

SIMULAÇÃO DE SISTEMAS FEIXE-PLASMA COM FUNÇÃO DE DISTRIBUIÇÃO DE VELOCIDADES DO TIPO KAPPA

LEONARDO DOS SANTOS FERREIRA¹; FERNANDO SIMÕES JR.²

¹Universidade Federal de Pelotas – leonardofisicaufpel@gmail.com ²Universidade Federal de Pelotas – fernandosj@gmail.com

1. INTRODUÇÃO

A observação do Sol e de fenômenos em grande escala, relacionados a sua interação com a magnetosfera terrestre, remetem à China antiga (HAYAKAWA et al., 2015) e aos povos nativos das regiões polares (BREKKE; EGELAND, 2012). Porém, foi o avanço tecnológico e a exploração espacial que impulsionaram o estudo da atividade solar e dos efeitos que ela causa na Terra. Com isso, foi desenvolvida a ideia de clima espacial a partir dos primeiros estudos acerca do campo magnético e do plasma na região interior do sistema solar (GOLD, 1959; KANE, 2006).

Podemos pensar em clima espacial como sendo o conjunto de fenômenos eletromagnéticos, promovidos, principalmente, pela interação do campo magnético altamente variável do Sol com os outros constituintes do Sistema Solar, e a dinâmica dos plasmas é a base para o seu estudo, assim como um dos pilares da Astrofísica de maneira geral (SCHERER et al., 2005).

Desde os primeiros trabalhos em física de plasmas, com o estudo de descargas elétricas em gases (TONKS; LANGMUIR, 1929), foi desenvolvida uma teoria baseada em plasmas com populações de elétrons com velocidades descritas por uma função de distribuição de velocidades maxwelliana (FDVm). Porém, a partir da década de 1960, começaram a ser detectadas populações de partículas com velocidade acima da previstas pelas FDVm em diferentes regiões do espaço (LAZAR; SCHLICKEISER; POEDTS, 2012), que são descritas pelas FDVs do tipo kappa(κ)(FDV κ)(PIERRARD; LAZAR, 2010).

O grande problema que envolve as $FDV\kappa$ é que ainda não existe um consenso na comunidade científica quanto a equação matemática que melhor descreve os dados observacionais. Muito mais do que apenas preciosismo, essa discrepância nas representações conduz à fenômenos físicos diferentes. Neste trabalho, estudaremos os modos oscilatórios de Langmuir em plasmas com FDVm e com duas formas de FDV κ diferentes, que são mais usuais na literatura.

2. METODOLOGIA

Neste trabalho, utilizaremos dois métodos diferentes para obter as relações de dispersão para os modos de Langmuir. O primeiro, para os plasmas descritos por FDVm, consiste na resolução do sistema Vlasov-Maxwell linearizado (VML), dado pelas equações (BITTENCOURT, 2013)

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} ; \ \nabla \cdot \vec{B} = 0 ; \ \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} ; \ \nabla \times \vec{B} = \mu_0 \left(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$
(1)
$$\frac{\partial f_1}{\partial t} + \vec{v} \cdot \nabla f_1 + \frac{q}{m} \left(\vec{E} + \vec{v} \times \vec{B} \right) \cdot \nabla_v f_0 = 0$$
(2)

$$\rho = q \int_{v} f_{1}(\vec{v}) d^{3}v, \quad (3)$$
$$\vec{J} = q \int_{v}^{v} \vec{v} f_{1}(\vec{v}) d^{3}v, \quad (4)$$

onde \vec{E} e \vec{B} são os campos eletromagnéticos internos resultantes, ρ é a densidade de carga perturbada e \vec{J} é a densidade de corrente perturbada. A segunda, para os plasmas descritos por uma FDV κ , utiliza a forma geral para relação de dispersão dos modos de Langmuir (ZIEBELL;GAELZER; SIMÕES, 2017), dada por

$$1 - \frac{\omega_{pe}^2}{\omega^2} \left(1 + \frac{3}{2} \frac{\kappa}{(\kappa + \alpha^{-5}/2)} \frac{1}{\varsigma^2} \right) = 0. \quad (5)$$

3. RESULTADOS E DISCUSSÃO

Começando pelo caso de um plasma descrito por uma FDVm, buscamos soluções harmônicas periódicas, na forma

$$f_{1}(\vec{r},\vec{v},t) = f_{1}(\vec{v})\exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right]$$

$$\psi(\vec{r},\vec{v},t) = \psi\exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right] \quad (6)$$

$$\rho(\vec{r},t) = \rho\exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right],$$

onde ψ representa qualquer uma das quantidade vetoriais \vec{E} , \vec{B} e \vec{J} . Considerando essas soluções no sistema VML, e considerando a FDVm, dada por

$$f_{0}(v) = n_{0} \left(\frac{m_{e}}{2\pi k_{B} T_{e}}\right)^{3/2} \exp\left(-\frac{m_{e} v^{2}}{2k_{B} T e}\right), \quad (7)$$

temos a relação de dispersão para os modos de Langmuir em um plasma maxwelliano

$$\omega^2 = \omega_{pe}^2 + \frac{3k_B T_e k^2}{m_e}.$$
 (8)

Para o caso das FDV κ , utilizaremos a forma proposta por Vasilyunas (1968), dada por

.

