0

2

4
p=0.19

1.220 1.225
×104

0.0

2.5

5.0
p=0.2

1.21 1.22
×104

0.0

2.5

5.0
p=0.21

1.21 1.22

G ×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.22

1.20 1.21

G ×104

0

5

p=0.23

1.175 1.200

G ×104

0

5

p=0.24

1.19 1.20

G ×104

0

2

4
p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =75.0

Figure B.3 – This figure the histograms for gaussianity values larger than one for k = 75.0 for all pressures
p.

Fonte: o autor (2022).

138

1.400 1.425
×104

0

10

N
ob

se
rv

at
io

n
s

p=0.1

1.350 1.375
×104

0

5

p=0.11

1.300 1.325
×104

0

5

p=0.12

1.28 1.30
×104

0.0

2.5

5.0

p=0.13

1.27 1.28
×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.14

1.26 1.28
×104

0

5

10 p=0.15

1.25 1.30
×104

0

5

10 p=0.16

1.245 1.250 1.255
×104

0

2

4
p=0.17

1.23 1.24 1.25
×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

1.23 1.24
×104

0

5

10
p=0.19

1.2251.2301.235
×104

0.0

2.5

5.0
p=0.2

1.22 1.23
×104

0.0

2.5

5.0

p=0.21

1.215 1.220

G ×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

1.20 1.22

G ×104

0.0

2.5

5.0

p=0.23

1.20 1.21

G ×104

0.0

2.5

5.0
p=0.24

1.2050 1.2075

G ×104

0

2

p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =100.0

Figure B.4 – This figure the histograms for gaussianity values larger than one for k = 100.0 for all pressures
p.

Fonte: o autor (2022).

139

1.400 1.425
×104

0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

1.35 1.40
×104

0

5

10 p=0.11

1.325 1.350
×104

0

5

10 p=0.12

1.29 1.30 1.31
×104

0

5

10 p=0.13

1.290 1.295
×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.14

1.26 1.28
×104

0

5

p=0.15

1.27 1.28 1.29
×104

0

5

p=0.16

1.25 1.26
×104

0.0

2.5

5.0

p=0.17

1.24 1.25
×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.18

1.235 1.240 1.245
×104

0.0

2.5

5.0
p=0.19

1.235 1.240
×104

0

2

4
p=0.2

1.225 1.230 1.235
×104

0

5

p=0.21

1.21 1.22 1.23

G ×104

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

1.21 1.22

G ×104

0.0

2.5

5.0

p=0.23

1.21 1.22

G ×104

0

2

4
p=0.24

1.21 1.22

G ×104

0

2

4
p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =150.0

Figure B.5 – This figure the histograms for gaussianity values larger than one for k = 150.0 for all pressures
p.

Fonte: o autor (2022).

140

1.375 1.400 1.425
×104

0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

1.350 1.375
×104

0

5

10
p=0.11

1.3251.3301.335
×104

0

5

p=0.12

1.31 1.32
×104

0.0

2.5

5.0

p=0.13

1.28 1.30
×104

0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

1.28 1.30
×104

0

5

10
p=0.15

1.27 1.28 1.29
×104

0.0

2.5

5.0

p=0.16

1.2551.2601.265
×104

0.0

2.5

5.0
p=0.17

1.25 1.26
×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.18

1.23 1.24 1.25
×104

0.0

2.5

5.0

p=0.19

1.23 1.24
×104

0

2

4
p=0.2

1.23 1.24
×104

0

2

4
p=0.21

1.22 1.23

G ×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.22

1.21 1.22 1.23

G ×104

0.0

2.5

5.0

p=0.23

1.220 1.225

G ×104

0

2

4
p=0.24

1.20 1.22

G ×104

0

5

p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =200.0

Figure B.6 – This figure the histograms for gaussianity values larger than one for k = 200.0 for all pressures
p.

Fonte: o autor (2022).

