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This paper presents the 12th update of the human obesity
gene map, which incorporates published results up to the
end of October 2005. Evidence from single-gene mutation
obesity cases, Mendelian disorders exhibiting obesity as a
clinical feature, transgenic and knockout murine models
relevant to obesity, quantitative trait loci (QTL) from ani-
mal cross-breeding experiments, association studies with
candidate genes, and linkages from genome scans is re-
viewed. As of October 2005, 176 human obesity cases due
to single-gene mutations in 11 different genes have been
reported, 50 loci related to Mendelian syndromes relevant to
human obesity have been mapped to a genomic region, and
causal genes or strong candidates have been identified for most
of these syndromes. There are 244 genes that, when mutated or
expressed as transgenes in the mouse, result in phenotypes that
affect body weight and adiposity. The number of QTLs re-
ported from animal models currently reaches 408. The number
of human obesity QTLs derived from genome scans continues
to grow, and we now have 253 QTLs for obesity-related
phenotypes from 61 genome-wide scans. A total of 52
genomic regions harbor QTLs supported by two or more
studies. The number of studies reporting associations between
DNA sequence variation in specific genes and obesity pheno-
types has also increased considerably, with 426 findings of
positive associations with 127 candidate genes. A promising

observation is that 22 genes are each supported by at least five
positive studies. The obesity gene map shows putative loci on
all chromosomes except Y. The electronic version of the map
with links to useful publications and relevant sites can be found
at http://obesitygene.pbrc.edu.

Key words: human obesity gene map, association, link-
ages, Mendelian disorders, quantitative trait loci, candi-
date genes

Introduction
This paper represents the 12th in a series (1–11) on the

status of the human obesity gene map, the 11th report
published in Obesity. As in previous reports, we reviewed
the literature published up to the end of October 2005
searching for the relevant publications through a variety of
sources: PubMed using a combination of key words, authors,
and journals; continuous reviews of obesity and genetics jour-
nals; personal collection of reprints; and papers made available
to us by colleagues from around the world. Publications deal-
ing with a wide variety of phenotypes pertaining to obesity,
such as BMI, body fat mass, percentage of body fat, abdominal
fat, fat-free mass, skinfolds, resting metabolic rates, plasma
leptin levels, and other components of fat distribution and
energy balance, were retained. As in previous reports, negative
findings are not systematically reviewed but are briefly intro-
duced when such data were available to us.

Each collaborating author was assigned one section of the
report for an in-depth review. In addition to an introduction
and a brief discussion (C.B), the report includes sections
dealing with monogenic obesity cases (G.A.), Mendelian
disorders exhibiting obesity as clinical feature (J.W.), mu-
rine gene-deficient [knockout (KO)1/floxed], transgenic
models in which altered expression of a gene (or genes)
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trait loci (QTL) from murine models (A.Z.), QTLs from
other animal model studies and gene-drug interactions
(Y.C.), association studies in humans with specific candi-
date genes (T.R.), and human linkage studies including
genome scans performed to identify QTLs of obesity or
obesity-related phenotypes (L.P.). The other collaborating
author (B.W.) is involved in the management of the data-
base, the generation of the tables and the map from the
database, and the electronic version of the human obesity
gene map (http://obesitygene.pbrc.edu). Readers are re-
ferred to previous publications (9,11) for detailed informa-
tion on the electronic version of the map and on browsing
and querying capabilities of the online Obesity Gene Map
Database.

As in the past, the published references for each entry in
the current human obesity gene map are provided for con-
venience. We are using gene symbols and chromosomal
locations given in the Entrez Gene database (http://www.
ncbi.nlm.nih.gov/) available from the National Center for
Biotechnology Information. The appendix provides a com-
plete list of genes and map locations cited in this paper.

Although the authors have taken every possible effort to
provide correct information, in the rapidly changing world
of genetics and bioinformatics and the ever-present world of
human fallibility, it is almost inevitable that inaccuracies
will emerge. The full responsibility for errors is ours. Fur-
thermore, we seek your indulgence in errors of omission and
hope you will notify us of any oversights. All correspon-
dence to maximize the precision and quality of the map is
welcomed and, indeed, solicited.

Sadly, we have to inform the readership that this is likely
to be the last time that we are able to publish the review of
the human obesity gene map. We have tried unsuccessfully
to obtain the funding to support the enormous amount of
work that is necessary every year to prepare this popular
review. The printed version of the map in Obesity is highly
cited, and the e-version is accessed �200,000 times a year
by �40,000 unique users based mainly in academic insti-
tutions and pharmacological or biotechnology companies.
Although we recognize that the yearly review in its printed
and electronic versions is a valuable tool for those involved
in this field, the project has become too large to be handled
solely by us without support staff.

Monogenic Effects and Mendelian Disorders
Monogenics Section

The majority of disorders previously summarized in Ta-
ble 2 have now been associated with a candidate gene or a
genetic defect. Therefore, this year they are being merged
with the monogenic obesity cases into a new table, Table 1.

This year, there has been relatively nominal reporting of
monogenic cases of obesity. The majority of the monogenic
obesity cases remain those with a genetic defect (mutation,

deletion, or insertion) in the melanocortin receptor 4
(MC4R) gene. Table 1 summarizes all of the cases that were
reported in previous years. A publication by Farooqi and
O’Rahilly (12) elegantly summarizes cases of monogenic
obesity that received treatment for the mutated gene that
resulted in improvement of the health status of the patients.
These cases were covered in the 2004 Obesity Gene Map
report. The same group recently described a new rare mu-
tation in the receptor of the neurotrophin brain-derived
neurotrophic factor (BDNF) gene, TrkB (13).

Neurotrophic Tyrosine Receptor Kinase 2 (NTRK2)
In humans, the receptor of the murine BDNF gene, TrkB,

is encoded by the NTRK2 gene. A study was reported by
Yeo and colleagues (13) whereby a de novo heterozygous
mutation arose in a child with severe early-onset obesity and
hyperphagia. The A-to-G transition resulted in amino acid
substitution of the tyrosine residue at position 722 by a
cysteine (Y722C) (Table 1). An additional cohort of 192
alleles and the proband’s parents were screened for the
presence of this rare mutation, but nobody was found to
carry it. In vitro functional studies showed that the mutation
impaired activation of MAPK when cells were treated with
BDNF (13). This new rare mutation provides another ex-
ample of single-gene mutations in genes involved in energy
balance regulation that result in severe and early onset
obesity. In another preliminary study of 288 individuals
with a history of early onset obesity, five missense muta-
tions were identified in NTRK2 (A74T, I98V, M354V,
P660L, T821L) that have yet to be functionally character-
ized and described in greater detail (13).

Mendelian Disorders
Since last year’s review, there has been limited development

in the area of Mendelian disorders related to obesity, although
many novel mutations in known genes have been reported.
Updated references on new mutations for the Albright hered-
itary osteodystrophy (AHO), Bardet-Biedl, Berardinelli-Seip
congenital lipodystrophy, Borjeson-Forssman-Lehmann, fa-
milial partial lipodystrophy, multiple endocrine neoplasia (type
1), and WAGR syndromes are provided (see Table 1).

In the present review, we now properly report AHO in the
context of all disorders related to parathyroid hormone
resistance, as described by DeSanctis et al. (131). To date,
the AHO phenotype is always associated with mutations in
GNAS1. In the AHO-like syndrome linked to 2q37, a French
group narrowed down the critical region to a 4-megabase-
pair interval delimited by D2S2338 (present) and D2S2253
(deleted) (149).

A new mutation was discovered for familial partial lipo-
dystrophy, Dunnigan type (167). The affected 21-year-old
woman had a great excess of subcutaneous fat on the face,
neck, trunk, and abdomen, with relative lack on the gluteal
region, arms, and legs. She was insulin resistant and had the
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Table 1. Single-gene and obesity-related Mendelian disorders

OMIM no. Syndrome Locus Candidate gene Reference

Single-gene mutations with an obesity phenotype
122561 Corticotropin-releasing hormone receptor 1 17q12-q22 CRHR1 (14)
602034 Corticotropin-releasing hormone receptor 2 7p14.3 CRHR2 (14)
601751 G-protein-coupled receptor 24 22q13.2 GPR24 (15)
164160 Leptin (obesity homolog, mouse) 7q31.3 LEP (16–20)
601007 Leptin receptor 1p31 LEPR (21)
601665 Melanocortin 3 receptor 20q13.2-q13.3 MC3R (22–24)
155541 Melanocortin 4 receptor 18q22 MC4R (25–47)
600456 Neurotrophic tyrosine kinase receptor type 2 9q22.1 NTRK2 (12,13)
176830 Proopiomelanocortin (adrenocorticotropin/�-ipotropin/�-

melanocyte stimulating hormone/�-melanocyte stimulating
hormone/�-endorphin)

2p23.3 POMC (48,49)

162150 Proprotein convertase subtilisin/kexin type 1 5q15-q21 PCSK1 (50,51)
603128 Single-minded homolog 1 (Drosophila) 6q16.3-q21 SIM1 (52,53)

Autosomal recessive
203800 Alstrom syndrome 2p13.1 ALMS1 (54–59)
209901 Bardet-Biedl syndrome 1 11q13.1 BBS1 (60–66)
606151 Bardet-Biedl syndrome 2 16q13 BBS2 (61,63,67–70)
600151 Bardet-Biedl syndrome 3 3p13-p12 BBS3 (ARL6) (63,71–75)
600374 Bardet-Biedl syndrome 4 15q22.3-q23 BBS4 (61,76–81)
603650 Bardet-Biedl syndrome 5 2q31 BBS5 (63,82–84)
604896 Bardet-Biedl syndrome 6 20p12.2 MKKS (63,68,71,85–88)
607590 Bardet-Biedl syndrome 7 4q27 BBS7 (67,89)
608132 Bardet-Biedl syndrome 8 14q32.1 BBS8 (89,90)
269700 Berardinelli-Seip congenital lipodystrophy 1 9q34.3 AGPAT2 (91–95)
606158 Berardinelli-Seip congenital lipodystrophy 2 11q13 BSCL2 (92,94,96–98)
212065 Carbohydrate-deficient glycoprotein syndrome type 1a 16p13.2 PMM2 (99)
216550 Cohen syndrome 8q22.2 COH1 (100–105)
601538 Combined pituitary hormone deficiency 5q35.3 PROP1 (106–108)
227810 Fanconi-Bickel syndrome 3q26.31 SLC2A2 (109–117)
139191 Isolated growth hormone (GH) deficiency 7p14 GHRHR (118–120)

Triallelic digenic
138090 Cortisone reductase deficiency 1pter-p36.13 H6PD (121)
604931 Cortisone reductase deficiency 1q32-q41 HSD11B1 (121,122)

Digenic
600917 Severe insulin resistance with obesity 3p25 PPARG (123)

7q31.1 PPP1R3A
Autosomal dominant

100800 Achondroplasia 4p16.3 FGFR3 (124–127)
103580 AHO (Pseudopseudohypoparathyroidism) 20q13.2-q13.3 GNAS (128–147)
103581 AHO 2 15q11-q13 AHO2 (148)
600430 Brachydactyly mental retardation syndrome 2q37.3 STK25 (149–155)

GPC1
GPR35

105830 Angelman syndrome with obesity 15q11-q12 ANCR (156)
605746 Anisomastia 16q13-q21 ANMA (157)
160980 Carney complex with primary pigmented nodular

adrenocortical disease and Cushing’s syndrome (CNC1)
17q24.3 PRKAR1A (158–164)

605244 Carney complex with primary pigmented nodular
adrenocortical disease and Cushing’s syndrome (CNC2)

2p16 (165)

604367 Familial partial lipodystrophy, Dunnigan, type 3 3p25 PPARG (166–169)
151660 Familial partial lipodystrophy, type 2 (Dunnigan type) 1q23.1 LMNA (170–180)
147670 Insulin resistance syndromes 19p13.3-p13.2 INSR (181–188)
139250 Isolated GH deficiency (139250) 17q22-q24 GH1 (189)
131100 Multiple endocrine neoplasia, type 1 with Cushing’s disease 11q13 MEN1 (Menin) (190–196)
122000 Posterior polymorphous corneal dystrophy (chromosome 1) 1p34.3-p32.3 COL8A2 (197)
605020 Posterior polymorphous corneal dystrophy (chromosome 20) 20p11.21 VSX1 (198,199)
176270 Prader-Willi syndrome 15q11.2 IPW (200–212,216–218,220)

15q11.2 MKRN3
15q11.2 PWCR1

Human Obesity Gene Map: The 2005 Update, Rankinen et al.

OBESITY Vol. 14 No. 4 April 2006 531



metabolic syndrome and type 2 diabetes. She was heterozy-
gous for a novel A�G mutation at position �14 of intron B,
upstream of PPARG exon 1 within the promoter of the
PPAR�4 isoform, implicating this isoform as being poten-
tially important in adipocyte biology.

Finally, in recent clinical reviews of large groups of
Alstrom (58) and WAGR (229) syndrome patients, the
central role of childhood obesity and hyperinsulinism in
Alstrom syndrome was confirmed, as well as a significant
prevalence of obesity (of 18%) in WAGR subjects. In this
last syndrome, the new acronym WAGRO (obesity) has
even been suggested (227).

Transgenics and KOs
The murine obesity gene map identifies 248 genes (Table

2) that, when mutated or expressed as transgenes in the
mouse, result in phenotypes affecting body weight (BW)
and adiposity. We include genes that promote obesity and
genes that promote leanness, with the exception of genes
that seem to promote failure-to-thrive phenotypes or mutant
genes impacting developmental issues affecting multi-
ple organs systems during embryogenesis or early
growth. The list was compiled from the primary litera-
ture, accessible through PubMed and corroborated with
information captured by the Mouse Genome Informatics
(MGI) group (www.informatics.org). Official gene no-

menclature rules have been followed, even where the use
of this nomenclature differs from the gene name used in
the primary publication. We have attempted to capture
common synonyms, but the list is not exhaustive. Read-
ers are directed to MGI for a more complete list of
synonyms and nomenclature history.

Of the new genes added to the list this year, three are
imprinted. Maternal inheritance of the Gnas KO allele
(400), a KO of the paternally expressed Peg3 gene (493),
and transgenic overexpression of the paternally expressed
Mest (Peg1) in adipose tissue all promote obesity. Imprinted
loci are well documented in the mouse genome, but the
degree of imprinting can also be tissue dependent. Clearly,
the role of imprinted genes in the development of obesity-
related phenotypes must be considered in cases where sim-
ple Mendelian inheritance relationships seem uninforma-
tive. Three new genes listed for the first time this year are
relevant to the molecular characterization of three well-
known human obesity syndromes: Alstroms, Bardel-Biedl,
and McKusick-Kaufman. The respective murine homologs,
Alms1, Bbs2, and Mkks, all present obesity phenotypes
when mutated in mice. Interestingly, Bbs2-deficient mice
weigh less than controls at birth, suggesting an additional
effect on early development. These three mutants will pro-
vide valuable model systems to study the roles of these
genes in the development of these polygenic syndromes.

Table 1. (continued)

OMIM no. Syndrome Locus Candidate gene Reference

15q12 SNRPN
15q11.2 MAGEL2
15q11.2 NDN
15q11-q12 GABRG3

603128 Prader-Willi-like syndrome (chromosome 6q) 6q16.3-q21 SIM1 (202,213–215,
219,220)

190160 Thyroid hormone resistance syndrome 3p24.1 THRB (221)
181450 Ulnar-Mammary (Schinzel) syndrome 12q24.21 TBX3 (222–225)
194072 WAGR syndrome with obesity 11p13 WT1 (226–232)

11p13 PAX6
X linked

301900 Borjeson-Forssman-Lehmann syndrome Xq26.3 PHF6 (233–240)
303110 Choroideremia with deafness and obesity Xq21.2 CHM (241,242)

Xq21.1 DFN3
309550 Fragile X syndrome with Prader-Willi-like phenotype Xq28 FMR1 (243–246)
300148 MEHMO syndrome Xp22.13-

p21.1
MEHMO (247–249)

300218 Mental retardation X-linked, syndromic 7 Xp11.3-q22.1 MRXS7 (250)
300458 Mental retardation X-linked, syndromic 16 Xq28 MECP2 (251,252)
300238 Mental retardation, X-linked, syndromic 11 Xq26-q27 MRXS11 (253,254)
176270 Prader-Willi-like syndrome, X-linked Xq23-q25 PWLSX (255)
312870 Simpson-Golabi-Behmel 1 Xq26.2 GPC3 (82,256–264)

Xq26.1 GPC4
300209 Simpson-Golabi-Behmel 2 Xp22 SGBS2 (265)
309585 Wilson-Turner syndrome Xq21.2-q22 WTS (266,267)
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Table 2. Murine models of obesity

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

2(89) Ak 20q11.2-q12 ASIP Agouti. Expression limited to adipose
cells

Transgene: aP2 promoter regulating
expression of murine wild-type agouti
cDNA

Increased BW and fat mass

(268,269)

2(89) Ak 20q11.2-q12 ASIP Agouti, also known as BAP20 mouse.
Ubiquitous expression.
Unexpectedly high in skeletal
muscle

Transgene: human � actin promoter
regulating expression of murine wild-
type agouti cDNA

Obesity

(270)

2(89) Ak 20q11.2-q12 ASIP Agouti. Ubiquitous expression Transgene: murine Pgk1 promoter
regulating expression of murine wild-
type agouti cDNA

Obesity

(270)

10(44) Abca7g 19p13.3 ABCA7 ATP-binding cassette, subfamily A
(ABC1), member 7

Reduced fat and circulating high-density
lipoprotein and total cholesterol in
females

(271)

5 Acacbg 12q24.1 ACACB Acetyl CoA carboxylase �, also known
as Acc2

Reduced adiposity; resistant to diet-
induced obesity

(272,273)

11(38) Acadvlg 17p13-p11 ACADVL Acyl-CoA dehydrogenase, very long
chain

Lipid accumulation in myocytes; impaired
temperature regulation

Adult-onset fat mass gain

(274,275)

7(F4) Adam12g 10q26.3 ADAM12 A disintegrin and metallopeptidase
domain 12 (meltrin �)

Moderate resistance to diet-induced
obesity due to an impairment in the
increase of the number of adipocytes
in high-fat-fed mice

(276)

16(53.4) Adamts1g 21q21.2 ADAMTS1 A disintegrin-like and metalloprotease
(reprolysin type) with
thrombospondin type 1 motif, 1