$$f(v) = \frac{n_0}{(\pi\kappa)^{3/2} w_{\kappa}^3} \frac{\Gamma(\kappa+1)}{\Gamma(\kappa-1/2)} \left(1 + \frac{v^2}{\kappa w_{\kappa}^2}\right)^{-(\kappa+1)}, \quad (9)$$

e a proposta por Leubner (2002), dada por

$$f(v) = \frac{n_0}{(\pi\kappa)^{3/2} v^3} \frac{\Gamma(\kappa)}{\Gamma(\kappa - 3/2)} \left(1 + \frac{v^2}{\kappa v^2}\right)^{-\kappa}.$$
 (10)

Utilizando a forma genérica, dada pela Equação (5), escolhendo α = 1 para a FDV κ proposta por Vasilyunas, e α = 0 para a FDV κ proposta por Leubner, obtemos as respectivas relações de dispersão para os modos de Langmuir em plasmas não maxwellianos

$$\omega^{2} \approx \omega_{pe}^{2} + \frac{3k_{B}T_{e}k^{2}}{m_{e}}, \quad (11)$$
$$\omega^{2} = \omega_{pe}^{2} \left(1 + \frac{3}{2}\frac{\kappa}{(\kappa - 5/2)}\frac{k^{2}v^{2}}{\omega_{pe}^{2}}\right). \quad (12)$$

Os gráficos das curvas dadas pelas Equações (8), (11) e (12) estão dispostas na Figura1.

Figura 1: gráficos das relações de dispersão para plasmas maxwellianos e plasmas descritos pela FDV κ de Vasilyunas (coluna da esquerda, linha tênue), e para plasmas descritos pela FDV κ de Leubner (coluna da direita, linha mais escura), para índice espectral $\kappa = 3$. Fonte: (ZIEBELL; GAELZER; SIMÕES, 2017)

4. CONCLUSÕES

Por comparação direta, as curvas dadas pelas equações (8) e (11) são iguais, o que indica que a FDV κ de Vasilyunas não introduz nenhum tipo de alteração nos modos de Langmuir. Por outro lado, como é evidente pela Figura 1, a FDV κ de Leubner introduz uma discrepância que se acentua a medida que o índice espectral κ assume valores mais baixos, o que era esperado, segundo a literatura (ABDUL; MACE, 2014).

A análise apresentada neste trabalho será utilizada como base para continuação do projeto, que será estudar a evolução de sistemas, mediante a interação feixe-plasma, que apresentam estruturas com FDV κ . Em especial, estudaremos a modificação que a FDVk introduz nos modos ondulatórios de Langmuir nesses sistemas. Esse resultado é importante porque através do estudo de propagação de ondas em plasmas é possível obter uma série de informações a respeito das propriedades cinéticas do sistema, em especial em fenômenos de plasmas espaciais.

5. REFERÊNCIAS BIBLIOGRÁFICAS

HAYAKAWA, H. et al. Records of sunspot and aurora during ce 960–1279 in the chinese chronicle of the sòng dynasty. **Earth, Planets and Space**. v. 67, n. 1, p. 82, maio 2015.

BREKKE, Asgeir; EGELAND, Alv. **The northern light**: from mythology to space research. 1. ed. Berlin: Springer Science & Business Media, 2012.

GOLD, T. Plasma and magnetic fields in the solar system. **Journal of Geophysical Research**, v. 64, n. 11, p. 1665–1674, nov. 1959.

KANE, R. P. The idea of space weather: a historical perspective. **Advances in Space Research**, v. 37, n. 6, p. 1261–1264, fev. 2006.

SCHERER, Klaus et al. **Space Weather**: the physics behind a slogan. 1. ed. Berlin: Springer Science & Business Media, 2005.

TONKS, L.; LANGMUIR, I. A general theory of the plasma of an arc. **Physical** review, v. 34, n. 6, p. 876, set. 1929.

LAZAR, M.; SCHLICKEISER, R.; POEDTS, S. Suprathermal particle populations in the solar wind and corona. In: LAZAR, M.; SCHLICKEISER, R.; POEDTS, S. **Exploring the solar wind**. 1. ed. Rijeka: IntechOpen, 2012. p. 241–260.

PIERRARD, V.; LAZAR, M. Kappa distributions: theory and applications in space plasmas. **Solar Physics**, v. 267, n. 1, p. 153–174, out.

BITTENCOURT, José. **Fundamentals of plasma physics**. 3. ed. New York: Springer Science & Business Media, 2013.

ZIEBELL, L. F.; GAELZER, R.; SIMÕES, F. J. R. Dispersion relation for electrostatic waves in plasmas with isotropic and anisotropic kappa distributions for electrons and ions. **Journal of Plasma Physics**, v. 83, n. 5, out. 2017.

VASYLIUNAS, V. M. A survey of low-energy electrons in the evening sector of the magnetosphere with ogo 1 and ogo 3. **Journal of Geophysical Research**, v. 73, n. 9, p. 2839–2884, maio 1968.

LEUBNER, M. P. A nonextensive entropy approach to kappa-distributions. **Astrophysics and space science**, v. 282, n. 3, p. 573–579, nov. 2002.

ABDUL, R. F.; MACE, R. L. A method to generate kappa distributed random deviates for particle-in-cell simulations. **Computer Physics Communications**, v. 185, n. 10, p. 2383–2386, out. 2014.