141

1.3751.4001.425
×104

0

20

N
ob

se
rv

at
io

n
s

p=0.1

1.325 1.350 1.375
×104

0

5

10
p=0.11

1.31 1.32 1.33
×104

0

5

10
p=0.12

1.30 1.31
×104

0.0

2.5

5.0

p=0.13

1.29 1.30
×104

0

5

N
ob

se
rv

at
io

n
s

p=0.14

1.26 1.28
×104

0

5

p=0.15

1.250 1.275
×104

0

5

10
p=0.16

1.25 1.26 1.27
×104

0

5

p=0.17

1.25 1.26
×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

1.24 1.25
×104

0.0

2.5

5.0
p=0.19

1.22 1.24
×104

0

5

p=0.2

1.235 1.240
×104

0

2

p=0.21

1.21 1.22 1.23

G ×104

0

5

N
ob

se
rv

at
io

n
s

p=0.22

1.22 1.23

G ×104

0

2

4
p=0.23

1.220 1.225

G ×104

0

2

4
p=0.24

1.20 1.22

G ×104

0

5

p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =250.0

Figure B.7 – This figure the histograms for gaussianity values larger than one for k = 250.0 for all pressures
p.

Fonte: o autor (2022).

142

1.375 1.400 1.425
×104

0

10

N
ob

se
rv

at
io

n
s

p=0.1

1.36 1.38
×104

0.0

2.5

5.0

p=0.11

1.300 1.325
×104

0

5

10

p=0.12

1.28 1.30 1.32
×104

0

5

10

p=0.13

1.295 1.300
×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.14

1.28 1.29
×104

0.0

2.5

5.0
p=0.15

1.28 1.30
×104

0.0

2.5

5.0
p=0.16

1.25 1.26 1.27
×104

0

5

p=0.17

1.255 1.260
×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.18

1.245 1.250 1.255
×104

0

2

4
p=0.19

1.23 1.24
×104

0

5

p=0.2

1.235 1.240
×104

0.0

2.5

5.0
p=0.21

1.225 1.230 1.235

G ×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

1.21 1.22 1.23

G ×104

0

5

p=0.23

1.22251.22501.2275

G ×104

0

2

p=0.24

1.2200 1.2225

G ×104

0

2

4
p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =300.0

Figure B.8 – This figure the histograms for gaussianity values larger than one for k = 300.0 for all pressures
p.

Fonte: o autor (2022).

143

1.400 1.425
×104

0

5

10

N
ob

se
rv

at
io

n
s

p=0.1

1.350 1.375
×104

0

5

10
p=0.11

1.300 1.325
×104

0

5

10 p=0.12

1.300 1.325
×104

0

5

10 p=0.13

1.295 1.300 1.305
×104

0

2

4

N
ob

se
rv

at
io

n
s

p=0.14

1.28 1.29
×104

0

5

p=0.15

1.275 1.300
×104

0

10

p=0.16

1.265 1.270 1.275
×104

0.0

2.5

5.0
p=0.17

1.255 1.260 1.265
×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

1.25 1.26
×104

0

2

4
p=0.19

1.24 1.25
×104

0.0

2.5

5.0

p=0.2

1.23 1.24
×104

0.0

2.5

5.0

p=0.21

1.23 1.24

G ×104

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

1.22 1.23

G ×104

0

2

4
p=0.23

1.22 1.23

G ×104

0

2

4
p=0.24

1.20 1.22

G ×104

0

5

10
p=0.25

Histograms for the observed values of gaussianity larger than one for all pressures p for k =500.0

Figure B.9 – This figure the histograms for gaussianity values larger than one for k = 500.0 for all pressures
p.

Fonte: o autor (2022).

144

0 250
0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

0 100
0

10

20
p=0.11

0 250
0

5

10
p=0.12

0 250
0

5

10
p=0.13

0 250
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

5

10
p=0.15

0 250
0

10

20

p=0.16

0 200
0

10

p=0.17

0 250
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

5

p=0.19

0 250
0

5

p=0.2

0 250
0

5

10

p=0.21

0 250

K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

50 100

K

0

2

p=0.23

0 250

K

0.0

2.5

5.0
p=0.24

0 250

K

0

5

10 p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =25.0

Figure B.10 – This figure the histograms for kurtosis values larger than 5 for k = 25.0 for all pressures p.

Fonte: o autor (2022).

145

0 200
0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

0 200
0

20

p=0.11

0 250
0

10

p=0.12

0 100
0

10

20
p=0.13

0 250
0

5

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

5

10
p=0.15

0 250
0

20

p=0.16

0 250
0

10

20
p=0.17

0 250
0

10

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

2

4
p=0.19

0 250
0

5

p=0.2

0 250
0

5

10
p=0.21

0 250

K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 200

K

0

5

10 p=0.23

0 250

K

0

5

p=0.24

0 100

K

0

5

p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =50.0

Figure B.11 – This figure the histograms for kurtosis values larger than 5 for k = 50.0 for all pressures p.