Reduced BW and adiposity (277)

17 Adcyap1g 18p11 ADCYAP1 Adenylate cyclase activating
polypeptide 1

Wasting; reduced adiposity (278)

11(19) Adra1bg 5q23-q32 ADRA1B Adrenergic receptor, �1b Accelerated weight gain on high-fat diet (279)
19(50) Adra2ak 10q24-q26 ADRA2A Transgene expresses adrenergic

receptor �2 in adipose cells
Transgene: aP2-driven human ADRA2A

cDNA When expressed in Adra3b-
deficient mice, leads to obesity. When
expressed in mice heterozygous for
Adra3b, there is no adipose phenotype

(280)

19(51) Adrb1g 10q24-q26 ADRB1 Adrenergic receptor, �1 Obesity in conjunction with mutations in
Adrab2 and Adrab3

(281)

19(51) Adrb1k 10q24-q26 ADRB1 Transgene insertion 1, Susan R. Ross,
expresses adrenergic receptor �1 in
adipose cells

Transgene: aP2-driven expression of
human ADRB1 cDNA

Reduced adiposity and partially resistant
to diet-induced obesity

(282)

18(34) Adrb2g 5q31-q32 ADRB2 Adrenergic receptor, �2 Reduced adiposity
Obesity in conjunction with targeted

mutations in Adrab1 and Adrab3

(281)

8(10) Adrb3g 8p12-p11.2 ADRB3 Adrenergic receptor, �3 Increased body fat. Mildly obese on
chow. High obesity on high-fat diet.
Obesity in conjunction with mutations
in Adrab2 and Adrab3

(283)

8(10) Adrb3g 8p12-p11.2 ADRB3 Adrenergic receptor, �3 Increased adiposity on chow or high-fat
diets

(284)

11 Aebp1k 7p13 AEBP1 AE-binding protein 1 Transgene; expressed in adipose tissue;
obesity in females

(285)

8(D1-D2) Agrpg 16q22 AGRP Agouti-related protein Age-related lean phenotype (286)
8(D1-D2) Agrpk 16q22 AGRP Agouti-related protein; expressed

ubiquitously
Transgene: � actin promoter regulating

expression of human AGRP cDNA;
elevated weight gain and obesity

(287)
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Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

8(D1-D2) Agrpk 16q22 AGRP Agouti-related protein Transgene. Post-embryonic deletion of
AGRP-expressing neurons

Lean

(288)

13(16) Agtr1ag Angiotensin II receptor, type 1a Resistant to diet-induced obesity (289)
X(12.5) Agtr2g Xq22-23 AGTR2 Angiotensin II receptor, type 2 Resistant to diet-induced obesity (290)
16(15) Ahsgg 3q27 AHSG �-2-HS-glucoprotein Resistant to diet-induced obesity (291)
1(51.7) Akp3g 2q37.1 ALPI Alkaline phosphatase 3, intestine, not

Mn requiring; also known as IAP
Accelerated weight gain on high-fat diet (292)

12(57) Akt1k 14q32.3 AKT1 Thymoma viral proto-oncogene 1 Transgene, cDNA of constitutively active
Akt expressed in skeletal muscle from
the human skeletal actin promoter

Reduced in adiposity

(293)

7(6.5) Akt2g 19q13.1-13.2 AKT2 Thymoma viral proto-oncogene 2 Reduction in adiposity, especially in
young females. Age-related adipocyte
loss in both sexes

(294)

6 Alms1g 2p13 ALMS1 Alstrom syndrome 1 homolog (human) Gene trapped
Obesity

(295)

15(B1) Amacrg 5p13.2-q11.1 AMACR �-methylacyl-CoA racemase Reduction in BW and adiposity on
phytol-supplemented diet

(296)

17 Angptl4g 19p13.3 ANGPTL4 Angiopoietin like 4, also known as
fasting-induced adipocyte factor
(FIAF)

Reduction in body fat gain upon transfer
from germ-free to conventional
housing

(297)

9 Angptl6g 19p13.2 ANGPTL6 Angiopoietin like 6, also known as
adipopoietin-related growth factor
(AGF)

The 20% of mice that survive
development manifest obesity and
insulin resistance

(298)

9 Angptl6k 19p13.2 ANGPTL6 Angiopoietin like 6, also known as
adipopoietin-related growth factor
(AGF)

Transgenic: ubiquitous expression using
the chicken �-actin promoter and
cytomegalovirus (CMV)-enhancer

Reduced adiposity on chow and resistance
to diet-induced obesity on high-fat
diets

(298)

7(4) Apoc1k 19q13.2 APOC1 Apolipoprotein C1. transgene insertion
1, Louis M. Havekes-
overexpressing human APOC1 gene

Transgenic (Tg) mice expressing the
human APOC1 gene from its own
promoter

Moderate reduction in adiposity relative to
non-Tg mice. When crossed with the
Lep background, however, Tg mice
were protected against obesity and
insulin resistance

(299)

9(27) Apoc3g 11q23.1-
q23.2

APOC3 Apolipoprotein C-III Obesity on high-fat diet (300,301)

4(B1) Aqp7g 9p13 AQP7 Aquaporin 7 Increased gonadal fat pad mass (302)
4(B1) Aqp7g 9p13 AQP7 Aquaporin 7 Adult-onset obesity (303)
X(36) Arc Xq11.2-q12 AR Androgen receptor Floxed gene � Cre transgene expressed

from the cytomegalovirus promoter
Obesity. Decreased energy expenditure

(304,305)

10(B5) Arid5bg 10q21.2 ARID5B AT-rich interactive domain 5B (Mrf1
like), also known as Mrf2

Reduced adiposity on chow. Resistant to
diet-induced obesity

(306)

11(B4) Aspae 17pter-p13 ASPA Aspartoacylase (aminoacylase) 2 Reduced adiposity (307)
14(C3) Atp12ag 13q12.12 ATP12A ATPase, H�/K�-transporting, non-

gastric, � polypeptide
Increased weight loss on potassium-free

diet
(308)

18 Atp8b1f 18q21-q22 ATP8B1 ATPase, class I, type 8B, member 1 Targeted knock-in
Increased weight loss on bile salt-

supplemented diet

(309)

12 Batfk 14q24.3 BATF Regulator of transcription factor B-ZIP Loss of all adipose tissue (310)
19 Bbs1g 11q13.1 BBS1 Bardet-Biedl syndrome 1 homolog

(human)
KO due to gene trap insertion in exon 11
Reduced BW at birth. Obesity at 10

weeks in 10% of the mutants

(311)
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Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

8 Bbs2g 16q21 BBS2 Bardet-Biedl syndrome 2 homolog
(human)

Reduced BW at birth. Increased
abdominal fat mass at 4 months

(312)

9(33) Bbs4c 15q22.3-23 BBS4 Bardet-Biedl syndrome 4 homolog
(human)

Low BW at weaning, adult-onset obesity
after weaning

(311)

9(33) Bbs4g 15q22.3-23 BBS4 Bardet-Biedl syndrome 4 homolog
(human)

Low BW at weaning, adult-onset obesity
after weaning

(81)

2(62) Bdnfg 11p13 BDNF BDNF. The mutation is homozygous
lethal

Mature-onset obesity in heterozygotes.
Can be treated by food restriction

(313,314)

X(A7.1) Brs3g Xq26-q28 BRS3 Bombesin-like receptor 3 Obesity (315)
2 Bub1bg 15q15 BUB1B Budding uninhibited by benzimidazoles

1 homolog, � (S. cerevisiae)
Age-dependent loss of body fat; reduced

lifespan
(316)

17(34.3) C3g 19p13.3 C3 Complement component 3; acylation-
stimulating protein

Females possess a lean phenotype and are
resistant to diet-induced obesity

(317,318)

13(D1) Cartg 5q13.2 CART Cocaine- and amphetamine-regulated
transcript

Increased susceptibility to diet-induced
obesity

(319,320)

6(A2) Cav1g 7q31.1 CAV1 Caveolin 1 Decreased adiposity; resistant to diet-
induced obesity

(321)

6(48.3) Cav3g 3p25 CAV3 Caveolin 3 Increased adiposity (322)
9(26) Cblg 11q23.3 CBL Casitas B-lineage lymphoma, also

known as c-cbl
Reduced adiposity (323)

5(34) Cckarg 4p15.1-15.2 CCKAR Cholecystokinin (CCK) A receptor Resistant to CCK-mediated inhibition of
food intake but normal long-term
weight regulation; increased cholesterol
absorption on lithogenic diet; altered
thermogenic regulation

(324–326)

17(28.8) Ccnd3g 6p21 CCND3 Cyclin D3 Resistant to diet-induced obesity (327)
5(2) Cd36g 7q11.2 CD36 CD36 antigen/fatty acid translocase Altered metabolic adaptation to dietary

modulation
(328)

18(6) Cdh2k 18q11.2 CDH2 Cadherin 2, also known as N-cadherin
or Ncad. Truncated gene used in
this construct acts as a dominant
negative allele

Transgene: expressing truncated Cdh2
using an osteoblast-specific promoter,
Og2

Increased adiposity

(329)

17(15.2) Cdkn1ag 6p21.2 CDKN1A Cyclin-dependent kinase inhibitor 1A
(P21)

Increased adiposity (330)

6(62) Cdkn1bg 12p13.1-p12 CDKN1B Cyclin-dependent kinase inhibitor 1B
(P27)

Increased adiposity (330)

7(12) Cebpag 19q13.1 CEBPA CCAAT/enhancer-binding protein (C/
EBP), �

Reduced adiposity (331)

7(12) Cebpad 19q13.1 CEBPA CCAAT/enhancer-binding protein (C/
EBP), �

KO � gene replacement. A Cebpb knock-
in was generated by replacing the
entire coding region of the Cebpa
locus with the Cebpb coding region

Lean and resistant to diet-induced obesity

(332)

2(95.5) Cebpbg 20q13.13 CEBPB CCAAT/enhancer-binding protein (C/
EBP), �

Reduced adiposity (333)

16(9) Cebpdg 8p11.2-11.1 CEBPD CCAAT/enhancer-binding protein (C/
EBP), �

Reduced adiposity (334)

13(7) Chrm3g 1q41-q44 CHRM3 Muscarinic receptor M3 Reduced adiposity (335)
18 Cideag 18p11.21 CIDEA Cell death-inducing DNA

fragmentation factor, � subunit-like
effector A

Reduced adiposity and resistant to diet-
induced obesity

(336)

5(43) Clockb 4q12 CLOCK Clock ENU-generated mutant
Obesity

(337)

4(13.9) Cnr1c 6q14-q15 CNR1 Cannabinoid receptor 1 (brain), also
known as CB1 receptor

Floxed gene � ubiquitously expressed
Cre

Reduced adiposity

(338)
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Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

4(13.9) Cnr1g 6q14-q15 CNR1 Cannabinoid receptor 1 (brain), also
known as CB1 receptor

On standard chow at 20 weeks, the BWs
and adiposity are 24% and 60% lower,
respectively, than control mice

Resistant to diet-induced obesity

(339)

5 Coring 4p13-12 CORIN Corin Increased BW (340)
8(32.6) Cpeg 4q32.3 CPE Carboxypeptidase E KO: floxed and deleted

Obesity
(341)

19(2) Cpt1ag 11q13.1-13.2 CPT1A Carnitine palmitoyltransferase 1a, liver Homozygotes are lethal
Fasting hypoglycemia in heterozygotes
Increased fasting serum free fatty acids

(342)

3(8) Crhk 8q13 CRH Corticotropin-releasing factor hormone,
also known as CRF

Expression of the transgene, however,
is restricted to endogenous Crh-
expressing cells due to a tissue-
specific enhancer present within the
Crh cDNA sequence

Murine corticotropin-releasing hormone
cDNA expressed from the mouse

metallothionein promoter
Transgenic mice exhibit elevated ACTH

release, high circulating levels of CRH
and adrenal corticosterone. They
display excess fat accumulation and
muscle atrophy

(343)

6(28) Crhr2g 7p14.3 CRHR2 Corticotropin-releasing hormone
receptor 2

Normal adiposity on low-fat diet. Lower
feed efficiency on high-fat diet (higher
food intake but same weight gain as
wild-type mice)

(344)

9 Cyb5r4g 6pter-q22.33 CYB5R4 Cytochrome b5 reductase 4 Reduced adiposity, increased food intake,
hyperglycemia and hypoinsulinemia at
7 weeks

(345)

9(31) Cyp19a1g 15q21.1 CYP19A1 Cytochrome P450, family 19,
subfamily a, polypeptide 1, also
known as aromatase

Elevated gonadal fat pad weight; obesity
prevented by cholesterol feeding

(346,347)

2(15.5) Dbhd 9q34 DBH Dopamine � hydroxylase. Dopamine-
deficient (DD) mice are
homozygous for this mutation and
also for a KO of the endogenous
tyrosine hydroxylase (Th) locus.
The Th knock-in in the Dbh gene
restores tyrosine hydroxylase
activity

KO � gene replacement. A Th knock-in
was generated by inserting the Th gene
into the mutated Dbh locus

These DD mice do not possess altered
adiposity on chow diet. However,
when the Th�/� and
Dbh�tm2(Th)Rpa mutations are
homozygous in mice that are also
homozygous for the Lepob mutation,
there is a significant reduction in BW
and adiposity gain

(348,349)

11 del(17)
(p11.2)k

17p11.2 del(17)
(p11.2)

Smith-Magenis syndrome Transgenic: chromosomal rearrangement
Obesity

(350)

15(46.9) Dgat1g 8q24.3 DGAT1 Acyl CoA: diacylglycerol O-
acyltransferase 1

Lean and resistant to diet-induced obesity (351)

15(46.9) Dgat1k 8q24.3 DGAT1 Acyl CoA: diacylglycerol O-
acyltransferase 1

Transgenic; expressed in adipose cells
Fatty liver but no obesity on high-fat diet

(352)

15(46.9) Dgat1i 8q24.3 DGAT1 Acyl CoA: diacylglycerol O-
acyltransferase 1

Adenovirus-mediated overexpression in
liver

Increased gonadal but not subcutaneous
fat mass

(353)

4(C7) Dhcr24g 1p33–31.1 DHCR24 24-dehydrocholesterol reductase Reduction in subcutaneous and mesenteric
fat

(354)

12(54) Dlk1k 14q32.3 DLK1 �-like 1 homolog (Drosophila), also
known as Pref-1. Expressed as
fusion to human immunoglobulin-�
constant region in liver

Transgene. Murine cDNA expressed from
albumin promoter

Reduced adiposity

(355)

Human Obesity Gene Map: The 2005 Update, Rankinen et al.

536 OBESITY Vol. 14 No. 4 April 2006



Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

12(54) Dlk1k 14q32.3 DLK1 �-like 1 homolog (Drosophila), also
known as Pref-1. Expressed as
fusion to human immunoglobulin-�
constant region in adipocytes

Transgene. Murine cDNA expressed from
aP2 promoter

Reduced adiposity

(355)

14 Dnajc3g 13q32 DNAJC3 DnaJ (Hsp40) homolog, subfamily C,
member 3

Increased food intake; decreased adiposity (356)

1(H2) Dptg 1q12-23 DPT Dermatopontin Increased subcutaneous adipose number
and volume

(357)

16(23.3) Drd3g 3q13.3 DRD3 Dopamine receptor 3 Increased adiposity and diet-induced
obesity

(358)

11 dup(17)
(p11.2)
(p11.2)k

17p11.2 dup(17)
(p11.2)
(p11.2)

Smith-Magenis syndrome Transgenic: chromosomal rearrangement
Obesity

(350)

8(8) Eif4ebp1g 8p12 EIF4EBP1 Eukaryotic translation initiation factor
4E-binding protein 1

Reduced adiposity (359)

5 Eregg 4q13.3 EREG Epiregulin Increased weight loss with dextran sulfate
sodium exposure

(360)

19(3) Esrrag 11q13 ESRRA Estrogen-related receptor � Reduced BW and adiposity. Resistant to
diet-induced obesity

(361,362)

3(13.9) Fabp4g 8q21 FABP4 Fatty acid-binding protein 4, adipocyte Like the control strain, homozygous
mutants become obese on a high-fat
diet but remain insulin sensitive

(363)

3(A1-A3) Fabp5g 8q21.13 FABP5 Fatty acid-binding protein 5, adipocyte,
also known as Mal1

Less adiposity than controls on high-fat
diet

(364,365)

7(B2) Fgf21k 19q31.1-qter FGF21 Fibroblast growth factor 21 Transgene. Expressed human gene in liver
Resistant to diet-induced obesity

(366)

2(H2) Fkhl18g 20q11.1-11.2 FKHL18 Forkhead-like 18 (Drosophila) Resistant to diet-induced obesity (367)
7(5) FosBk 19q13.32 FOSB FBJ osteosarcoma oncogene B Transgene: expressing �FosB, an

alternative spliced mRNA variant of
FosB under the control of the neuron-
specific enolase promoter

Decreased fat mass

(368,369)

2(84) Foxa2g 20p11 FOXA2 Forkhead box A2, also known as
Hnf3b or Tcf3b

KO � reporter Homozygous KO mice are
embryonic lethal

Heterozygotes rapidly develop obesity on
a high-fat diet

(370)

8(65.5) Foxc2k 16q22-q24 FOXC2 Forkhead Box C2 expressed in adipose
cells

Transgene: human FOXC2 cDNA
expressed from the aP2 promoter

Reduced adiposity (lipid content) on chow
diet and resistance to diet-induced
obesity

(371,372)

17(E5) Fshrg 2p21 FSHR Follicular-stimulating hormone receptor Obesity (373)
6 Fxyd4g 10q11.21 FXYD4 FXYD domain-containing ion transport

regulator 4
Increased food intake but reduced BW (374)

19(2) Galg 11q13.2 GAL Galenin Exaggerated obesity in NPY-deficient
mice

(375)

10(43) Gamtg 19p13.3 GAMT Guanidinoacetate methyltransferase Decreased adiposity (376)
8(5) Gas6g 13q34 GAS6 Growth arrest specific 6 Resistant to diet-induced obesity (377)
11(60) Gastg 17q21 GAST Gastrin Obesity (378)
11(E2) Gcgrg 17q25 GCGR Glucagon receptor Decreased white and brown adipose mass (379)
11(1) Gckk 7p15.3-p15.1 GCK Glucokinase. Expressed in skeletal

muscle
Transgene. Murine Gck cDNA expressed

from the murine myosin light-chain 1
promoter

Resistant to diet-induced obesity

(380)

11(1) Gckk 7p15.3-p15.1 GCK Glucokinase. Expressed in liver Transgene. Murine Gck cDNA expressed
from the murine Pepck promoter

Increased weight gain on a high-fat diet

(381)
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(cM/band)
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gene

Human
chromosome
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homolog Gene description Details Reference

6(60.6) Gdf3i 12p13.1 GDF3 Growth differentiation factor 3 Adenovirus-mediated overexpression
Increase in BW and adiposity on high-fat

diet but no phenotype on chow

(382)

1(27.8) Gdf8g 2q232.2 GDF8 Growth differentiation factor 8, also
known as myostatin

Reduced adiposity and increased muscle
mass

Loss of Gdf8 expression also results in a
significant reduction in adipose mass
accumulation in agouti lethal yellow
(Ay) and Lepob mutants

(383,384)

1(27.8) Gdf8k 2q232.2 GDF8 Growth differentiation factor 8, also
known as myostatin

Transgene
Overexpressed in muscle
Resistant to diet-induced obesity

(385)

6(35.5) Gfpt1k 2p13 GFPT1 Glutamine fructose-6-phosphate
transaminase 1

Transgene
Overexpressed in adipose cells
Increased adiposity

(386)

14(D3-E1) Gfra2g 8p21 GFRA2 Glial cell line-derived neurotrophic
factor family receptor �2

Growth retardation accompanied by
reduced fat mass and elevated basal
metabolic rate

(387)

11(65) Ghk 17q24.2 GH Growth hormone (GH) Transgene. Bovine GH overexpressed
from metallothionein promoter

Resistant to diet-induced obesity

(388)

11(65) Ghk 17q24.2 GH Growth hormone (GH) Transgene. Bovine GH expressed in
central nervous system

Obese

(389)

15(4.6) Ghrf 5p13-12 GHR Growth hormone (GH) receptor Knock-in. Independent deletion of two
domains designated m569 and m391

Increased adiposity in males

(390)

2(89) Ghrhk 20q11.2 GHRH Growth hormone (GH)-releasing
hormone

Transgenic mouse expressing human
GHRH cDNA from the mouse
metallothionein I promoter

Increased adiposity

(391)

6(E3) Ghrlg 3p26-p25 GHRL Ghrelin KO (lacZ fusion) On a high-fat diet,
homozygous mutants tend to have a
decrease in percentage body fat and an
increase in percentage lean body mass
without any significant difference in
BW compared with wild-type mice

(392)

3 Ghsrg 3q26.31 GHSR Growth hormone (GH) secretagogue
receptor

Decreased BW (393)

3 Ghsrk 3q26.31 GHSR Growth hormone (GH) secretagogue
receptor

Expression limited to GHRH (GH-
releasing hormone-expressing
neurons)

Transgene. Rat GHRH 5� and 3� genomic
sequences driving expression of human
GHSR cDNA

Decreased BW and adiposity

(394)

7 Giprg 19q13.3 GIPR Gastric inhibitory polypeptide receptor Resistant to diet-induced obesity; reduced
adiposity in aged mice; lower
respiratory exchange ratio and higher
fat oxidation in the light phase

(395–397)

2(104) Gnasg 20q13.2-
q13.3

GNAS Imprinted locus GNAS (guanine
nucleotide-binding protein, �-
stimulating) complex locus

KO (exon 2)
Loss of maternal expression leads to

obesity, with increased lipid per cell in
white and brown adipose tissue,
whereas loss of paternal expression
leads to a lean phenotype, with
decreased lipid in adipose tissue

(398,399)

2(104) Gnasg 20q13.2-
q13.3

GNAS Imprinted locus GNAS (guanine
nucleotide-binding protein, �-
stimulating) complex locus

KO (exon 1)
Maternal inheritance of the mutant allele

gives larger BW in heterozygous mice

(400)
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Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

19(4) Gng3g 11p11 GNG3 Guanine nucleotide-binding protein
(G-protein), �3 subunit

KO. Floxed and deleted
Female homozygotes have reduced

inguinal and retroperitoneal fat pads

(401)

19(52) Gpamg 10q25.2 GPAM Glycerol-3-phosphate acyltransferase,
mitochondrial

Reduced BW and adiposity (402)

2(33) Gpd2g 2q24.1 GPD2 Glycerol phosphate dehydrogenase 2,
mitochondrial

Reduced BW and adiposity (403)

2(33) Gpd2g 2q24.1 GPD2 Glycerol phosphate dehydrogenase 2,
mitochondrial

Enhanced adipose and BW gain of
females on a high-fat diet. This effect
was not observed in males

(404)

12 Gphb5k 14q23.2 GPHB5 Glycoprotein hormone �5, also known
as GPB5 and OGH

Transgene. Ubiquitous
Resistant to diet-induced obesity

(405)

19 Gpr10g 10q26.13 GPR10 G-protein-coupled receptor 10 Adult-onset obesity (406)
5(F) Gpr109ag 12q24.31 GPR109A G-protein-coupled receptor 109a Absence of nicotinic acid-induced

inhibition of free fatty acid release
from adipocytes

(407)

15 Gpr24g 22q13.3 GPR24 G-protein-coupled receptor 24, also
known as Mch1r

Lean and resistant to diet-induced obesity (408)

7 Gpr40g 19q13.1 GPR40 G-protein-coupled receptor 40 Resistant to diet-induced obesity-mediated
changes

(409)

1(A1) Gpr7g 8p22-q21.13 GPR7 G-protein-coupled receptor 7 Adult-onset obesity (410)
9(57) Gpx1k 3p21.3 GPX1 Glutathione peroxidase 1 Transgene consisting of complete

genomic Gpx1 gene
Increased BW and adiposity

(411,412)

7 Grm5g 11q14.3 GRM5 Glutamate receptor, metabotropic 5 Lower BW and reduced adipose gain on
high-fat diet

(413)

6(A3) Grm8g 7q31.3-q32.1 GRM8 Glutamate receptor, metabotropic 8 Increased fat mass (414)
16(B4) Gsk3bk 3q13.3 GSK3B Glycogen synthase kinase 3� Transgene expressing human cDNA in

skeletal muscle
Increased BW and adiposity in male

transgenic mice

(415)

6(48.7) Gt(ROSA)26Sork Unknown Gene trap ROSA 26, Philippe Soriano Transgene. Conditional activation of Akt
in skeletal muscle

Decreased adipose mass and increased
muscle mass after treatment with
tamaxiphen

(293)

10(43) Gtrgeo22e 19p13.3 C19orf20 Gene trap 22, Philippe Soriano Reduced BW and adiposity (416)
11(61.2) Hcrtk 17q21 HCRT Hypocretin (orexin). Loss of orexin-

containing neurons
Transgene. Expression of Mjd (Ataxin 3)

with expanded repeats in orexinergic
neurons

Late-onset obesity (C57BL/6J and DBA/2
mixed genetic background)

(417)

11(61.2) Hcrtk 17q21 HCRT Hypocretin (orexin). Loss of orexin-
containing neurons

Transgene. Expression of Mjd (Ataxin 3)
with expanded repeats in orexinergic
neurons

No weight difference between mutant and
wild type when both on a C57BL/6J
genetic background

(418)

2(71) Hdcg 15q21-q22 HDC Histidine decarboxylase Increased BW and adiposity (419)
5(20) Hdhk 4p16.3 HD Huntington disease (HD) gene

homolog, also known as
Huntington, R6/2

Transgenic. Human exon 1 of the HD
gene carrying �141 to 157 CAG
repeats expressed from the endogenous
HD gene promoter

Despite an overall growth retardation, the
transgenic mice have increased
adiposity Adult-onset wasting
syndrome

(420)

13(46) Hexbg 5q13 HEXB Hexosaminidase B Lean (421)
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Human
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10(67.5) Hmga2g 12q15 HMGA2 High mobility group AT-hook 2 Resistant to diet-induced obesity (422)
6(49) Hrh1g 3p25 HRH1 Histamine receptor H1 Late-onset obesity (423)
2 Hrh3g 20q13.3 HRH3 Histamine receptor H3 Increased adiposity and BW (424)
1 Hsd11b1g 1q32-q41 HSD11B1 Hydroxysteroid 11-� dehydrogenase 1 Resistant to diet-induced obesity (425)
1 Hsd11b1k 1q32-q41 HSD11B1 Hydroxysteroid 11-� dehydrogenase 1 Transgenic. Promoter aP2-specific

expression
Increased adiposity

(426)

8(50.8) Hsd11b2k 16q22 HSD11B2 Hydroxysteroid 11-� dehydrogenase 2 Transgenic. Human gene expressed in
adipose cells

Resistant to diet-induced obesity

(427)

X(66) Htr2cg Xq24 HTR2C 5-Hydroxytryptamine (serotonin)
receptor 2C

Late-onset obesity (428)

9(7) Icam1g 19p13.2 ICAM1 Intercellular adhesion molecule-1 Late-onset obesity
Accelerated adiposity on a high-fat diet

(N4 mice)

(429)

9(7) Icam1g 19p13.2 ICAM1 Intercellular adhesion molecule-1 Transient increased adiposity after 11 days
of high-fat diet but reduced BW and
adiposity relative to controls after 50
days of high-fat diet (N8 mice)

(430)

9(7) Icam1k 19p13.2 ICAM1 Intercellular adhesion molecule-1
(ICAM-1)

Transgene. Expressing soluble ICAM-1 in
liver Increased weight gain on a
Western-type diet

(431)

1(29.8) Idh1k 2q33.3 IDH1 Isocitrate dehydrogenase 1 (NADP�),
soluble, also known as IDPc

Expression limited to liver and adipose
tissue

Transgene, Idh1 cDNA expressed from
the rat cytosolic Pepck promoter

Obesity

(432)

12(21.5) Ifrd1k 7q22-q31 IFRD1 Also known as Tis7, interferon-related
developmental regulator 1

Transgene. Expressed in gut small
intestine

Increased adiposity

(433)

15 Igfbp6k 12q13 IGFBP6 Insulin-like growth factor-binding
protein 6

Transgene (human). Expressed in glial
cells

Down-regulation of uncoupling protein 1

(434)

2(10) Il1rng 2q14.2 IL1RN Interleukin 1 receptor antagonist Reduced BW (435)
2(10) Il1rng 2q14.2 IL1RN Interleukin 1 receptor antagonist Reduced adiposity, resistant to diet-

induced obesity and resistant to obesity
due to monosodium glutamate
treatment

(436)

5(17) Il6g 7p21 IL6 Interleukin 6 Increased adiposity and BW (437)
5(17) Il6g 7p21 IL6 Interleukin 6 No effect on adiposity. Reduced BW in

3-month-old mice
(438)

7(F1) Inppl1g 11q23 INPPL1 Polyphosphate phosphatase-like 1
(SHIP-2)

Resistant to diet-induced obesity (439)

8(1) Insrc 19p13.3-
p13.2

INSR Insulin receptor not expressed in
muscle cells

Floxed gene and muscle-specific Cre
expression

Increased adipose depots and obesity

(440)

8(5) Irs2c 13q34 IRS2 Insulin receptor substrate 2.
Conditional KO in pancreatic � cells

and hypothalamus

Floxed gene � Cre transgene expressed
from the rat insulin promoter

Fat mass, increased

(441)

8(5) Irs2c 13q34 IRS2 Insulin receptor substrate 2.
Conditional KO in pancreatic � cells

and hypothalamus

Floxed gene � Cre transgene expressed
from the rat insulin promoter

Fat mass, increased

(442)

3(52) Kcna3g 1p13.3 KCNA3 Potassium voltage-gated channel,
shaker-related subfamily, member 3,
also known as Kv1.3

Reduced BW and resistant to diet-induced
obesity

(443)

7(41) Kcnj11g 11p15.1 KCNJ11 Potassium inwardly rectifying channel,
subfamily J, member 11, also
known as Kir6.2

Increased BW (10%) and epididymal fat
pad (70%) weight

(444)
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14(E2.1) Klf5g 13q22.1 KLF5 Kruppel-like factor 5 Deficiency in white adipose tissue
development

(445)

6(10.5) Lepk 7q31.3 LEP Mouse Lep cDNA was cloned 3� of
the liver-specific Apoe promoter
and 5� of liver-specific enhancer
sequence. Serum leptin expression
is 200- to 300-fold higher than in
wild-type mice

Transgene: Apoe promoter expressing
murine leptin cDNA

Absence of fat pads

(446)

6(10.5) Lepk 7q31.3 LEP This transgene consists of a mouse Lep
cDNA fused to the human APCS
promoter with hormone expression
targeted to the liver. In mutants
carrying 30 copies of the transgene
serum, leptin expression is about
12-fold higher than in wild-type
mice

Transgene: human APCS promoter
expressing murine leptin cDNA

Decreased BW. Absence of adipose tissue

(447)

4(46.7) Leprf 1p31 LEPR Selective loss of long form of leptin
receptor

Obesity (448)

4(46.7) Leprk 1p31 LEPR Transgene insertion 1, Gerard
Karsenty. An isoform of Lepr
cDNA lacking the transmembrane
domain found in all other isoforms
was cloned 3� of the liver-specific
Apoe promoter and 5� of liver-
specific enhancer sequence

Transgene: Apoe promoter expressing
murine-soluble leptin receptor cDNA

Mice carrying this transgene possess
normal body fat. However, in mice
heterozygous for the lepob mutation,
the transgenic mice show significantly
increased adiposity

(446)

4(46.7) Leprc 1p31 LEPR Neuronal-specific deletion of leptin
receptor

Floxed gene � Cre transgene expressed
from the Syndecan 1 promoter

Obesity

(449,450)

4(46.7) Leprk 1p31 LEPR Leptin receptor. Mutation due to
insertion of rabbit smooth muscle
myosin heavy chain promoter
region

Mutation due to transgene insertion
Obesity

(451)

4(46.7) Leprk 1p31 LEPR Leptin receptor Transgenic: neuron-specific expression
Rescue of obesity of Leprdb mutant mice

(452)

4(46.7) Leprk 1p31 LEPR Leptin receptor Transgenic: neuron-specific expression
(50% and 75%)

Adiposity and obesity are proportional to
hypothalamic LEPR deficiency, but
fertility and cold tolerance remain
intact

(449)

7(23) Lhbk 19q13.32 LHB Luteinizing hormone � polypeptide Obesity in females (453)
19 Lip1g 10q23.2-

q23.3
LIPA Lysosomal acid lipase 1 Decreased BW, fatty liver, loss of brown

and white fat depots; ectopic fat
deposition into liver, spleen, and bowel

(454,455)

9(39) Lipcg 15q21-23 LIPC Lipase, hepatic KO with background strain effects
Increased adiposity mediated by

background susceptibility

(456)

7(5.5) Lipeg 19q13.2 LIPE Lipase, hormone sensitive Reduced fat pad size, heterogenous
adipocyte size, increased brown fat.
Resistant to diet-induced obesity

(457,458)

7(5.5) Lipek 19q13.2 LIPE Lipase, hormone sensitive Transgene; human LIPE expressed in
adipose tissue

Corrects adipose defects of Lipe-deficient
mice

(459)

12(9) Lpin1h 2p25.1 LPIN1 Lipin 1, gene responsible for phenotype
of fatty liver dystrophic mouse

Spontaneous null allele
Reduced adiposity on chow. Resistant to

diet-induced obesity

(460)
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12(9) Lpin1k 2p25.1 LPIN1 Lipin 1 Transgene. Expressed in adipose tissue
Obesity due to increased fat storage

(461)

12(9) Lpin1k 2p25.1 LPIN1 Lipin 1 Transgene. Expressed in skeletal muscle
Obesity due to changes in energy

expenditure

(461)

7(61) Mapk3g 6p12-p11.2 MAPK3 Mitogen-activated protein kinase 3,
also known as ERK1, Prkm3, p44

N6 mice. Reduced adiposity, resistant to
diet-induced obesity

(462)

2(E1) Mapk8ip1g 11p11.2 MAPK8IP1 Mitogen-activated protein kinase 8
interacting protein 1. Acts as an
inhibitor of c-Jun N-terminal kinase

Reduced adiposity (463,464)

2(100) Mc3rg 20q13.2-
q13.3

MC3R Melanocortin receptor 3 Obesity (465)

2(100) Mc3rg 20q13.2-
q13.3

MC3R Melanocortin receptor 3 Obesity (466)

18(E1) Mc4rg 18q22 MC4R Melanocortin receptor 4 Obesity (467)
18(E1) Mc4rk 18q22 MC4R Melanocortin receptor 4 Transgene. Expressed in paraventricular

hypothalamic nucleus and
subpopulation of amygdala

Prevents 60% of obesity, rescues
hyperphagia but not reduced energy
expenditure of Mc4r-deficient mutant
mice

(468)

6(7.5) Mestk 7q32 MEST Mesoderm-specific transcript Transgene. Expressed in adipose tissue
Increased adiposity

(469)

2 Mkksg 20p12 MKKS McKusick-Kaufman syndrome protein Obesity (470)
5 Mlxiplg 7q11.23 MLXIPL MLX interacting protein-like Lean; rapid death on high-sucrose and

high-fructose diets
(471)

10(40.9) Mmp11g 22q11.23 MMP11 Matrix metalloproteinase 11 Obesity (472)
10(70) Mmp19g 12q14 MMP19 Matrix metalloproteinase 19 Accelerated BW and adipose mass gain

on a high-fat diet
(473)

8(45) Mt1, Mt2g 16q13 MT1A Metallothionein I and II KO; both mutations generated with the
same targeting construct

Increased BW. Adult-onset obesity

(474,475)

15(32) Myck 8q24.12-
q24.13

MYC Myelocytomatosis oncogene.
Expression limited to liver

Transgene. Murine c-myc expressed under
the control of the Pepck promoter

Resistant to diet-induced obesity

(476)

9 Ncb5org 6pter-q22.33 NCB5OR NADPH cytochrome B5
oxidoreductase

Reduced adipose mass (345)

3 Nhlh2g 1p12-p11 NHLH2 Nescient helix loop helix 2, also
known as neural transcription factor
2 or NSCL2

Adult-onset obesity (477)

5 Nmug 4q12 NMU Neuromedin U Elevated BW and obesity (478)
5 Nmuk 4q12 NMU Neuromedin U Transgene. Expressed ubiquitously

Lean and hypophagic
(479)