Fonte: o autor (2022).

146

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

10

20
p=0.11

0 200
0

5

p=0.12

0 250
0

10

p=0.13

0 250
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0.0

2.5

5.0

p=0.15

0 250
0

5

10
p=0.16

0 250
0

2

4
p=0.17

0 250
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

2

4
p=0.19

0 250
0

2

4
p=0.2

200 400
0

2

4
p=0.21

0 250

K

0

5

N
ob

se
rv

at
io

n
s

p=0.22

0 250

K

0

2

4
p=0.23

0 250

K

0

5

p=0.24

0 250

K

0.0

2.5

5.0
p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =75.0

Figure B.12 – This figure the histograms for kurtosis values larger than 5 for k = 75.0 for all pressures p.

Fonte: o autor (2022).

147

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

20

p=0.11

0 250
0

10

20
p=0.12

0 250
0

5

10
p=0.13

0 250
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

5

p=0.15

0 250
0

20

40
p=0.16

0 250
0

5

10
p=0.17

0 250
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

5

10
p=0.19

0 250
0.0

2.5

5.0
p=0.2

0 200
0

5

10
p=0.21

0 200

K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 250

K

0

5

10
p=0.23

0 250

K

0

5

10
p=0.24

0 250

K

0

5

p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =100.0

Figure B.13 – This figure the histograms for kurtosis values larger than 5 for k = 100.0 for all pressures p.

Fonte: o autor (2022).

148

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

10

p=0.11

0 250
0

10

p=0.12

0 250
0

5

10 p=0.13

25 50 75
0

2

4

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0.0

2.5

5.0

p=0.15

0 250
0

10

p=0.16

0 250
0

5

p=0.17

0 250
0

5

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0.0

2.5

5.0

p=0.19

0 250
0.0

2.5

5.0

p=0.2

0 250
0.0

2.5

5.0
p=0.21

0 250

K

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

0 250

K

0

5

p=0.23

0 200

K

0

2

4
p=0.24

0 250

K

0.0

2.5

5.0
p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =150.0

Figure B.14 – This figure the histograms for kurtosis values larger than 5 for k = 150.0 for all pressures p.

Fonte: o autor (2022).

149

25 50 75
0

5

10

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

20

p=0.11

0 100
0

10

20
p=0.12

0 200
0

10

p=0.13

0 250
0

10

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

5

10 p=0.15

0 250
0

10

20
p=0.16

0 250
0

5

p=0.17

0 200
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

2

4
p=0.19

0 250
0.0

2.5

5.0
p=0.2

0 250
0.0

2.5

5.0
p=0.21

0 250

K

0

1

2

N
ob

se
rv

at
io

n
s

p=0.22

0 250

K

0.0

2.5

5.0
p=0.23

0 250

K

0

2

4
p=0.24

0 250

K

0.0

2.5

5.0
p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =200.0

Figure B.15 – This figure the histograms for kurtosis values larger than 5 for k = 200.0 for all pressures p.

Fonte: o autor (2022).

150

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

10

p=0.11

0 250
0

10

p=0.12

0 250
0

5

10 p=0.13

0 250
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

5

p=0.15

0 250
0

20

p=0.16

0 250
0

5

10 p=0.17

0 250
0

5

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

5

10
p=0.19

0 250
0.0

2.5

5.0

p=0.2

0 250
0

2

4
p=0.21

0 250

K

0

5

N
ob

se
rv

at
io

n
s

p=0.22

0 250

K

0

2

4
p=0.23

0 100

K

0.0

2.5

5.0
p=0.24

0 250

K

0

2

4
p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =250.0

Figure B.16 – This figure the histograms for kurtosis values larger than 5 for k = 250.0 for all pressures p.

Fonte: o autor (2022).

151

0 200
0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

0 200
0

10

p=0.11

0 250
0

5

10 p=0.12

0 250
0

5

10

p=0.13

0 250
0

5

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

5

p=0.15

0 200
0

20

40
p=0.16

0 250
0.0

2.5

5.0
p=0.17

0 250
0

2

4

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

5

p=0.19

0 250
0

5

10
p=0.2

0 250
0

5

10 p=0.21

0 250

K

0

5

N
ob

se
rv

at
io

n
s

p=0.22

0 250

K

0.0

2.5

5.0
p=0.23

0 250

K

0

2

4
p=0.24

0 250

K

0

5

p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =300.0

Figure B.17 – This figure the histograms for kurtosis values larger than 5 for k = 300.0 for all pressures p.