11(45.6) Nos2g 17q11.2-12 NOS2A Nitric oxide synthase 2, inducible,
macrophage, also known as iNOS

Reduced adiposity (480)

11 Npbg 17q25.3 NPB Neuropeptide B; ligand for GPR7 Mild obesity (481)
6(26) Npyg 7p15.1 NPY Neuropeptide Y No obesity phenotype except with

Galenin (Gal) KO
(375)

Npy�/� �
Gal�/
�g

Double homozygote for neuropeptide
Y and galenin deficiency

KO: compound double homozygous
mutant strain

Obesity

(375)

8(33) Npy1rg 4q31.3-q32 NPY1R Neuropeptide Y receptor Y1 Obesity (482)
8(32.5) Npy5rg 4q31-q32 NPY5R Neuropeptide Y receptor Y5 Increased adiposity leading to mild adult-

onset obesity
(483)

7 Nr1h2g 19q13.3-13.2 NR1H2 Nuclear receptor subfamily 1, group H,
member 2, also known as LXR �

Reduced adiposity (484)
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Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

1(92.6) Nr1i3g 1q23.3 NR1I3 Nuclear receptor subfamily 1, group I,
member 3

Accelerated adipose loss on calorie-
restricted diet

(485)

18(20) Nr3c1c 5q31 NR3C1 Nuclear receptor subfamily 3, group C,
member 1; also known as
glucocorticoid receptor

Floxed gene and rat nestin-driven Cre
Neuronal-specific ablation leads to

increased adiposity preweaning,
leading to reduced adiposity in older
mice due to altered food intake and
metabolic efficiency

(486)

2(107) Ntsr1g 20q13-20q13 NTSR1 Neurotensin receptor 1 Adult-onset increase in BW and adiposity (487)
10(8) Oprm1g 6q24-q25 OPRM1 Opioid receptor, �1, also known as

MOR, MOR-1
Resistant to diet-induced obesity (488)

1(98.6) Parp1g 1q41-q42 PARP1 ADP-ribosyltransferase [NAD�,
poly(ADP-rose)polymerase] 1, also
known as Adprt1 or Adprp

Age-onset obesity in a mixed genetic
background

(489,490)

13(44) Pcsk1g 5q15-q21 PCSK1 Proprotein convertase subtilisin/kexin
type 1

Increased adipose mass in heterozygous
mice

(491)

X Pcsk1nk Xp11.23 PCSK1N Proprotein convertase subtilisin/kexin
type 1 inhibitor

Transgene: expressing Pcsk1n cDNA
using the �-actin promoter

Adult-onset obesity

(492)

7(6.5) Peg3g 19q31.4 PEG3 Paternally expressed 3, also known as
Zfp102, End4, Pw1

Obesity (493)

11(31) Pemtg 17p11.2 PEMT Phosphatidylethanolamine N-
methyltransferase

Liver abnormalities on high-fat diet (494,495)

13(50) Pik3r1g 5q13.1 PIK3R1 Phosphatidylinositol 3-kinase,
regulatory subunit, polypeptide 1
(p85�)

Smaller adipocytes and reduced adiposity (496)

11(58.2) Pip5k2be 17q12 PIP5K2B Phosphatidylinositol-4-phosphate 5-
kinase, type II, �

Reduced BW and adiposity; resistant to
diet-induced obesity

(497)

5(F1/G1) Pla2g1bg 12q23-q24.1 PLA2G1B Phospholipase A2, group IB, pancreas Normal BW and fat pad weight on chow
diet; resistant to diet-induced obesity
when fed a western diet. KO mice also
displayed increased lipid content in the
stool, thus displaying decreased fat
absorption

(498)

7 Pling 15q26 PLIN Perilipin Reduced adiposity. Resistance to diet-
induced obesity

(499)

9 Plscr1g 3q23 PLSCR1 Phospholipid scramblase 1 Elevated adiposity (500)
11(43) Plscr3e 17p13.1 PLSCR3 Phospholipid scramblase 3 Elevated BW and adipose mass (501)
10(47) Pmchg 12q23-q24.1 PMCH Promelanin-concentrating hormone,

also known as MCH
Reduced BW and adiposity; resistant to

diet-induced obesity
(502,503)

12(4) Pomc1g 2p23.3 POMC Pro-opiomelanocortin-� Obesity on chow and high-fat diets (504,505)
5(75) Porg 7q11.2 POR P450 (cytochrome) oxidoreductase Conditional KO (liver specific)

Increased liver weight and fatty liver
(506,507)

15(48.8) Pparag 22q13.31 PPARA Peroxisome proliferator-activated
receptor �

Moderate elevation in gonadal fat in
chow-fed females; significant increase
in adiposity relative to wild-type mice
in both males and females in high-fat
diet-fed mice

(508)

15(48.8) Pparak 22q13.31 PPARA Peroxisome proliferator-activated
receptor �

Transgene. Expressed in muscle
Resistant to diet-induced obesity

(509)

17(13.5) Ppardc 6p21.2-p21.1 PPARD Peroxisome proliferator activator
receptor �, also known as
peroxisome proliferator-activated
receptor �. Specific loss of Ppard
from adipose cells

Floxed gene and aP2-driven Cre
Resistant to diet-induced obesity and

reduced adiposity in Leprdb

homozygous mutants

(510)
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Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

17(13.5) Ppardc 6p21.2-p21.1 PPARD Peroxisome proliferator activator
receptor �, also known as
peroxisome proliferator-activated
receptor �, overexpressed in skeletal
muscle

Floxed transgene. Cre-Lox strategy to
overexpress Ppard in skeletal muscle
using HAS-Cre

Reduction in fat mass and adipocyte cell
size

(511)

17(13.5) Ppardg 6p21.2-p21.1 PPARD Peroxisome proliferator activator
receptor �, also known as
peroxisome proliferator-activated
receptor �

On a high-fat diet, KO mice develop
greater adiposity than controls despite
a lower overall total BW

(512)

6(52.7) Ppargc 3p25 PPARG Loss of peroxisome proliferator-
activated receptor � from adipose
cells

Floxed gene and aP2-driven Cre
Reduced adiposity and resistant to diet-

induced obesity

(513,514)

6(52.7) Ppargc 3p25 PPARG Loss of peroxisome proliferator-
activated receptor � from muscle

Floxed gene and muscle creatine kinase
(MCK)-driven Cre

Increased adiposity

(515)

6(52.7) Ppargc 3p25 PPARG Loss of peroxisome proliferator-
activated receptor � from � cells

Floxed gene and rat insulin promoter-
driven Cre

Attenuated � cell hyperplasia in response
to a high-fat diet

(516)

6(52.7) Ppargc 3p25 PPARG Peroxisome proliferator-activated
receptor �

KO � reporter
Selective loss of PPARg2 isoform leads to

reduced BW, smaller adipocytes, and
resistance to diet-induced obesity

(517)

6(52.7) Ppargf 3p25 PPARG Peroxisome proliferator-activated
receptor �

Knock-in expressing dominant negative
allele

Lethal in homozygotes. Heterozygotes are
lean and resistant to diet-induced
obesity

(518)

5(C1) Ppargc1ag 4p15.1-15.2 PPARGC1A Peroxisome proliferative-activated
receptor, �, coactivator 1�

Resistant to diet-induced obesity; cold
sensitive

(519)

5(C1) Ppargc1ag 4p15.1-15.2 PPARGC1A Peroxisome proliferative-activated
receptor, �, coactivator 1�

Increased adiposity in young females and
old males

(520)

18 Ppargc1bk 5q32 PPARGC1B Peroxisome proliferative-activated
receptor, �, coactivator 1�

Transgene. Murine cDNA expressed from
the chicken �-actin promoter

Resistant to diet-induced obesity

(521)

6(A2) Ppp1r3ag 7q31.1 PPP1R3A Protein phosphatase 1, regulatory
(inhibitor) subunit 3A

Increased BW and obesity (522)

19(C3) Ppp1r3cg 10q23-q24 PPP1R3C Protein phosphatase 1, regulatory
(inhibitor) subunit 3C, also known
as PTG

Homozygous mutants are embryonic
lethal. Heterozygotes show increased
intramyocellular lipid stores and
elevated circulating leptin,
triglycerides, and free fatty acids

(523)

11 Ppyk 17q21 PPY Pancreatic polypeptide Transgenic. Mouse Ppy cDNA expressed
from the chicken �-actin hybrid
promoter

Reduced BW and adiposity

(524,525)

4 Prkaa2g 1p31 PRKAA2 Protein kinase, adenosine
monophosphate-activated, �2
catalytic subunit. No expression in
adipocytes

KO. Floxed gene � aP2 expressed Cre
Increased adiposity

(526)
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Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

1 Prkag3k 2q35 PRKAG3 Transgene insertion 1, Leif Andersson.
Expression of the mutated protein
was seen in the skeletal muscle.
Levels of the endogenous PRKAG3
protein were reduced, resulting in
no significant change in overall
PRKAG3 protein expression

An Myl1 promoter and enhancer
expressing a full-length mouse Prkag3
cDNA (encodes protein kinase, AMP-
activated, �3, noncatalytic subunit)
with a single missense mutation
(R225Q)

Transgenic mice have lowered adiposity
and are protected against high-fat diet-
induced triglyceride accumulation and
insulin resistance

(527)

12(B1) Prkar2bg 7q22 PRKAR2B Protein kinase, cAMP-dependent
regulatory, type II�, also known as
RII�

Decreased adiposity; resistant to diet-
induced obesity

(528,529)

2(2) Prkcqk 10p15 PRKCQ Protein kinase C, � Obesity (530)
19 Prkhrg 10q26.13 PRLHR Prolactin-releasing hormone receptor Obesity (406)
1(106.3) Prox1g 1q32.2-q32.3 PROX1 Prospero-related homeobox 1 Obesity in heterozygotes (531)
2(H3) Ptpn1g 20q13.1-

q13.2
PTPN1 Protein tyrosine phosphatase, non-

receptor type 1
Reduced adiposity (532,533)

5(F1/G1) Ptpn11g 12q24 PTPN11 Protein tyrosine phosphatase, non-
receptor type 11

Forebrain-specific KO
Obesity

(534)

2(73.1) Ptpns1g 20p13 PTPNS1 Protein tyrosine phosphatase, non-
receptor-type substrate 1, also
known as SHPS-1

Decreased BW and fatty livers (535)

11 Pttg1g 5q35.1 PTTG1 Pituitary tumor-transforming 1 Reduced BW and cessation of weight
gain after 6 months in males
accompanied by loss of epididymal fat
mass

(536)

11(B2) Rai1g 17p11.2 RAI1 Retinoic acid induced 1 Homozygote lethal. Heterozygotes are
obese

(537)

9(50) Rasgrf1g 15q24 RASGRF1 RAS protein-specific guanine
nucleotide-releasing factor 1

Reduced BW and adiposity (538)

1(69.9) Ren1k 1q32 REN Renin 1 Transgene: human REN gene expressed
from endogenous promoter

Late-onset obesity

(539)

8(0.4) Retnk 19p13.2 RETN Resistin/ADSF/Fizz3. Adipocyte-
specific overexpression of dominant
negative Retn

Transgene: aP2 promoter expressing Retn
fused to the human IgG� constant
region

Increased adiposity but enhanced glucose
disposal and insulin sensitivity

(540)

16(33) Retnlbk 3q13.1 RETNLB Resistin-like �; expressed in liver Hyperlipidemia and fatty liver on high-fat
diet

(541)

X(65.7) Rps6ka3g X p22.2-
p22.1

RPS6KA3 Ribosomal protein S6 kinase
polypeptide 3

Reduced BW and adiposity; resistant to
diet-induced obesity

(542)

11 Rps6kb1g 17q23.2 RPS6KB1 Ribosomal protein S6 kinase,
polypeptide 1, S6K1

Resistant to diet-induced obesity (543)

4 Rsc1a1g 1p36.1 RSC1A1 Regulatory solute carrier protein,
family 1, member 1

Obesity (544)

1(88.1) Rxrgg 1q22-q23 RXRG Retinoid X receptor � Resistant to diet-induced obesity (545)
19(43) Scd1g 10 SCD1 Stearyl-CoA desaturase 1 Reduced BW and adiposity; resistant to

diet-induced obesity
(508,546)

12(1) Sdc1k 2p24.1 SDC1 Syndecan 1 Transgenic. Mouse Sdc1 cDNA expressed
from the cytomegalovirus promoter/
enhancer

Adult-onset obesity

(547)

4(60.8) Sdc3g 1pter-p22.3 SDC3 Syndecan 3 Reduced adiposity on chow. Resistant to
diet-induced obesity

(548)
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Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

5 Serpine1g 7q21.3-q22 SERPINE1 Serine (or cysteine) proteinase
inhibitor, clade E, member 1, also
known as plasminogen activator
inhibitor, type I

Resistant to diet-induced obesity (549)

5 Serpine1g 7q21.3-q22 SERPINE1 Serine (or cysteine) proteinase
inhibitor, clade E, member 1, also
known as plasminogen activator
inhibitor, type I

Same BW gain as control mice on high-
fat diet. No difference in subcutaneous
fat mass but elevated gonadal adipose
mass. Mutant and litter mates are 80%
B6 and 20% 129 composite

(550)

5 Serpine1k 7q21.3-q22 SERPINE1 Serine (or cysteine) proteinase
inhibitor, clade E, member 1, also
known as plasminogen activator
inhibitor, type I. Expressed in
adipose cells

Transgene. Murine cDNA expressed from
the aP2 promoter

Resistant to diet-induced obesity

(551,552)

8(9.5) Sfrp1g 8p12-p11.1 SFRP1 Secreted frizzled-related sequence
protein 1

KO � reporter
Reduced adiposity in males

(553)

7(61) Sh2bpsm1g 16p11.2 SH2B SH2-B PH domain-containing signaling
mediator 1, also known as SH2-B

Obesity (554)

10(26.5) Sim1c 6q16.3-q21 SIM1 Single-minded 1 Floxed gene and EIIa-expressed Cre
Obesity in heterozygous mice

(555)

10(26.5) Sim1g 6q16.3-q21 SIM1 Single-minded 1 Obesity in heterozygous mice (556)
11(40) Slc2a4g 17p13 SLC2A4 Solute carrier family 2 (facilitated

glucose transporter), member 4
(encodes GLUT4)

Reduced adiposity (557)

11(40) Slc2a4k 17p13 SLC2A4 Solute carrier family 2 (facilitated
glucose transporter), member 4
(encodes GLUT4)

Transgene. Expressed in adipose tissue
Increased fat mass

(558)

6 Slc6a1k 3p25-p24 SLC6A1 �-aminobutyric acid transporter I Transgenic. Mouse Slc6a1 brain-derived
cDNA expressed from the
cytomegalovirus promoter/enhancer

Obesity

(559)

15(31.7) Soat2g 12q13.13 SOAT2 Sterol O-acyltransferase 2 Resistant to fatty liver but elevated
circulating triglycerides and high-
density lipoprotein cholesterol

(560)

11(E2) Socs3c 17q25.3 SOCS3 Suppressor of cytokine signaling 3.
Cerebrum- and hypothalamus-
specific loss of Socs3

Floxed gene � transgenic Cre expressed
from rat nestin promoter

Decreased BW and resistant to diet-
induced obesity

(561)

11(E2) Socs3c 17q25.3 SOCS3 Suppressor of cytokine signaling 3.
Cerebrum and hypothalamus-
specific loss of Socs3

Floxed gene � transgenic Cre expressed
from Syndecan I promoter

Decreased BW and resistant to diet-
induced obesity

(561)

17(8) Sox8g 16p13.3 SOX8 SRY box-containing gene 8 Decreased fat mass (562)
11(29.9) Sparcg 5q31.3-q32 SPARC Secreted acidic cysteine-rich

glycoprotein (osteonectin)
Increased adiposity with no effect on BW (563)

11 Srebf1k 17p11.2 SREBF1 Transgene expresses sterol regulatory
element-binding factor 1 in adipose
cell

Transgene: aP2-driven human SREBF1c
cDNA

Reduced BW and adiposity

(564)

11 Srebf1k 17p11.2 SREBF1 Sterol regulatory element-binding
factor 1, transcript 1a, also known
as Srebp1. Expressed in adipose
cells

Transgene expressing the human
SREBF1–1a cDNA using the murine
aP2 promoter

Adipocyte hypertrophy and fatty liver

(565)

11 Srebf1k 17p11.2 SREBF1 Sterol regulatory element-binding
factor 1, transcript 1c, also known
as Srebp1. Expressed in adipose
cells

Transgene expressing the human SREBF-
1c cDNA using the murine aP2
promoter

Loss of all adipose tissue

(564)
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Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

11(60.5) Stat3c 17q21.31 STAT3 Pancreatic- and hypothalamic-specific
deletion of Stat3; signal transducer
and activator of transcription 3

Floxed gene � Cre transgene expressed
from the rat insulin II promoter

Obesity. Transplantation of wild-type
pancreatic islets into the mutants did
not alleviate obesity, suggesting that
lack of hypothalamic Stat3 expression
is responsible for the obesity

(566)

11(60.5) Stat3c 17q21.31 STAT3 Neuronal-specific deletion of Stat3;
signal transducer and activator of
transcription 3

Floxed gene � Cre transgene expressed
from the rat Nestin promoter

Obesity

(567)

11(60.5) Stat5bg 17q11.2 STAT5B Signal transducer and activator of
transcription 5B

Increased adiposity (568)

7(6.5) Tgfb1k 19q13.31 TGFB1 Transforming growth factor, � 1 Transgenic. Human TGFB1 cDNA
expressed from the rat PEPCK
promoter

Reduced adiposity; lipodystrophy

(569)

11(57) Thrag 17q11.2 THRA Thyroid hormone receptor � KO; gene replacement with dominant
negative mutant allele

Increased BW and adiposity

(570)

14(B1) Tktg 3p14.3 TKT Transketolase Homozygous mutants are embryonic
lethal. Heterozygotes display reduced
BW and adiposity

(571)

17(19.1) Tnfg 6p21.3 TNF TNF Reduction in BW and adiposity (572)
17(19.1) Tnfk 6p21.3 TNF TNF. Non-cleavable mutant protein

expressed in TNF-deficient mice
Elevated BW and adipose fat mass (573)

7(51.5) Tubg 11p15.5 TUB Tubby candidate gene Late-onset obesity (574)
3(47.1) Txnipg 1q21.1 TXNIP Thioredoxin-interacting protein Increased fat-to-muscle ratio (575)
2(67.4) Ubr1g 15q13 UBR1 Ubiquitin protein ligase E3 component

n-recognin 1
Lean (576)

8(38) Ucp1g 4q28-q31 UCP1 Uncoupling protein 1, mitochondrial Temperature-dependent resistance to diet-
induced obesity on C57BL/6J genetic
background

(577)

8(38) Ucp1k 4q28-q31 UCP1 Transgene insertion 1, Frederic
Bouillaud. The transgene consists of
a rat uncoupling protein 1 (UCP1)
cDNA sequence under the control
of a mouse Ckmm promoter.
Expression limited to skeletal and
cardiac muscle

Transgene: murine muscle creatine kinase
promoter expressing rat UCP1 cDNA

Lower BW and reduced adiposity

(578)

8(38) Ucp1k 4q28-q31 UCP1 Uncoupling protein 1 (UCP1),
mitochondrial

Transgene. UCP1 promoter expressing the
diphtheria toxin gene

Ablation of UCP1 expressing tissues leads
to obesity

(579,580)

7(50) Ucp2/Ucp3k 11q13 UCP2/UCP3 Uncoupling protein 2 (UCP2),
mitochondrial; uncoupling protein 3
(UCP3), mitochondrial

Transgene. Murine bacterial artificial
chromosome containing the genomic
UCP2 and UCP3 genes

Reduced adiposity

(581)

7(50) Ucp3k 11q13 UCP3 Uncoupling protein 3 (UCP3),
mitochondrial. Expression limited to
skeletal muscle

Transgene. Murine UCP3 cDNA
expressed from the mouse Mck
promoter

No difference on chow, but a 4-week
exposure to a high-fat diet revealed
transgenic mice have less weight gain
and reduced adipose gain

(582)
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One particularly interesting addition to the gene list is the
murine Clock gene. The CLOCK transcription factor is a
key component of the molecular circadian clock within
pacemaker neurons of the hypothalamic suprachiasmatic
nucleus. Characterization of murine Clock mutants reveals
an obesity phenotype that is accelerated during feeding with
high-fat diet. Causative factors include an attenuated diurnal
feeding rhythm, hyperphagia, and perturbation of the ex-
pression of hypothalamic peptides associated with the reg-
ulation of feeding behavior and energy balance. The effects
of the CLOCK transcription factor seem to be associated
with growth and development only after weaning because
no differences in BW are observed in newborn pups or 3- or
4-week weaned mice.