Fonte: o autor (2022).

152

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

20

40
p=0.11

0 250
0

5

10 p=0.12

0 250
0

5

10 p=0.13

0 250
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

2

4
p=0.15

0 250
0

10

20
p=0.16

0 250
0

10

p=0.17

0 250
0

5

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

5

10
p=0.19

0 200
0

2

4
p=0.2

0 250
0

5

10
p=0.21

0 250

K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 250

K

0.0

2.5

5.0
p=0.23

0 250

K

0

10

p=0.24

0 250

K

0.0

2.5

5.0

p=0.25

Histograms for the observed values of Kurtosis for all pressures p for k =500.0

Figure B.18 – This figure the histograms for kurtosis values larger than 5 for k = 500.0 for all pressures p.

Fonte: o autor (2022).

153

0 200
0

20

N
ob

se
rv

at
io

n
s

p=0.1

0 200
0

20

p=0.11

0 200
0

10

20
p=0.12

0 200
0

10

20
p=0.13

0 200
0

10

20

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0

10

p=0.15

0 250
0

20

p=0.16

0 200
0

10

20
p=0.17

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

5

10
p=0.19

0 200
0

5

10 p=0.2

0 200
0

5

10
p=0.21

0 200

V K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 25

V K

0

5

10
p=0.23

0 200

V K

0

5

10 p=0.24

0 200

V K

0

5

10
p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =25.0

Figure B.19 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 25.0.

Fonte: o autor (2022).

154

0 200
0

20

40

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

20

p=0.11

0 250
0

10

20 p=0.12

0 250
0

10

20

p=0.13

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0

10

p=0.15

0 200
0

10

20 p=0.16

0 200
0

10

20 p=0.17

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

5

p=0.19

0 200
0

10

p=0.2

0 200
0

5

10 p=0.21

0 200

V K

0

10

20

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V K

0

5

10 p=0.23

0 200

V K

0

10

p=0.24

0 50

V K

0

5

10
p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =50.0

Figure B.20 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 50.0.

Fonte: o autor (2022).

155

0 200
0

20

N
ob

se
rv

at
io

n
s

p=0.1

0 200
0

20

p=0.11

0 50
0

5

10 p=0.12

0 200
0

10

p=0.13

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 50
0

5

10 p=0.15

0 200
0

20

p=0.16

0 200
0

10

p=0.17

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

10

20
p=0.19

0 200
0

5

10
p=0.2

0 200
0

10

p=0.21

0 200

V K

0

10

20

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V K

0.0

2.5

5.0

p=0.23

0 200

V K

0

5

10
p=0.24

0 200

V K

0

5

10
p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =75.0

Figure B.21 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 75.0.

Fonte: o autor (2022).

156

0 250
0

20

40

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

10

20
p=0.11

0 200
0

10

p=0.12

0 200
0

5

p=0.13

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0

5

10 p=0.15

0 250
0

20

p=0.16

0 200
0

10

p=0.17

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

10

20 p=0.19

0 200
0

5

10 p=0.2

0 50
0

5

10
p=0.21

0 100

V K

0

10

20

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V K

0

5

10 p=0.23

0 200

V K

0

10

p=0.24

0 200

V K

0

10

20 p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =100.0

Figure B.22 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 100.0.

Fonte: o autor (2022).

157

0 250
0

20

40

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

20

40 p=0.11

0 200
0

20

p=0.12

0 200
0

5

10

p=0.13

0 25
0

10

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0

10

p=0.15

0 200
0

10

p=0.16

0 200
0

5

10 p=0.17

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

10

p=0.19

0 200
0

5

10

p=0.2

0 200
0

5

10
p=0.21

0 200

V K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V K

0

5

10
p=0.23

0 50

V K

0

5

p=0.24

0 200

V K

0

10

p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =150.0

Figure B.23 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 150.0.

Fonte: o autor (2022).

158

0 250
0

20

40

N
ob

se
rv

at
io

n
s

p=0.1

0 200
0

10

20
p=0.11

0 200
0

10

20
p=0.12

0 50
0

5

10

p=0.13

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0

5

10

p=0.15

0 200
0

10

20
p=0.16

0 200
0

5

10
p=0.17

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.18

0 250
0

5

10 p=0.19

0 200
0

5

10
p=0.2

0 250
0

10

p=0.21

0 200

V K

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V K

0

5

10
p=0.23

0 200

V K

0

5

p=0.24

0 250

V K

0

5

10
p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =200.0

Figure B.24 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 200.0.

Fonte: o autor (2022).

159

0 250
0

20

40

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

10

20

p=0.11

0 200
0

5

10
p=0.12

0 200
0

5

10
p=0.13

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0

5

10

p=0.15

0 200
0

10

p=0.16

0 200
0

5

10
p=0.17

0 200
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

5

10

p=0.19

0 200
0

10

p=0.2

0 200
0

10

p=0.21

0 200

V K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V K

0

10

p=0.23

0 50

V K

0

10

p=0.24

0 200

V K

0

10

p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =250.0

Figure B.25 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 250.0.

Fonte: o autor (2022).

160

0 250
0

20

40

N
ob

se
rv

at
io

n
s

p=0.1

0 200
0

10

20

p=0.11

0 200
0

10

p=0.12

0 200
0

10

p=0.13

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.14

0 200
0

10

p=0.15

0 200
0

10

p=0.16

0 200
0

10

p=0.17

0 200
0

5

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

5

10
p=0.19

0 250
0

10

p=0.2

0 200
0

10

20
p=0.21

0 200

V K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V K

0

10

p=0.23

0 200

V K

0

5

10
p=0.24

0 200

V K

0

5

10
p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =300.0

Figure B.26 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 300.0.

Fonte: o autor (2022).

161

0 250
0

20

40

N
ob

se
rv

at
io

n
s

p=0.1

0 250
0

10

20 p=0.11

0 200
0.0

2.5

5.0

p=0.12

0 200
0

5

10
p=0.13

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.14

0 250
0

10

p=0.15

0 200
0

10

20
p=0.16

0 200
0

5

10 p=0.17

0 200
0

10

N
ob

se
rv

at
io

n
s

p=0.18

0 200
0

10

p=0.19

0 50
0

5

10
p=0.2

0 200
0

10

p=0.21

0 200

V K

0

5

10

N
ob

se
rv

at
io

n
s

p=0.22

0 200

V K

0

10

p=0.23

0 200

V K

0

5

p=0.24

0 200

V K

0

5

10
p=0.25

Histograms for the observed values of Velocity Kurtosis larger than one for all pressures p for k =500.0

Figure B.27 – This figure provides the histograms for the observed values of velocity kurtosis larger than 2
for every value of p for k = 500.0.

Fonte: o autor (2022).

162

0 500
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 500
0

10

p=0.11

0 1000
0

10

p=0.12

0 1000
0

5

p=0.13

0 1000
0

5

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0

5

10 p=0.15

0 1000
0

5

10
p=0.16

0 1000
0.0

2.5

5.0
p=0.17

0 1000
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0.0

2.5

5.0
p=0.19

0 1000
0.0

2.5

5.0

p=0.2

0 1000
0

2

4
p=0.21

0 1000

D

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

500 1000

D

0

2

4
p=0.23

0 1000

D

0

2

p=0.24

0 1000

D

0

2

p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =25.0

Figure B.28 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 25.0.

Fonte: o autor (2022).

163

0 1000
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 1000
0

10

p=0.11

0 1000
0

10

p=0.12

0 1000
0

5

10
p=0.13

0 1000
0

5

10

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0.0

2.5

5.0

p=0.15

0 1000
0

5

p=0.16

0 2000
0.0

2.5

5.0

p=0.17

0 1000
0

5

10

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0.0

2.5

5.0

p=0.19

0 1000
0

5

p=0.2

0 1000
0

5

p=0.21

0 1000

D

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0.0

2.5

5.0
p=0.23

0 1000

D

0

2

4
p=0.24

0 1000

D

0.0

2.5

5.0
p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =50.0

Figure B.29 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 50.0.

Fonte: o autor (2022).