Animal QTLs
The murine QTL information in Table 3 has been com-

pletely revised this year. Primarily, the names assigned to
quantitative trait loci (QTLs) have been changed to conform
to currently utilized nomenclature, and, in an attempt to
more specifically define the location of the QTL on the
mouse genome, we have included the genetic location of the
peak logarithm of the odds ratio (LOD) score (or other
statistical measure utilized) and a confidence interval (usu-
ally the 1 LOD interval). Information presented has been
summarized from the primary literature and also from the
MGI group at the Jackson Laboratory (www.informatics.

jax.org). Clearly, the concept of QTL significance plays a
large role in the identification of a QTL. We have attempted
to adopt a uniform standard that identifies QTLs if they
satisfy a genome-wide significance level below 0.05. QTLs
that do not meet this are termed suggestive, and we have
listed only suggestive QTLs that have either been corrobo-
rated in follow-up studies or replicated in another study
using the same mouse strains. In cases of uncertainty, we
have erred on the side of caution and listed the QTLs. For
some recent studies, evidence for interactions between
QTLs has been presented, despite no evidence of signifi-
cance for the individual loci alone. Nomenclature rules may
need to be revisited to describe these interactions. In the
majority of the cases, QTL names listed in the table are not
identical to those listed in the primary publication. In these
cases, the names were changed by the MGI group to main-
tain conformity with existing nomenclature. Thus, names
that have been listed in previous years may have been
altered in this year’s table.

QTLs may be identified from several different types of
genetic crosses. We have listed this information in this
year’s table. Typically, F2 intercrosses or backcrosses are
utilized. However, there is likely to be an increasing use of
recombinant inbred strains, advanced intercross lines, and
congenic strains (that contain a specific donor genetic seg-
ment on a different background strain). It must be remem-
bered that QTLs identified from phenotyping and genotyp-

Table 2. (continued)

Mouse
chromosome
(cM/band)

Mouse
gene

Human
chromosome

Human
homolog Gene description Details Reference

3(68.5) Unc5ck 4q21-q23 UNC5C unc-5 homolog C (C. elegans) KO/transgene: a cDNA encoding
telomerase reverse transcriptase under
the control of the chicken �-actin
promoter randomly inserted into intron
1 of Unc5c

Reduction in BW and adiposity

(583)

5(79) Vgfg 7q22 VGF VGF nerve growth factor inducible Reduction in BW and adiposity (584)
19(20) Vldlrg 9p24 VLDLR Very-low-density lipoprotein receptor Reduction in BW and adiposity (585)
5 Wbscr14g 7q11.23 WBSCR14 Williams-Beuren syndrome

chromosome region 14 homolog
(human)

Lower adiposity on standard diet. Rapid
death on feeding a high-fructose or
high-sucrose diet

(471)

15(56.8) Wnt10bk 12q13 WNT10B Wingless-related MMTV integration
site 10b

Transgene, cDNA expressed from the aP2
(Fabp4) promoter

Reduced adiposity and resistant to diet-
induced obesity. Loss of brown
adipose tissue

(586,587)

15(56.8) Wnt10bg 12q13 WNT10B Wingless-related MMTV integration
site 10b

Increased muscular adiposity (588)

7(10.2) Zfp36g 19q13.1 ZFP36 Zinc finger protein 36 Reduction in BW and adiposity (589)

a Antisense; b ethylnitrosourea (ENU); c floxed; d gene replacement; e gene trap; f knock-in; g knock-out; h spontaneous; i overexpression; j RNA interference;
k transgenic.
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Table 3. QTLs reported for animal polygenic models of obesity

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

Cow

CGC � Hereford BTA17LW F 	 8 �24 kg live weight 17 (590)

Chicken
White Leghorn layer

� commercial
broiler

BFc7 36-41 F 	 13.29 5.24 Abdominal fat weight (9
weeks)

7 (591)

BFc7 36-41 F 	 11.50 4.51 Abdominal fatness (9
weeks)

7

BFc7 36-41 F 	 11.08 4.4 Fat distribution (9
weeks)

7

Rhode Island Red
layer � Rhode
Island Red layer

BWc4 200-207 p 	 0.01 25.8 BW (40 weeks) 4 (592)

White Leghorn �
Rhode Island Red

Gwchr4 p 	 0.01 17 Weight 4 (593)
Gwchr27 p 	 0.01 6 Weight 27

White Plymouth
Rock � White
Plymouth Rock

Bw5 F 	 2.14 Weight (5 weeks) 1 (594)
Bw7 F 	 2.28 Weight (7 weeks) 1

White Plymouth
Rock � Rhode
Island Red layer

Gfchr1 LOD 	 2.75 18.1 Fat (%), abdominal 1 (595)
Gwchr13 LOD 	 2.77 26.6 Weight 13

Rhode Island Red
layer � Rhode
Island Red layer

GAA01 263-
287

Weight 1 (596)

GAA02 23-28 Weight 2

Mouse (multiple
crosses)

(B6.129-Lipctm1Unc

� SPRET/Ei)F1
� C57BL/6-
Lipctm1Unc

Bsbob Body fat and adiposity 2 81.7 (456,597)

(B6.129-Lipctm1Unc

� SPRET/Ei)F1
� C57BL/6J

Bsbob2 BW, fat mass, adiposity;
interacts with Bsbob4
to regulate adiposity
and BW

7 62 (60 to 63.5)

(C57BL/6J �
SPRET/Ei)F1 �
C57BL/6J

Bsbob3 Interacts with Bsbob4 to
regulate total
cholesterol

6 26.5

C57BL/6J/Lipc�/�
� Mus spretus
SPRET/Ei

Bsbob4 Interacts with Bsbob3 to
regulate total
cholesterol; interacts
with Bsbob5 to
regulate body fat

12 52

Bsbob5 Interacts with Bsbob4 to
regulate body fat

15 20.2

LOD 	 3.6 26 Interaction between Lipc
(chromosome 9) and
chromosome 7 locus

7

(BALB/cJ �
C57BL/6J)F1 �
(C3H/HeJ �
DBA/2J)F1

D3Mit127 p 	 0.01 Leptin, 27% 3 70.3 (598)

(C3H/He � Mus
spretus)F1 �

Bw1 LOD 	 3.4 24 BW X 18 cM (DXMit57-
DXMit48)

(599)

C57BL/6J Bw2 LOD 	 6.6 BW X DXMit109-
DXMit16

Bw3 LOD 	 4.3 BW X 32 cM
Bw1 BW X Distal to DXNds1
Bw2 BW X DXMit60-DXMit16
Bw3 BW X DXMit3-DXMit12
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Table 3. (continued)

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

(C57BL/6-
Lipctm1Unc �
SPRET/Ei)F1 �
SPRET/Ei

Bsbob LOD 	 3.7 3 Adiposity QTL present
in BSBHLKO cross
(BSB hepatic lipase-
deficient animals) but
not in BSB

2 79 (75.6 to 81.1) (600)

B6.S(D2mit194-
D2Mit311)

Bsbob Confirmed to contain
obesity QTL

2 26.7- to 32.1-
megabasepair
interval

(C57BL/6J �
SPRET/Pt)F1 �
C57BL/6J

Hlbsb1 LOD 	 4.8 10.7 Hepatic lipase activity 7 64 (48 to 66) (601)
Hlbsb2 7 Hepatic lipase activity;

interaction with
Hlbsb1

3 to 7

(C57BL/6J �
STRET/Ei)F1 �
C57BL/6J

Mob1 LOD 	 4.6 6.5 Fat (%) 7 62 (602,603)
Mob2 LOD 	 4.8 7.1 Femoral fat 6 3.05
Mob3 LOD 	 4.8 7 Fat (%) 12 53
Mob4 LOD 	 3.4 5.9 Mesenteric fat 15 6.7

[High BW line (H)
� low BW line
(L)]F1 � high
BW line (H)

Bw19 LOD 	 137 20 Candidate gene Gpc3
identified in 660-
kilobasepair interval

X DXMit226-
DXMit68 (2 cM)

(604–606)

(Mus m. castaneus
� C57BL/6J)F1
� M. m.
castaneus

Pbwg1 LOD 	 3.1 to
10.9

10 Stronger effect in
females than males.
Epistatic with
Pbwg12 in males

2 32.8 (26 to 44) (607–609)

Pbwg2 LOD 	 3.1 3.9 Male specific 4 62 (39 to 86)
Pbwg3 LOD 	 2.6 to

3.6
3 7 72 (40 to 104)

Pbwg4 LOD 	 3.7 7.5 Female specific; BW 5
weeks

9 71 (46 to 96)

Pbwg5 LOD 	 3.4 3.7 BW at 7 weeks 10 68 (42 to 94)
Pbwg6 LOD 	 4.9 5.2 Stronger effect in males

than females
13 53 (34 to 72)

Pbwg7 LOD 	 3.1 6.9 Male specific X 19 (0 to 48)
Pbwg8 LOD 	 4 12.1 Male specific 6 32 (14 to 50)
Pbwg9 LOD 	 3.8 4.5 Stronger effect in

females than males
10 14 (0 to 36)

Pbwg10 p 	 2.6 �
10�6

Interaction with Pbwg8
in males

X 2.8

Pbwg12 p 	 9.1 �
10�6

Male specific and
epistatic with Pbwg1
in males

12 34

Pbwg13 p 	 2.5 �
10�6

Interaction with Pbwg9
in females

5 81

Pbwg14 LOD 	 2.8 BW at 8 weeks. Female
specific

5 1 (0 to 74)

Pbwg15 LOD 	 2.6 to
2.7

BW at 3 to 4 weeks 9 43

Pbwg16 LOD 	 4.6 BW at 3 weeks 10 45
Pbwg17 LOD 	 4.2 to

4.9
BW at 6 to 10 weeks 13 46

Pbwg18 LOD 	 4.3 Female specific. Weight
gain from 6 to 10
weeks

14 30

Pbwg19 LOD 	 3 Male specific. BW at 5
weeks

16 2

Pbwg20 LOD 	 3.1 to
6.3

BW at 3 to 4 weeks 19 0 (0 to 25)
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Table 3. (continued)

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

Pbwg21 LOD 	 2.6 to
3.6

Male specific. BW at 3
weeks and weight
gain 3 to 6 weeks

X 27

Pbwg22 LOD 	 2.9 to
4.3

Female specific. BW 9
to 10 weeks

X 35

C10bw2 LOD 	 3.6 Female specific 9 17
C10bw3 LOD 	 3.4 Male specific 11 57
C10bw4 LOD 	 3.3 Female specific 13 46
C10bw6 LOD 	 4.3 Female specific X 18.9

(Quackenbush-Swiss
� C57BL/6J) �
C57BL/6J

Not assigned p 	 0.009 40 BW and body length 10 56 to 65 (610)

129P3/J � C57BL/
6J

Bwq5 LOD 	 4.4 4.8 BW 2 81.7 (611)
Bwq6 LOD 	 4 4.3 BW 9 61
Adip5 LOD 	 3.95 4.7 Adiposity; interaction

with Adip9
9 26

Adip6 LOD 	 3.32 4.4 Adiposity, interaction
with Adip5

16 63.2

129T2/SvEmsJ �
EL/Suz

Obq1 LOD 	 8 12.3 Adiposity 7 28 (612)
Obq2 LOD 	 4 6.3 Adiposity 1 15

AKR/J � C57L/J Obq3 LOD 	 5.1 7 Adiposity 2 53 (34 to 78.7 cM) (613)
Obq4 LOD 	 4.6 6.1 Adiposity 17 4 (0 to 7)

AKR/J � SWR/J Dob1 LOD 	 4.4
2004 	 4.8

4 50 (D4Mit5-
D4Mit11)

(614,615)

Dob2 LOD 	 4.8 Adiposity. QTL Not
confirmed in (AKR �
SWR) � SWR
backcross mice

9 60 (D9Mit11-
D9Mit18)

2004 	 3.9
Dob3 LOD 	 3.9 Adiposity. QTL

confirmed in (AKR �
SWR) � SWR
backcross

15 22.8 (D15Nds2-
D15Mit22)

B6.V-Lepob/ob

(leptin treated) �
BALB/cJ

Bwob LOD 	 5 5 44 (616)
Mors1 LOD 	 5.6 1 101.5 to 106.3
Mors2 LOD 	 3.4 3 52.5 to 71.8
Mors3 LOD 	 3.8 Testosterone 14 27.5 to 30
Mors4 LOD 	 3.4 Testosterone 14 15 to 27.5

B10.UW H3b we
Pax1 un at/Sn X

LOD 	 4.61 Fat; adiposity adjusted
for weight

2 67.8 to 82 (617)

BALB/cA and
TSOD � TSOD
and BALC/cA

Nidd5 LOD 	 5.91 BW and insulin 2 34.5 (618)
Nidd6 LOD 	 4.65 BW 1 77

BTBR.V-Lepob/ob �
B6.V-Lepob/ob

Mobe1 LOD 	 9.48 14.1 10-Week body mass 2 44 (41 to 47.1) (619)
Mobe2 LOD 	 8 12.5 10-Week body mass 13 37
Mobe3 LOD 	 3.6 10-Week body mass 5 65
Mobe4 LOD 	 2.49 10-Week body mass 17 34.4

C3H/He � NSY Waiting for
identification

LOD 	 6.8 BMI 6 35.5 (32 to 60) (620)

C57BL/6-insrtm1Dac/
�, irs1tm1Jos/
� �
129S6/SvEvTac

E1pt LOD 	 3.7 33 Leptin. Interacts with
hyperinsulinemia
QTL, Hypn

7 50 (621)

C57BL/6J � 129S1/
SvImJ

Obq16 LOD 	 10 Females 8 48 (42 to 53) (622)
Obq17 LOD 	 2.3 Females 1 74 (48 to 108)
Obq18 LOD 	 2.9 Interacts with Obq16

(females)
9 65 (0 to 75)

Obq19 BMI (females) 17 8 (38 to 72)
Mob2 LOD 	 2.6 (Females) 6 0 (0 to 10)
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Table 3. (continued)

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

C57BL/6J � 129S6/
SvEvTac

D3Mit127 LOD 	 2.7 78 3 70.3 (623)
D10Mit162 LOD 	 2.9 28 10 59
D12Mit231 LOD 	 3.2 25 12 48
D14Mit192 LOD 	 3 52 14 40

C57BL/6J � A/J Bw8q1 LOD 	 4.4 2 BW, 8 weeks 1 100 (77 to 102) (624)
Bw8q2 LOD 	 3.3 4 BW, 8 weeks 4 66

C57BL/6J �
B6.AChr16

Diobq LOD 	 4.3 Chromosome
substitution strain

16 53.8 (29 to 55.2) (625)

C57BL/6J � CAST/
Ei

Mob5 LOD 	 5.8 Subcutaneous fat 2 95.5 (75 to 109) (626,627)
Mob6 LOD 	 7.3 Subcutaneous fat. QTL

confirmed in
B6.CAST (73 to 83
cM) congenic mice

2 49.6 (35 to 85)

Mob7 LOD 	 5.8 Retroperitoneal and
subcutaneous fat

2 Peak at D2Mit9 37
(30 to 46)

Mob8 LOD 	 4.7 Body fat (%) 9 D9Mit8
Not assigned LOD 	 5.2 Leptin level (no obesity) 4
Bdln2 LOD 	 4.3 Body length 15 15

C57BL/6J � CAST/
EiJ

Mnif1 LOD 	 8 7.1 Fat, intake 8 22 (10 to 30) (628)
Mnif2 LOD 	 6 5.4 Fat, intake 18 24 (10 to 58)
Mnif3 LOD 	 4 3.6 Fat, intake X 18 (10 to 58)
Mnic1 LOD 	 6.7 6 Carbohydrate intake 17 10 (3 to 24)
Mnic2 LOD 	 3.4 3.1 Carbohydrate intake 6 46 (36 to 64)
Mnic3 LOD 	 4.1 3.7 Carbohydrate intake X 40 (14 to 61)
Kcal1 LOD 	 7.7 6.8 Kilocalorie intake 18 20 (10 to 26)
Kcal2 LOD 	 4.9 4.4 Kilocalorie intake 17 16 (8 to 37)