164

0 500
0

5

10

N
ob

se
rv

at
io

n
s

p=0.1

0 1000
0

5

10
p=0.11

0 1000
0.0

2.5

5.0
p=0.12

0 1000
0

5

p=0.13

0 1000
0

5

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0

2

4
p=0.15

0 1000
0.0

2.5

5.0
p=0.16

0 1000
0

5

10 p=0.17

0 1000
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0

2

4
p=0.19

0 1000
0

2

4
p=0.2

0 1000
0

2

4
p=0.21

0 1000

D

0

2

4

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0.0

2.5

5.0

p=0.23

0 1000

D

0

2

4
p=0.24

0 1000

D

0

2

4
p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =75.0

Figure B.30 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 75.0.

Fonte: o autor (2022).

165

0 1000
0

10

20

N
ob

se
rv

at
io

n
s

p=0.1

0 1000
0

10

p=0.11

0 1000
0

5

10
p=0.12

0 1000
0

5

10
p=0.13

0 1000
0

2

4

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0.0

2.5

5.0

p=0.15

0 1000
0

5

10
p=0.16

0 1000
0

2

4
p=0.17

0 1000
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0

2

4
p=0.19

0 1000
0

2

4
p=0.2

0 1000
0

2

4
p=0.21

0 1000

D

0

2

4

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0.0

2.5

5.0

p=0.23

0 1000

D

0

2

4
p=0.24

0 1000

D

0

2

4
p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =100.0

Figure B.31 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 100.0.

Fonte: o autor (2022).

166

0 1000
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 500
0

10

20
p=0.11

0 1000
0

5

10
p=0.12

0 1000
0

5

10
p=0.13

500 1000
0

2

4

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0.0

2.5

5.0
p=0.15

0 1000
0

5

p=0.16

0 1000
0

2

4
p=0.17

0 1000
0

2

4

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0

2

p=0.19

0 1000
0.0

2.5

5.0
p=0.2

0 1000
0

5

p=0.21

0 1000

D

0

2

4

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0

2

4
p=0.23

0 1000

D

0

2

4
p=0.24

0 1000

D

0

2

4
p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =150.0

Figure B.32 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 150.0.

Fonte: o autor (2022).

167

0 1000
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 1000
0

10

p=0.11

0 1000
0.0

2.5

5.0
p=0.12

0 1000
0.0

2.5

5.0

p=0.13

0 1000
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0.0

2.5

5.0

p=0.15

0 1000
0.0

2.5

5.0

p=0.16

0 1000
0.0

2.5

5.0

p=0.17

0 1000
0

2

4

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0

5

p=0.19

0 1000
0.0

2.5

5.0

p=0.2

0 1000
0

2

4
p=0.21

0 1000

D

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0.0

2.5

5.0
p=0.23

0 1000

D

0

2

4
p=0.24

0 1000

D

0

2

4
p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =200.0

Figure B.33 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 200.0.

Fonte: o autor (2022).

168

0 1000
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 1000
0

10

p=0.11

0 2000
0

5

10
p=0.12

0 2000
0

5

p=0.13

0 1000
0

2

4

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0

5

10 p=0.15

0 1000
0

5

p=0.16

0 1000
0.0

2.5

5.0

p=0.17

0 2000
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0.0

2.5

5.0
p=0.19

0 1000
0.0

2.5

5.0

p=0.2

0 1000
0

1

2
p=0.21

0 1000

D

0

5

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0.0

2.5

5.0
p=0.23

500 1000

D

0

2

4
p=0.24

0 1000

D

0

2

4
p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =250.0

Figure B.34 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 250.0.

Fonte: o autor (2022).

169

0 1000
0

5

10

N
ob

se
rv

at
io

n
s

p=0.1

0 1000
0

5

10
p=0.11

0 1000
0

5

10
p=0.12

0 1000
0

5

p=0.13

0 1000
0

2

4

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0.0

2.5

5.0

p=0.15

0 1000
0.0

2.5

5.0

p=0.16

0 1000
0

2

4
p=0.17

0 1000
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0.0

2.5

5.0

p=0.19

0 1000
0.0

2.5

5.0
p=0.2

0 1000
0

2

4
p=0.21

0 1000

D

0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0

5

p=0.23

0 1000

D

0

2

p=0.24

0 1000

D

0

2

4
p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =300.0

Figure B.35 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 300.0.

Fonte: o autor (2022).