C57BL/6J � DBA/
2J

Not assigned LOD 	 3.3 3 6-Week weight 1 76 (46 to 84) (629,630)
Not assigned LOD 	 3.3 4 6-Week weight 4 26 (24 to 30)
Not assigned LOD 	 3.2 4 6-Week weight 5 60 (57 to 64)
Not assigned LOD 	 4.3 5 6-Week weight 5 35 (22 to 45)
Not assigned LOD 	 4 4 6-Week weight 6 22 (15 to 26)
Not assigned LOD 	 3.3 4 6-Week weight 4 26 (24 to 30)
Not assigned LOD 	 6.9 9 6-Week weight 7 25 (23 to 33)
Not assigned LOD 	 4.4 5 6-Week weight 9 32 (12 to 50)
Not assigned LOD 	 5.7 6 6-Week weight 11 45 (29 to 49)
Not assigned LOD 	 4.1 4 6-Week weight 13 59 (29 telomere)
Not assigned LOD 	 3 3 6-Week weight 14 0 (0 to 22)
Not assigned LOD 	 4.9 7 6-week weight 17 14 (11 to 18)
Pfat1 LOD 	 5 20 Predicted fat (%) 4 30
Pfat2 LOD 	 4.9 20 Predicted fat (%) 6 31.8
Pfat3 LOD 	 5.3 20 Predicted fat (%) 13 20
Pfat4 LOD 	 8.6 20 Predicted fat (%) 15 43.3

C57BL/6J � KK-Ay Bwq1 LOD 	 5.5 15 BW at 50 days of age 4 21.9 (6.3 to 32) (631,632)
Bwq2 LOD 	 8.8 26 BW from 40 to 100

days of age; modifier
of Ay

6 35.2 (29 to 47)

C57BL/6J � KK/
H1Lt

Obq5 LOD 	 7 17 Adiposity (females) 9 19 (633)
Obq6 LOD 	 5 15.7 Adiposity (males);

except mesenteric
X 16

Unassigned LOD 	 4.4
(6.9)

7

Unassigned LOD 	 5.9 9
Unassigned LOD 	 4.2 7

C57BL/6J � NZB/
B1NJ

Bwefm LOD 	 5.11 5 70 (634)
Bwem1 LOD 	 3.16 5 54
Bwem2 LOD 	 4.53 13 35

C57BL/6J-Socs2hg/hg

� CAST/Ei
Carfhg1 LOD 	 2.5 6.2 Fat content 5 38 (635)
Carfhg2 LOD 	 5.8 12.5 Fat content 9
wg1 2 to 9 weeks 2 31
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Table 3. (continued)

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

wg2 10.4 2 to 9 weeks 2 61
wg3 2 to 9 weeks 8 45
wg4 2 to 9 weeks 11 46

C57BL/6J-Socs2hg/hg

� CAST/Ei
Mohg1 p 	 0.004 2 46 to 50.3 (636)
Mohg2 p 	 0.021 X 3
Mohg 3 p 	 0.041 X 37

C57BLKS/J-Cpefat

� HRShr/�
Fina1 LOD 	 6.84 13 Adiposity index 11 40 (30 to 50) (637)
Bwt1 LOD 	 14.03 24 Interaction with locus

on chromosome 18
(47 cM)

14 22.5 (20 to 35)

CAST/Ei � C57BL/
6J

Dob4 LOD 	 3.1 to
4.3

14 Fat, mesenteric 4 18.35 (638)

CFLP (P6) � JU/
CBA

Bw19 LOD 	 24.4 17 to 20 10-Week weight X 24.64 (639)

Du6 � DuK Imebt2 BW 14 25 (19 to 32) (640)
DU6i � DBA/2J Bw4 F 	 9.52 4.9 11 55 (36 to 65) (641,642)

Bw5 F 	 10.44 5.4 BW 1 36 (11 to 97)
Bw7 F 	 5.34 2.8 4 59 (34 to 72)
Bw9 F 	 3.87 2.1 12 17 (0 to 50)
Bw10 F 	 6.39 3.4 13 47 (33 to 61)
Bw13 F 	 11.7 6 BW 5 81 (73 to 89)
Bw14 F 	 25.9 12.3 BW 7 28 (23 to 33)
Bw15 F 	 7.36 3.8 BW 13 10 (3 to 16)
Bw16 F 	 7.52 3.9 BW 11 14 (6 to 17)
Afpq1 F 	 6.17 3.2 3 29 (23 to 37)
Afpq2 F 	 5.72 3 4 66 (60 to 72)
Afpq4 F 	 4.25 2.3 13 13 (0 to 46)
Afpq5 F 	 5.86 3.1 11 9 (0 to 19)
Afpq6 F 	 8.92 4.6 Abdominal fat (%) 17 36 (27 to 51)
Afpq9 F 	 18.5 9.1 Abdominal fat (%) 7 22 (13 to 27)
Afpq10 F 	 7.48 3.9 Abdominal fat (%) 12 18 (10 to 26)
Afw1 F 	 4.23 2.3 3 30 (23 to 36)
Afw2 F 	 5.72 3 4 66 (60 to 72)
Afw3 F 	 5.67 3 5 80 (69 to 91)
Afw5 F 	 6.48 3.4 11 12 (2 to 19)
Afw6 F 	 6.03 3.2 13 11 (4 to 18)
Afw7 F 	 9 4.7 17 39 (30 to 52)
Afw9 F 	 24.9 12 Abdominal fat (%) 7 23 (16 to 28)
Afw10 F 	 8.56 4.5 Abdominal fat (%) 12 21 (15 to 27)
Afw11 F 	 4.78 2.5 X 17 (0 to 39)
Lepq1 F 	 7.58 4.4 Leptin 14 28 (21 to 41)
Abfp1 Interacts with Abfp2

and Abfp3
17 34

Abfp2 Interacts with Abfp1 11 58
Abfp3 Interacts with Abfp1 8 16
Abfp4 Interacts with Abfp5 3 26
Abfp5 Interacts with Abfp4 5 20
Abfw1 Interacts with Abfw2,

Abfw3, Abfw4
11 60

Abfw2 Interacts with Abfw1 4 64
Abfw3 Interacts with Abfw1 17 32
Abfw4 Interacts with Abfw1 19 43
Abfw5 Interacts with Afbw6 5 72
Abfw6 Interacts with Afbw5 12 6
Bodw1 Interacts with Bodw2 2 18
Bodw2 Interacts with Bodw1 11 55
Bodw3 Interacts with Bodw4 1 5
Bodw4 Interacts with Bodw3 9 34

DuK � Du6 Afw1 F 	 4.52 4 Abdominal fat weight 3 51 (643)
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Table 3. (continued)

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

Bw4 F 	 4.79 23.1 BW 11 42 (36 to 50)
Afw2 F 	 4.89 13.4 Abdominal fat 4 51 (34 to 63)
Afpq2 F 	 4.89 10.2 Abdominal fat 4 55 (31 to 79)
Afw5 F 	 4.79 8.3 Abdominal fat 11 6 (0 to 29)
Afpq4 F 	 4.7 5.3 Abdominal fat 13 0
Afpq1 F 	 4.52 8.3 Abdominal fat (%) 3 46 (24 to 76)
Afpq3 F 	 4.13 4.7 5 51
Afw3 F 	 4.13 3.9 5 61
Afw4 F 	 5.13 4.1 9 29
Afw6 F 	 4.7 7.7 13 0 (0 to 10)
Afw7 F 	 4.21 2.9 17 46
Afw8 F 	 3.68 18.1 19 26
Bw5 F 	 4.61 7.1 1 14
Bw6 F 	 5.02 5.1 2 56
Bw7 F 	 4.89 7 4 55
Bw8 F 	 4.13 3 5 42
Bw9 F 	 3.8 4.3 12 49
Bw10 F 	 4.7 10.1 13 34
Bw11 F 	 4.72 4.2 15 6
Bw12 F 	 3.73 0.2 X 42

F � L Fob1 LOD � 3.3 4.9 14-week fat (%) 2 45 (644)
Fob2 LOD 	 3.3 19.5 14-week fat (%) (in

females)
12 19

Fob3 LOD 	 11.3 14.4 14-week fat (%) 15 34
Fob4 LOD 	 3.3 7.3 14-week fat (%) X 37

F � L Fob3 LOD 	 11.3 14.4 15 (12 to 78) (645,646)
Fob3a Subcongenics of Fob3 15 27 (22 to 32)
Fob3b Subcongenics of Fob3;

positional and
expression candidate
is Sqle (squalene
epoxidase)

15 68 (44 to 72)

F.L. congenic Fob3a F 	 13.7 1.6 Fat (%); late-onset 15 (645)
Fob3b F 	 11.6 0.7 Fat (%); early onset 15

ICR � M16 Mfiq5 LOD 	 3.4 1.8 1 57 (34 to 103) (647)
Mfe5q1 LOD 	 3.7 2.3 8 54 (1 to 81)
Mfiq3 LOD 	 3.7 2 9 7 (7 to 60)
Mfi5q1 LOD 	 4.4 2.3 9 60 (7 to 60)
Mfi7q1 LOD 	 5.3 2.4 11 29 (15 to 74)
Mfi8q1 LOD 	 4.8 2.2 11 32 (22 to 86)
Mfiq1 LOD 	 8.1 4.7 11 34 (22 to 68)
Mfe5q2 LOD 	 3.6 2.2 11 40 (18 to 73)
Mfeq1 LOD 	 4.9 3 11 50 (18 to 73)
Mfiq4 LOD 	 3.7 2 12 35 (17 to 63)
Mfiq2 LOD 	 4.4 2.4 13 54 (26 to 54)
Mlepq1 LOD 	 7.7 5.7 2 93 (83 to 104)
Mlepq2 LOD 	 3.4 2.3 17 52 (15 to 68)
Not assigned LOD 	 16.8 7 2 84 (82 to 92)
Not assigned LOD 	 4 1.2 8 22 (1 to 82)
Not assigned LOD 	 5.2 1.8 11 51 (36 to 65)
Not assigned LOD 	 4.3 2 17 52 (22 to 58)
Not assigned LOD 	 12.1 4.8 2 83 (80 to 89)
Not assigned LOD 	 4.6 1.8 4 41 (2 to 62)
Not assigned LOD 	 3.6 1.5 11 58 (41 to 75)
Not assigned LOD 	 5.1 2 17 38 (18 to 57)
Not assigned LOD 	 14.2 6.5 2 85 (83 to 93)
Not assigned LOD 	 5.1 1.9 7 28 (8 to 51)
Not assigned LOD 	 6 2.6 11 58 (32 to 64)
Not assigned LOD 	 3.3 1.9 17 51 (14 to 63)
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Table 3. (continued)

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

ILS inbred, long
sleep) � ISS
(inbred short
sleep)

Wght1 LOD 	 4.6 Interacts with Wght2 1 78 (648)
Wght2 LOD 	 4.5 Interacts with Wght1 4 3.2
Wght3 LOD 	 8.6 4 52.6
Wght4 LOD 	 3.22 5 73
Wght5 LOD 	 7.6 11 75
Wght6 LOD 	 9.4 19 20

KK/Ta � (BALB/c
� KK/Ta)F1

Tgls1 LOD 	 2.1 Triglyceride and BW 4 59 (649,650)
D17Mit218 LOD 	 2.9 BW 17 42
Azgp1 LOD 	 2.3 BW candidate gene 5 78

LG/J � SM/J Adip1 LOD 	 2.4 Adiposity (males) 1 11 (620,651–
654)

Wta1 LOD 	 2.35 Late weight gain 4 6.5
Wta2 LOD 	 3.49 Late weight gain 6 67
Adip2 LOD 	 3.71 Adiposity/weight

(females)
6 46.3

Adip3 LOD 	 3.71 Adiposity
(males)/weight

7 46.4

Adip4 LOD 	 2.57 Adiposity 8 32
Adip5 LOD 	 1.84 Adiposity 9 42
Adip6 LOD 	 2.69 Adiposity (males) 12 45
Adip7 LOD 	 1.9 Adiposity (males) 13 1 (0 to 30)
Wta3 LOD 	 2.7 Weight 14 2.5
Wta4 LOD 	 2.44 17 17.4
Adip8 LOD 	 2.84 Adiposity 18 20 (8 to 38)

LG/J � SM/J Not assigned 7 (654)
Not assigned LOD 	 3.7 7 66 (65.6 to 69)
Not assigned LOD 	 4.07 17 22.8 (17.7 to 24.2)
Not assigned LOD 	 3.68 Also epididymal,

retroperitoneal, and
mesenteric

1 62 (56.6 to 65)

Not assigned LOD 	 3.21 r Also retroperitoneal,
mesenteric, and leptin

8 59 (32 to 59)

Not assigned LOD 	 3.58 r Also Retroperitoneal &
mesenteric

10 63 (59 to 70)

Not assigned LOD 	 3.5 Also mesenteric and
leptin

X 69

Not assigned LOD 	 4.99 11 10.9 (1.1 to 17)
M16i (rapid 3- to

6-week weight
gain) � L6 (low
6-week weight)

Scfq1 LOD 	 7.6 5.9 Fat, subcutaneous 2 84 (81.7 to 88.9) (655–658)
Scfq2 LOD 	 4.4 5 Fat, subcutaneous 15 25.2 (8.8 to 39.6)
Scfq3 LOD 	 4.1 3.8 Fat, subcutaneous 11 24.9 (9.9 to 47.5)
Scfq4 LOD 	 4.1 3.4 Fat, subcutaneous 17 21.9 (0 to 34)
Scfpq1 LOD 	 3.9 12 Fat, subcutaneous,

adjusted for 10-week
weight

10 33.1 (20.5 to 55.3)

Epfpq1 LOD 	 6 5.3 14 20.3 (0 to 34.5)
Epfpq2 LOD 	 3.8 1 2 66.8 (52.2 to 72.7)
Epfpq3 LOD 	 3.6 3.3 15 51.1 (46.3-ter)
Epfpq4 LOD 	 3.4 3.4 15 33.4 (21.2 to 46.3)
Epfq1 LOD 	 9.5 6.7 2 84 (79.8 to 87.6)
Epfq2 LOD 	 4.6 4.3 2 97.6 (95.5 to

102.4)
Epfq3 LOD 	 3.8 3 17 21.9 (0 to 33.2)
Epfq4 LOD 	 3.5 2.5 11 17.4 (0 to 34.9)
Epfq5 LOD 	 3.4 2.6 7 21.5 (0 to 35.9)
W10q1 LOD 	 29 9.4 2 79.6 (76.8 to 81.7)
W10q10 LOD 	 8.3 4.8 4 55.3 (41.1 to 61.8)
W10q11 LOD 	 7.9 8 6 28.5 (20 to 47.2)
W10q12 LOD 	 6.9 2.1 17 19.2
W10q13 LOD 	 5.7 7 9 53.9 (44.5 to 61.4)
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chromosome QTL peak Reference

W10q14 LOD 	 5.2 8 26.4 (19.2 to 41.4)
W10q15 LOD 	 4.8 3.1 17 30.9 (24.5 to 41.1)
W10q16 2.8 5 42.8 (29.4 to 61.8)
W10q17 LOD 	 4.2 1 13 55.4
W10w18 LOD 	 4.1 1.9 7 18.2
W10q2 LOD 	 26.4 8.1 11 17.7 (11.3 to 24.1)
W10q3 LOD 	 15.5 7 3 29.7 (23.7 to 40.5)
W10q4 LOD 	 14.9 9.5 3 47.7 (40.5 to 54)
W10q5 LOD 	 10.2 5.3 10 31.7 (24.8 to 42.6)
W10q6 LOD 	 9.7 3.9 1 56.3 (48.7 to 66.5)
W10q7 LOD 	 9.1 3 1 72.6 (66.5 to 79)
W10q8 LOD 	 10.2 5.3 10 31.7 (24.8 to 42.6)
W10q9 LOD 	 8.6 8.6 2 50.8 (42.4 to 63.3)

MH � C57BL/6J Hlq1 LOD 	 5.6 4.7 Heat loss; confirmed in
(MH � ML)F2 cross

1 127 (659)

Hlq2 LOD 	 3.7 3.1 Heat loss 2 71
Hlq3 LOD 	 3.8 3.1 Heat loss 3 35
Hlq4 LOD 	 4.7 3.9 Heat loss 3 3.9
Hlq5 LOD 	 4.1 3.4 Heat loss 7 61
Fatq1 LOD 	 7.4 to

8.0
5.4 to 5.9 Gonadal fat 1 62

Batq1 LOD 	 3.96 3.3 Brown fat 1 102
Batq2 LOD 	 3.46 2.8 Brown fat 3 55
Wt10q1 LOD 	 4.25 3.3 1 25
Wt10q2 LOD 	 4.76 3.8 3 61
Wt10q3 LOD 	 3.63 2.9 11 32
Wt3q1 LOD 	 5.13 4.1 1 72
Wt3q2 LOD 	 10.09 8 1 108
Wt3q3 LOD 	 6.28 5 17 14
Wt6q1 LOD 	 4.02 3.3 Confirmed in (MH �

ML)F2 cross
1 27

Wt6q2 LOD 	 3.98 3.2 1 108
Wt6q3 LOD 	 4.55 3.7 11 36

Mhi (inbred, high
food intake) �
Lhi (inbred, low
food intake)

Not assigned F 	 10.47 4.9 5 73 (66-telomere) (660)
Not assigned F 	 10.48 4.7 7 49 (35 to 68)
Not assigned F 	 34.28 14.4* Non-Mendelian 8 7 (1 to 19)
Not assigned F 	 7.98 3.6 9 47
Not assigned F 	 7.02 3.2 18 40

NON/Lt � (NZO/
H1Lt � NON/
Lt)F1

Dbsty1 LOD 	 9.36 BW 1 21 (8.3 to 43.1) (661)
Dbsty2 LOD 	 3.86 Adiposity index 5 43
Dbsty3 LOD 	 4.88 Adiposity index 12 48 (45 to 53)

NZM/B1NJ � SM/J Bfq1 LOD 	 3.6 36 Body fat 2 81 (662)
NZO � (SJL/x

NZO)F1
Nobq1 LOD 	 3.8 16.8 BMI (females) 5 32 (663–665)

SM/J � A/J Bwq3 LOD 	 4.6 6 BW at 10 weeks 8 56 (53 to 69) (666)
Bwq4 LOD 	 4.8 6 BW at 10 weeks 18 28 (20 to 54)

SM/J � NZO/H1Lt Obq4 LOD 	 6.3 Inguinal fat (%) (males) 17 8.7 (6.1 to 15.5) (667)
Obq7 LOD 	 6 Mesenteric fat (%)

(males)
1 28.7 (25.7 to 42)

Obq8 LOD 	 6.4 Retroperitoneal fat (%) 1 61.9 (63.7 to 85.1)
Obq9 LOD 	 6.7 Mesenteric fat (%)

(females)
1 88.4 (82.4 to 92.7)

Obq10 LOD 	 6.4 Gonadal fat (%) (males) 2 58.1 (50.7 to 67.4)
Obq11 LOD 	 4.1 Gonadal fat (%) 5 10 (3.4 to 16.9)
Obq12 LOD 	 4.5 Gonadal fat (%) 5 29 (21.9 to 36.1)
Obq13 LOD 	 9.3 Mesenteric fat (%) 6 26.8 (20.7 to 29.4)
Obq14 LOD 	 9.2 Mesenteric fat (%) 6 43.5 (39.4 to 46.9)
Obq15 LOD 	 6.6 Gonadal fat (%) (males) 7 51.4 (44.2 to 52.4)
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Table 3. (continued)

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

(C57BL/6J �
TH)F1 � TH and
(CAST/Ei �
TH)F1 � TH
(TallyHo) �
various

Tabw
Tafat
Tabw2

LOD 	 3.9
LOD 	 3.1

7
4
6

27.8 (0 to 44)
69.8 (68 to 90)
38.5 (19.1 to 65.5)

(668,669)

Sheep
Texel � Texel GDF8 p � 0.001 9.9% Less fat Fat (670)

Rat
(OLETF � BN) �

OLETF
Dmo9 LOD 	 3.5 Adiposity index 11 (671)
Dmo1 LOD 	 8.2 to

14
BW 1

Dmo4 LOD 	 4.4 to
5.5

Adiposity index 1

Dmo7p LOD 	 4.9 to
5.4

Adiposity index 7

Dmo6p LOD 	 3.5 to
3.6

Adiposity index 6

Dmo5 LOD 	 3.5 to
3.6

Adiposity index 3

Dmo10 LOD 	 3.5 to
3.6

BW 11

BN � GK/Nidd/gk5 Nidd/gk5
weight

LOD 	 4.19 13 Weight 8 (672)

Dahl � MNS DAHL3 p 	 0.00003 13 BW 3 (673)
F344 � OLETF Olep1 LOD 	 5.39 6.5 Leptin 2 (674)

Olep2 LOD 	 4.49 8 Leptin 6
GK � BN Nidd/gk6 BW 17 (675)

Nidd/gk1 Adiposity 1
bw/gk1 BW 7
Nidd/gk5 BW 8

GK � F344 Niddm1 LOD 	 3.2 23.5 BW 1 (676)
Weight1 LOD 	 6.2 7
Niddm3 LOD 	 3.0 10

Lepr(fa)/Lepr(fa)
13M � WKY

Qfa12 LOD 	 3 8.3 BMI, female 12 (677)
Qfa1 LOD 	 2.2 6.9 BMI, female 1

OLETF � BN Dmo1 LOD 	 6 11.6 BW 1 (678)
OLETF � F344 Niddm24 LOD 	 3.91 Also known as Nidd6/of 1Distal D1Rat81-D1Rat90 (679)

Obs5 LOD 	 5.1 Obs5 narrowed to 10-
cM interval

14 D14Rat23-
D14Wox7

(680)

SHR � BB/OK SHR4 LOD 	 3.1 14 BW (females) 4 (681)
SHR1 LOD 	 3.3 32 BW (males) 1

SHR � wild SHR10 LOD 	 3.5 BW (males) 10 (682)
WOKW � DA/K Wokw1/Q1ms5 LOD 	 4.5 16 BMI 5 (644,683)

Wokw1/Q1ms1 LOD 	 4.9 31 30-Week BW 1
Pig

Berkshire �
Yorkshire

SSC4:113 F 	 11.8 6 Weight 4 (684)
SSC7 F 	 13.8 6.9 Back fat 7
SSC1 F 	 11.3 4.8 Back fat 1
SSC5 F 	 9.5 4.8 Back fat 5

Duroc � Berkshire SSC2 0 F 	 10.03 Back fat 2 (685)
SSC2 30 F 	 10.61 Fat (%) 2
SSC2 37 F 	 7.34 Weight 2
SSC6 110 F 	 7.39 Weight 6

Duroc, Hampshire,
Landrace �
Meishan

PigQTL2 F 	 7.9 Average back fat 7 (686,687)
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Table 3. (continued)

Cross QTL Scores Variance (%) Phenotypes
Animal

chromosome QTL peak Reference

Duroc, Hampshire,
Landrace �
Meishan

HMGA1 p 	 0.01 Back fat 7 (669)

Large White �
European wild
boar

FAT1 p 	 0.0001 9.7 Body fat (%) 4 (688–690)

Landrace � Iberian FAT1 F 	 11.1 Back fat depth 4 (691)
Landrace � Iberian FAT1 Weight (692)
Landrace � Iberian SSC6 60-100 p 	 0.001 Back fat thickness 6 (693)

SSC6 130-132/
LEPR

p 	 0.001 Back fat thickness,
intramuscular fat (%)

6

Landrace � Iberian AFABP Fatness 4 (692)
Meishan � (Dutch

Landrace � Large
White)

SSC7 F 	 18 Back fat thickness 7 (694,695)

Meishan � (Dutch
Landrace � Large
White

SSC2 F 	 2.7 Back fat thickness 2 (694,695)

Meishan � Duroc SSC6 102,7-
116.7

F 	 16.16 4 Weight 6 (696)

SSC6 102,7-
116.7

F 	 12.65 14 Weight, daily gain 6

SSC7 56.2 F 	 11.45 12 Weight, daily gain 7
SSC7 113.3 F 	 13.6 14 Fat, back fat thickness 7
SSCX 74,6 F 	 15.79 16 Fat, intramuscular X

Meishan � Duroc HMGA2 p 	 0.01 14 Fat, back fat thickness 7 (669)
Dutch � Meishan SSC6q F 	 14.7 0.1 to 0.2 Intramuscular fat 6q (465,697)

SSC7 F 	 49.4 Back fat thickness 7
SSC2 F 	 24.1 Back fat thickness 2
SSC6p F 	 14.5 Intramuscular fat 6p
SSCX F 	 12.8 0.1 to 0.2 Intramuscular fat X

Gottingen �
Meishan

SSC7 F 	 19.5 18 Back fat thickness 7 (698)

Large White �
Meishan

BFM4 Midback fat depth 4 (699)

Meishan � Large
White

SSCX 67 p 	 1.4e15 Fat thickness at the loin X (700)

White � Meishan SSC4:49-84 F 	 14.9 to
15.3

3 to 4 Back fat thickness 4 (701,702)

SSC8 F 	 9.5 1 to 2 Back fat thickness 8
SSC7 F 	 10.4 to

20.5
2 to 5 Back fat depth 7

SSC1 F 	 39.4 to
94.9

1 to 2 Weight 1

SSC5 F 	 13.4 to
15.1

2 to 5 Back fat thickness 5

SSC6 F 	 11.9 1 to 2 Back fat thickness 6
SSCX F 	 37.4 to

71.8
Back fat depth X

White composite �
Meishan

SSC7 F 	 14.7 Back fat thickness 7 (703)
SSC1 F 	 15.4 Back fat thickness 1
SSCX F 	 32.3 Back fat thickness X

Hampshire,
Landrace �
Minghu

PIT1 F 	 3.34 42-Day weight 13 (704)

Large White � Wild
Boar

IGF2q F 	 7.1 10.4 Back fat depth 2p (634,705)
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ing of crosses between two strains define only a statistical
probability of a polymorphic gene residing in a defined
genetic interval. Follow-up studies are necessary to confirm
this likelihood. Congenic (and subcongenic) strains have
been generated for some of these QTLs, supporting the
existence and magnitude of some of these phenotypes.
Some cases include the characterization of the Fob3 QTL
(645,646). Congenic strains containing a chromosome 15
region from the lean L strain were introgressed onto the F
genetic background. Interestingly the characterization of
subcongenic lines suggests that Fob3 contains two contrib-
utory regions: Fob3a and Fob3b, conferring late and early
onset phenotypes, respectively. Expression analysis of
genes positioned within the Fob3b segment by microarray
screening identifies a candidate gene, Sqle (squalene epoxi-
dase). This gene is involved in the regulation of cholesterol
biosynthesis. Interestingly, the expression of other genes of
the cholesterol biosynthesis pathway mapping outside of the
Fob3b region are also perturbed, suggesting that the
changes in activity of this pathway may be responsible for
the phenotypic differences between the F parental and the
F.L�Chr15� congenic strains. Other murine QTL regions
for which candidate genes have been implicated include
Bw19 (Gpc3, Glypican 3) (606) and the QTL on chromo-
some 7 associated with adiposity (ATP10a, encodes
ATPase, class V, type 10A) (706). A candidate gene for a
rat QTL Niddm24 is Pnlip (encodes pancreatic lipase). The
continued generation of congenic mouse strains and expres-
sion screening and single nucleotide polymorphism geno-
typing analysis should continue to implicate specific genes
with well-characterized QTL regions.

QTLs from Cross-Breeding Experiments Other Than
Rodents

Syntenic regions in humans have been picked up directly
from the original papers or determined from the U.S. Live-
stock Genome Mapping Projects (NAGRP03). Four new
chromosomes were targeted according to QTL analysis in
chicken, one in pig, and one in sheep (Table 3). In a cross
between Landrace and Iberian pig strains, a QTL for fatness
was reported on pig chromosome 4 in the region of the
AFABP gene (692) corresponding to the human fatty acid-
binding protein 4 (adipocyte) gene located at 8q24. A QTL
for fat was reported in a sheep Texel � Texel cross at the
growth differentiation factor 8 gene (670), which is located
at 2q32.2 in humans. The main QTL region detected for fat
on chicken chromosome 7 from the cross White Leghorn
layer � commercial broiler (591) corresponded to human
chromosome 2q21. The cross of Rhode Island Red layer
with itself produced a QTL for BW on chromosome 4 (707)
corresponding to human chromosome 17q11.1-q12, whereas
the White Plymouth Rock cross produced a QTL for weight on
chromosome 5 (594) corresponding to human 22q13.1-q13.31

but also to 12p13-q23 reported in the cross WL � RIR (593).
Finally, a QTL for weight was reported on chicken chromo-
some 1 (596) that corresponds to human chromosome 21q22.

Associations with Candidate Genes
The evidence for associations between candidate genes

and obesity-related phenotypes is summarized in Table 4. A
total of 416 studies covering 127 candidate genes have
reported significant associations. Of these, 57 studies (40
candidate genes) were published during the past year. This
year’s update includes 14 new candidate gene entries.

Associations with BW, BMI, Overweight, and Obesity
BW, BMI, overweight, and obesity were associated with

DNA sequence variation in ACE (710,711), ADIPOQ (718–
720), ADRB2 (744), BDNF (814), COMT (822), CYP11B2
(824), DRD4 (836), ENPP1 (839), ESR1 (841), ESR2 (841),
FOXC2 (850,851), GAD2 (855), GHRHR (859), HTR2C
(884), LIPC (951), MC4R (971), MCHR1 (876,877), NPY
(981), NTRK2 (998), NPY2R (984), PLIN (1112), PPARG
(1012,1021,1027), PPARGC1A (1042), PYY (984,1046),
RETN (1051), SERPINE1 (1055), UCP1 (1084), and VDR
(1110).

Associations with Body Composition and Fat
Distribution Phenotypes

Body composition-related phenotypes (fat mass, fat-free
mass, percentage body fat, sum of skinfolds) showed asso-
ciations with markers in ACE (712), UCP1 (1079), LEPR
(937), LIPC (951), PLIN (1113), PPARG (1021), GFPT1
(858), AR (809), DIO1 (830), IGF2 (899), FOXC2 (850),
and COMT (822). Phenotypes reflecting body fat distribu-
tion [abdominal visceral and subcutaneous fat, waist-to-hip
ratio (WHR), waist circumference, sagittal diameter] were
associated with ACE (710), ADIPOQ (719), ADRB2 (744),
APOA2 (792), FABP2 (847), LTA (964), MTTP (976), PLIN
(1113), PPARG (1021), and UCP1 (1079).

Associations with Changes in BW and Body
Composition

Eight studies reported associations between seven candi-
date genes and changes in BW and body composition. The
ADRB1 (736), NMB (978), and PPARG (1016) loci showed
associations with spontaneous changes in BW and adiposity
over time. Markers in the PPARG (1032) gene were re-
ported to be associated with exercise training-induced
weight loss, whereas sequence variation in the APOA5 (797)
and MC4R (972) loci modified weight loss in response to a
low-fat diet and bariatric surgery, respectively. The ADIPOQ
(721) and LEPR (949) loci were reported to be associated
with changes in BW during a 3-year diabetes prevention
trial with acarbose.
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Table 4. Evidence for association between markers of candidate genes with obesity-related phenotypes

Gene Location Subjects Phenotype p Reference

ABCC8 11p15.1 232 Cases Obesity, morbid 0.02 (708)
ABCG5 2p21 262 Cases BMI 0.05 (709)
ACE 17q24.1 1009 Men BMI 0.012 (710)

964 Men Waist circumference 0.0023 (710)
956 Subjects Overweight (Blacks from U.S.) 0.03 (711)
1059 Subjects Overweight (Blacks from Nigeria) 0.04 (711)
956 Subjects Obesity (Blacks from U.S.) 0.02 (711)
1059 Subjects Obesity (Blacks from Nigeria) 0.04 (711)
922 Subjects Body fat (%) (physically active Health ABC subjects) 0.05 (712)
959 Cases Overweight 0.014 (713)
186 Cases BMI 0.04 (714)

ACP1 2p25 75 Cases BMI (in children) 0.02 (715)
265 Cases BMI (in type 2 diabetic subjects) 0.002 (716)

ADA 20q13.12 273 Cases BMI (in type 2 diabetic subjects) 0.0004 (717)
ADIPOQ 3q27 194 Subjects BMI 0.017 (718)

811 Subjects, 45 families BMI (Hispanic families from IRAS) 0.004 (719)
811 Subjects, 45 families Waist circumference (Hispanic families from IRAS) 0.001 (719)
811 Subjects, 45 families Abdominal visceral fat (Hispanic families from IRAS) 0.01 (719)
100 Subjects, 100 women BMI (women with polycystic ovarian syndrome) 0.01 (720)
770 Subjects Weight change during acarbose trial (STOP-NIDDM trial

cohort)
0.043 (721)

4479 Cases 3-year increase in BMI 0.033 (722)
4479 Cases 3-year increase in waist-to-hip ratio 0.01 (722)
103 Cases BMI 0.03 (723)
995 Cases Obesity 0.047 (724)
413 Cases Body weight, waist circumference (in Japanese, in whites) 0.03 (725)
371 Cases BMI 0.02 (726)
95 Cases BMI (in obese women) 0.014 (727)
95 Cases Sagittal abdominal diameter (in obese women) 0.032 (727)
245 Cases BMI 0.05 (728)

ADRA2A 10q24-q26 213 Cases Skinfolds, trunk-to-extremity ratio (in Blacks) 0.04 (729)
72 Cases Skinfolds, trunk-to-extremity ratio (in women) 0.002 (730)
476 Cases Abdominal total fat 0.003 (731)
476 Cases Abdominal subcutaneous fat 0.012 (731)
93 Cases, 49 men, 44 women Weight change (Chinese schizophrenic under anti-

psychotic)
0.023 (732)

ADRA2B 2q11.2 166 Cases Basal metabolic rate (in obese non-diabetics) 0.01 (733)
126 Cases Body weight, change, 5-year (in non-diabetics) 0.04 (734)

ADRB1 10q24-q26 931 Cases BMI, body weight, fat mass 0.05 (735)
760 Subjects BMI increase during 15-year follow-up 0.018 (736)

ADRB2 5q31-q32 239 Cases Waist-to-hip ratio 0.05 (737)
180 Cases BMI 0.003 (738)
494 Cases Body weight, increase (in men) 0.01 (739)
141 Cases Catecholamine-induced lipolysis in adipocytes 0.01 (740)
247 Cases BMI, change (in women) 0.04 (741)
247 Cases Fat mass, change (in women) 0.0008 (741)
247 Cases Body fat (%) change (in women) 0.0003 (741)
230 Cases Skinfolds, sum of eight (in men) 0.03 (741)
236 Cases Lipolysis 0.02 (742)
508 Cases BMI (in Japanese) 0.001 (743)
272 Subjects BMI (African Americans from IRAS) 0.001 (744)
992 Subjects BMI (whole IRAS cohort) 0.045 (744)
992 Subjects Waist-to-hip ratio (whole IRAS cohort) 0.0001 (744)
948 Subjects Abdominal visceral fat (whole IRAS cohort) 0.0001 (744)
140 Cases BMI, fat mass, fat cell volume 0.001 (745)
826 Cases BMI, obesity, waist-to-hip ratio, waist circumference, hip

circumference
0.05 (746)

366 Cases BMI (in women) 0.01 (747)
836 Cases BMI, body weight, waist-to-hip ratio, waist

circumference, hip circumference (in French men)
0.002 (748)
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Table 4. (continued)

Gene Location Subjects Phenotype p Reference

63 Cases BMI, fat mass 0.05 (749)
277 Cases BMI (in Japanese men) 0.004 (750)
1576 Cases BMI 0.02 (751)
284 Cases Leptin 0.03 (752)
224 Cases BMI (in men) 0.01 (731)
24 Cases Leptin, body weight, increase, skinfolds, sum of eight 0.03 (753)
286 Cases Body weight, increase 0.04 (754)
574 Cases BMI (in Japanese) 0.009 (755)