170

0 1000
0

10

N
ob

se
rv

at
io

n
s

p=0.1

0 1000
0

10

p=0.11

0 1000
0

5

p=0.12

0 1000
0

5

10
p=0.13

0 1000
0.0

2.5

5.0

N
ob

se
rv

at
io

n
s

p=0.14

0 1000
0

5

p=0.15

0 1000
0

5

10
p=0.16

0 1000
0.0

2.5

5.0

p=0.17

0 1000
0

2

4

N
ob

se
rv

at
io

n
s

p=0.18

0 1000
0

2

4
p=0.19

0 1000
0.0

2.5

5.0

p=0.2

0 1000
0

2

4
p=0.21

0 1000

D

0

5

N
ob

se
rv

at
io

n
s

p=0.22

0 1000

D

0

2

4
p=0.23

0 1000

D

0

2

p=0.24

0 1000

D

0.0

2.5

5.0

p=0.25

Histograms for the values of the Diffusion Coefficient D > 5.0 for all pressures p for k =500.0

Figure B.36 – This figure provides the histograms for the observed values of the diffusion coefficient larger
than 5 for every value of p for k = 500.0.

Fonte: o autor (2022).

171

0 100 200 300 400

t

0

1

2

3

4

〈~r
2
〉(t

)
MSD by Ensemble average for some values of pressure for k =25.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.37 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 25.0 for all 401 timesteps.

Fonte: The author.

0 100 200 300 400

t

0

1

2

3

〈~r
2
〉(t

)

MSD by Ensemble average for some values of pressure for k =50.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.38 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 50.0 for all 401 timesteps.

Fonte: The author.

172

0 100 200 300 400

t

0

1

2

3

4

〈~r
2
〉(t

)
MSD by Ensemble average for some values of pressure for k =75.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.39 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 75.0 for all 401 timesteps.

Fonte: The author.

0 100 200 300 400

t

0

1

2

3

〈~r
2
〉(t

)

MSD by Ensemble average for some values of pressure for k =100.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.40 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 100.0 for all 401 timesteps.

Fonte: The author.

173

0 100 200 300 400

t

0

1

2

3

4

5
〈~r

2
〉(t

)
MSD by Ensemble average for some values of pressure for k =150.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.41 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 150.0 for all 401 timesteps.

Fonte: The author.

0 100 200 300 400

t

0

1

2

3

〈~r
2
〉(t

)

MSD by Ensemble average for some values of pressure for k =200.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.42 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 200.0 for all 401 timesteps.

Fonte: The author.

174

0 100 200 300 400

t

0

1

2

3

〈~r
2
〉(t

)
MSD by Ensemble average for some values of pressure for k =250.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.43 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 250.0 for all 401 timesteps.

Fonte: The author.

0 100 200 300 400

t

0

1

2

3

4

〈~r
2
〉(t

)

MSD by Ensemble average for some values of pressure for k =300.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.44 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 300.0 for all 401 timesteps.

Fonte: The author.

175

0 100 200 300 400

t

0

1

2

3

〈~r
2
〉(t

)

MSD by Ensemble average for some values of pressure for k =500.0

p =0.1

p =0.11

p =0.12

p =0.13

p =0.14

p =0.15

p =0.16

p =0.17

Figure B.45 – This figure provides the MSD by Ensemble average for pressure values of p =
0.1,0.11,0.12,0.13,0.14,0.15,0.16 and 0.17 for k = 500.0 for all 401 timesteps.

Fonte: The author.

	Capa
	Folha de rosto
	Resumo
	Abstract
	List of Figures
	List of Codes
	List of Tables
	Summary
	Introduction
	Overview
	Physical concepts of interest
	The problem of diffusion classification and a proposed solution

	Physics-based feature engineering
	Computing attributes of the trajectory
	Previous features
	New Features

	Simulating trajectories for the four basic motion types
	Using Graphical-User Interfaces - attributes calculations and animal tracking for drug discovery

	Trajectory Analysis and Diffusion CLassification of two-dimensional polymer rings
	The physical system of interest
	General Overview
	The Model and Simulation Details
	The 2D drop-like model for deformable cells
	Simulations Method and Details

	Results and Discussion
	Thermodynamic and Structural Analysis

	Trajectory analysis
	Machine Learning and diffusion classification
	A general description of Machine Learning
	Diffusion classification

	Conclusion
	Bibliography
	ATTACHMENTS
	Algorithms
	Suplementary material