ADRB3 8p12-p11.2 185 Cases Body weight, increase over 20 years, weight, current 0.007 (756)
313 Cases Obesity (in those 20 to 35 years old) 0.05 (757)
476 Cases BMI (in men) 0.05 (758)
553 Cases Obesity (in Japanese children) 0.02 (759)
179 Cases BMI 0.006 (760)
295 Cases BMI 0.05 (761)
695 Cases BMI 0.001 (762)
83 Cases BMI (in coronary artery disease patients) 0.05 (763)
211 Cases Obesity, moderate 0.02 (764)
53 Cases Obesity 0.05 (765)
350 Cases BMI 0.009 (766)
398 Cases BMI, abdominal subcutaneous fat, abdominal visceral fat 0.02 (767)
154 Cases Obesity (in sedentary individuals) 0.05 (768)
46 Cases 5-year weight gain 0.05 (769)
586 Cases BMI, hip circumference (in women) 0.03 (770)
56 Cases BMI, fat mass, waist circumference 0.05 (771)
128 Cases Body weight, increase over 25 years 0.01 (772)
63 Cases BMI 0.001 (773)
63 Cases Abdominal visceral fat 0.001 (773)
63 Cases Abdominal subcutaneous fat 0.001 (773)
1675 Cases BMI, obesity, body fat (%) 0.05 (774)
254 Cases Obesity, early onset 0.002 (775)
76 Cases Fat mass (in Thai men) 0.05 (776)
131 Cases Fat mass, abdominal visceral fat 0.01 (777)
261 Cases BMI 0.05 (778)
979 Cases Waist-to-hip ratio, overweight (in men �53 years old) 0.05 (779)
802 Cases BMI 0.02 (780)
224 Cases BMI (in men) 0.02 (731)
49 Cases BMI 0.03 (781)
335 Cases Waist-to-hip ratio (in women) 0.02 (782)
47 Cases BW (in obese children) 0.05 (783)

AGRP 16q22 183 Cases BMI, body fat (%), fat mass (in whites) 0.003 (784)
253 Cases BMI 0.015 (785)
212 Cases Fat mass 0.028 (785)
212 Cases Body fat (%) 0.013 (785)
874 Cases Body weight 0.02 (786)
874 Cases BMI 0.01 (786)
874 Cases Fat-free mass 0.002 (786)
874 Cases Fat mass 0.04 (786)

AGT 1q42.2 135 Cases Body weight, change 0.006 (787)
316 Cases Waist-to-hip ratio 0.007 (788)
57 Cases Adipocyte size 0.01 (789)
106 Cases Adipocyte size 0.02 (789)
94 Cases Fat mass (in women �42 years old) 0.008 (790)

APOA1 11q23.3 482 Cases BMI (in type 2 diabetics) 0.048 (791)
482 Cases Waist-to-height ratio (in type 2 diabetics) 0.023 (791)

APOA2 1q23.1 122 Women Abdominal visceral fat (white women) 0.05 (792)
624 Cases Waist circumference 0.03 (793)

APOA4 11q23.3 369 Cases BMI 0.003 (794)
375 Cases BMI, waist-to-hip ratio (in young men) 0.004 (795)
613 Cases BMI, body fat (%) 0.004 (796)

APOA5 11q23 606 Subjects, 606 women Weight loss on a 3-month low-fat diet 0.0021 (797)
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Table 4. (continued)

Gene Location Subjects Phenotype p Reference

APOB 2p24.2 56 Cases Body fat (%), abdominal fat 0.04 (798)
232 Cases BMI 0.005 (799)
181 Cases BMI 0.05 (800)

APOC3 11q23.1-q23.2 270 Cases Obesity 0.05 (801)
APOD 3q26.2-qter 114 Cases BMI 0.006 (802)
APOE 19q13.32 1775 Cases BMI 0.01 (803)

405 Cases Fat mass 0.002 (804)
405 Cases Body fat (%) 0.003 (804)
405 Cases Lean mass 0.004 (804)
164 Cases Waist circumference (in women with a family history of

diabetes)
0.05 (805)

64 Cases Body fat (%), leptin (in women) 0.02 (806)
AR Xq11.2-q12 131 Cases BMI 0.043 (807)

113 Cases Waist circumference (in women) 0.002 (808)
294 Men Fat-free mass 0.027 (809)
112 Men Fat-free mass 0.049 (809)
106 Cases Body fat (%) 0.01 (810)

ATP1A2 1q23.1 122 Cases Body fat (%), respiratory quotient 0.05 (811)
156 Cases Respiratory quotient (in young adults) 0.0001 (812)
12 Cases Fat mass 0.01 (813)
12 Cases Body weight 0.05 (813)

BDNF 11p13 249 Subjects Minimum lifetime BMI (PO trios with restricting AN) 0.019 (814)
CAPN10 2q37.3 148 Cases adrb3 activity in adipocytes (in overweight individuals) 0.004 (815)

286 Cases BMI 0.003 (816)
CART 5q13.2 612 Cases Waist-to-hip ratio (in men) 0.002 (817)

528 Cases BMI, obesity 0.008 (818)
CBFA2T1 8q21.3 281 Cases BMI, body fat (%), waist circumference, hip

circumference
0.0002 (819)

CCKAR 4p15.2-p15.1 1296 Cases Leptin, body fat (%) 0.003 (820)
CNTFR 9p13.2 465 Cases Fat-free mass 0.011 (821)
COMT 22q11.21 246 Subjects Height (pre-/early pubertal girls) 0.001 (822)

246 Subjects Body weight (pre-/early pubertal girls) 0.009 (822)
246 Subjects Total lean mass (pre-/early pubertal girls) 0.004 (822)
83 Cases Exercise training-induced percentage body fat loss 0.05 (823)

CRHR1 17q12-q22 503 Cases BMI 0.0083 (14)
CYP11B2 8q24.3 190 Subjects BMI (normotensive highlanders from India) 0.002 (824)

100 Subjects BMI (hypertensive highlanders from India) 0.004 (824)
CYP19A1 15q21.1 125 Cases Sagittal abdominal diameter (in women) 0.049 (825)

300 Cases BMI 0.01 (826)
83 Cases Exercise training-induced body fat loss 0.01 (823)
83 Cases Exercise training-induced percentage body fat loss 0.01 (823)

CYP2D6 22q13.1 11 Cases, 11 men BMI change percentage (white schizophrenic under anti-
psychotic)

0.01 (827)

CYP7A1 8q12.1 1102 Cases BMI 0.05 (828)
DF 19p13.3 24 Cases Abdominal fat (in monozygotic twins) 0.05 (829)
DIO1 1p32 350 Subjects Fat-free mass 0.03 (830)
DRD2 11q23.2 392 Cases Body weight 0.002 (831)

176 Cases Obesity 0.002 (832)
320 Cases Energy expenditure, 24-hour, sleeping metabolic rate 0.03 (833)
383 Cases Skinfolds, iliac, skinfolds, triceps 0.002 (834)
990 Cases Obesity 0.03 (835)

DRD4 11p15.5 128 Subjects, 128 women Maximal lifetime BMI (women with seasonal affective
disorder)

0.001 (836)

103 Cases Maximal lifetime BMI 0.007 (837)
ENPP1 6q23.1 293 Cases Leptin 0.01 (838)

1225 Cases, 1205 controls Obesity (obese children and controls) 1e�05 (839)
184 Families Obesity 0.01 (839)

ESR1 6q25.1 108 Cases BMI (in post-menopausal women) 0.04 (840)
295 Subjects BMI 0.024 (841)
551 Cases BMI (in middle-aged women) 0.05 (842)
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Table 4. (continued)

Gene Location Subjects Phenotype p Reference

551 Cases Body fat (%) (in middle-aged women) 0.05 (842)
551 Cases Waist circumference (in middle-aged women) 0.05 (842)
216 Cases Obesity, android type 0.0002 (843)

ESR2 14q23.2 295 Subjects BMI 0.02 (841)
FABP1 2p11 130 Cases BMI 0.05 (844)

130 Cases Waist circumference 0.005 (844)
FABP2 4q27 714 Cases BMI 0.042 (845)

507 Cases BMI, body fat (%) 0.01 (846)
120 Subjects, 120 women Total abdominal fat (white women) 0.004 (847)
120 Subjects, 120 women Subcutaneous abdominal fat (white women) 0.03 (847)
395 Cases Abdominal fat 0.008 (848)

FASN 17q25 214 Cases Body fat (%) 0.002 (849)
174 Cases Respiratory quotient, 24-hour 0.04 (849)
174 Cases 24-hour carbohydrate oxidation 0.03 (849)

FOXC2 16q22-q24 127 Cases, 127 controls Obesity 0.027 (850)
223 Cases, 231 controls Obesity 0.043 (850)
388 Subjects BMI (Swedish type 2 diabetics) 0.03 (851)
388 Subjects Fat mass (Swedish type 2 diabetics) 0.04 (851)
644 Cases BMI 0.03 (852)
215 Cases Body fat (%) 0.02 (852)
724 Cases Waist-to-hip ratio 0.04 (853)

GAD2 10p11.23 575 Cases Morbid obesity, eating behavior 0.0049 (854)
575 Cases Morbid obesity, eating behavior 0.014 (854)
477 Cases, 614 controls Obesity (obese children and controls) 0.043 (855)
559 Subjects Birth weight (obese children) 0.009 (855)

GCGR 17pter 950 Cases Waist-to-hip ratio, waist girth, sagittal abdominal diameter 0.001 (856)
GCK 7p15.3-p15.1 58 Cases Body weight at birth (in men) 0.002 (857)
GFPT1 2p13 164 Subjects, 164 men Fat (%) 0.009 (858)
GHRHR 7p14 1095 Subjects, 178 families Obesity 0.025 (859)

1418 Subjects Obesity (MONICA Augsburg cohort) 0.002 (859)
GHRL 3p26-p25 300 Cases Obesity age of onset 0.003 (860)

65 Cases BMI (in tall obese children) 0.001 (861)
192 Cases Obesity (in women) 0.05 (862)

GNB3 12p13.31 737 Cases Obesity (in men) 0.01 (863)
294 Cases Weight gain during pregnancy 0.006 (864)
230 Cases BMI (in primiparous women) 0.01 (865)
20 Cases Lipolysis 0.01 (866)
111 Cases Weight loss with sibutramine 0.0013 (867)
213 Cases BMI, waist circumference, hip circumference, skinfolds

(in Nunavut Inuit)
0.05 (868)

181 Cases Body weight at birth 0.02 (869)
130 Cases BMI 0.001 (870)
250 Cases Fat mass, change, body fat, change (%) 0.006 (871)
114 Cases Lipolysis (subcutaneous, adrenoreceptor-mediated) 0.004 (872)
197 Cases BMI (in hypertensives) 0.02 (873)
1950 Cases BMI, body weight (in men, white, Chinese, and African) 0.001 (874)
774 Cases BMI 0.03 (875)
774 Cases Body fat (%) 0.02 (875)
134 Cases, 80 men, 54

women
Weight change (Chinese schizophrenic under anti-

psychotic)
0.003 (732)

GPR24 22q13.2 469 Cases, 1127 controls Obesity (French obese children) 0.006 (876)
719 Cases, 326 controls Obesity 0.0016 (877)

GYS1 19q13.33 130 Cases Obesity 0.03 (878)
HSD11B1 1q32-q41 263 Cases BMI (in children) 0.005 (879)

263 Cases Waist circumference (in children) 0.05 (879)
263 Cases Waist-to-hip ratio (in children) 0.05 (879)

HSD3B1 1p11.2 132 Cases Skinfolds, sum of six, 12-year change 0.04 (811)
HSPA1B 6p21.31 517 Cases Obesity 0.0002 (880)
HTR1B 6q14.1 98 Cases BMI (in women with bulimia nervosa) 0.001 (881)
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Table 4. (continued)

Gene Location Subjects Phenotype p Reference

HTR2A 13q14.11 276 Cases Dietary energy, carbohydrate and alcohol intake (in obese
subjects)

0.028 (882)

264 Cases BMI, waist-to-hip ratio, sagittal abdominal diameter 0.015 (883)
HTR2C Xq24 293 Cases, 481 controls Obesity 0.0001 (884)

224 Cases Obesity 0.008 (885)
117 Cases Body weight, gain, anti-psychotic-induced 0.0003 (886)
148 Cases Body weight, loss (in teenage women) 0.0001 (887)
589 Cases BMI 0.009 (888)
73 Cases, 45 men, 28 women Weight change (from 58 white/22 African-American

schizophrenic under anti-psychotic)
0.05 (889)

42 Cases, 34 men, eight
women

BMI change 10% (white schizophrenic under anti-
psychotic)

0.004 (890)

41 Cases, 26 men, 15 women BMI change (%) (5 white/35 African American/1
Hispanic schizophrenic under anti-psychotic)

0.05 (891)

41 Cases, 26 men, 15 women BMI change 7% (5 white/35 African American/1 Hispanic
schizophrenic under anti-psychotic)

0.003 (891)

58 BMI change 9 months; white schizophrenic under anti-
psychotic

0.03 (892)

117 BMI change; Chinese schizophrenic under anti-psychotic 0.0003 (886)
32 BMI change; Chinese schizophrenic under anti-psychotic 0.02 (893)

IDE 10q23-q25 724 Cases BMI 0.0067 (894)
IGF1 12q23.3 502 Cases Body fat (%), fat-free mass, fat mass, change 0.05 (895)
IGF2 11p15.5 2734 Cases Body weight 0.01 (896)

1474 Cases BMI 0.02 (897)
427 Cases Fat mass 0.05 (898)
206 Women Fat-free mass 0.05 (899)

IL6 7p21 271 Cases BMI (in men) 0.007 (900)
271 Cases Waist circumference (in men) 0.01 (900)
124 Cases Fasting energy expenditure 0.012 (901)
124 Cases Energy expenditure during hyperinsulinemic clamp 0.007 (901)
3376 Cases BMI 0.027 (902)
3376 Cases Body weight change during a 3.5-year follow-up 0.03 (902)
242 Cases Fat-free mass 0.02 (903)
571 Cases BMI 0.009 (904)
485 Cases BMI 0.003 (905)
74 Cases BMI 0.03 (905)

IL6R 1q22 184 Cases Obesity (in women) 0.05 (906)
700 Cases BMI 0.003 (907)
700 Cases BMI 0.001 (907)
700 Cases BMI 0.004 (907)
700 Cases BMI 0.02 (907)
700 Cases BMI 0.02 (907)

INS 11p15.5 758 Cases Body weight 0.009 (908)
2734 Cases Body weight 0.001 (896)
431 Cases BMI 0.043 (909)
431 Cases Waist circumference 0.015 (909)
238 Cases Obesity 0.05 (910)
1152 Cases BMI 0.0002 (911)
1207 Cases Body weight 0.02 (912)
1207 Cases BMI 0.03 (912)
1207 Cases Waist circumference 0.03 (912)
52 Cases Waist-to-hip ratio (in obese women) 0.005 (913)

INSR 19p13.3-p13.2 75 Cases Obesity (in hypertensives) 0.05 (914)
IRS1 2q36.3 304 Cases BMI 0.001 (915)

304 Cases Waist-to-hip ratio 0.001 (915)
156 Cases Leptin (in obese subjects) 0.03 (916)
1748 Cases BMI (in African Americans) 0.04 (917)

IRS2 13q34 233 Cases BMI 0.02 (918)
233 Cases Body fat (%) 0.01 (918)
233 Cases Waist circumference 0.004 (918)
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Table 4. (continued)

Gene Location Subjects Phenotype p Reference

LDLR 19p13.2 83 Cases BMI (in normotensives) 0.008 (919)
131 Cases BMI, skinfolds, subscapular, skinfolds, triceps, arm fat

index
0.001 (920)

270 Cases Obesity 0.02 (921)
84 Cases BMI (in hypertensives) 0.004 (922)
112 Cases BMI (in hypertensives) 0.04 (923)

LEP 7q31.3 103 Cases BMI, body weight 0.005 (924)
395 Cases Leptin 0.02 (925)
39 Cases Leptin secretion 0.05 (926)
738 Cases Obesity 0.011 (927)
738 Cases BMI 0.028 (927)
233 Cases Leptin (in obese women) 0.02 (928)
211 Cases Obesity (in women) 0.05 (929)
117 Cases Leptin 0.04 (930)
168 Cases Body weight, decrease 0.006 (931)
84 Cases Body weight 0.05 (932)
73 Cases, 55 men, 18 women BMI change 9 months (white schizophrenic under anti-

psychotic)
0.03 (892)

128 Cases, 38 controls, 61
men, 67 women

BMI change (Chinese schizophrenic under anti-psychotic) 0.003 (933)

128 Cases, 38 controls, 61
men, 67 women

Abdominal subcutaneous fat change (Chinese
schizophrenic under anti-psychotic)

0.009 (933)

LEPR 1p31 502 Cases BMI, fat mass 0.005 (934)
308 Cases Fat-free mass 0.03 (935)
335 Cases BMI, body weight, fat mass (in women) 0.01 (936)
103 Subjects Body fat (%) 0.02 (937)
405 Cases Fat mass 0.015 (938)
405 Cases Lean mass 0.002 (938)
179 Cases BMI, fat mass, body weight, loss (in overweight women) 0.006 (939)
336 Cases Overweight/obesity 0.009 (940)
220 Cases Leptin, BMI, fat mass (in post-menopausal women) 0.0001 (941)
267 Cases BMI, sagittal abdominal diameter 0.04 (942)
600 Cases BMI � 25 0.007 (943)
130 Cases Obesity, extreme (in children) 0.02 (944)
268 Cases Energy expenditure, 24-hour 0.02 (945)
184 Cases Adipocyte size, subcutaneous abdominal 0.02 (945)
20 Cases Body fat (%) 0.003 (946)
62 Cases Abdominal total fat, abdominal subcutaneous fat 0.03 (947)
118 Cases BMI 0.01 (948)
770 Subjects BMI change during 3-year follow-up (STOP-NIDDM trial

cohort)
0.009 (949)

770 Subjects Waist circumference change during 3-year follow-up
(STOP-NIDDM trial cohort)

0.006 (949)

LIPC 15q21–23 230 Cases BMI 0.002 (950)
234 Cases Waist circumference 0.002 (950)
231 Cases Abdominal visceral fat 0.03 (950)
1070 Subjects BMI 0.02 (951)
1070 Subjects Body fat (%) 0.03 (951)

LIPE 19q13.2 257 Cases BMI, body fat (%), fat mass, skinfolds, sum of eight (in
white and black women)

0.005 (952)

117 Cases Waist-to-hip ratio, lipolysis 0.02 (953)
405 Cases Obesity (in women) 0.05 (954)
405 Cases Body fat (%) (in women) 0.05 (954)
380 Cases Obesity 0.002 (955)
110 Cases BMI (in women) 0.012 (956)

LMNA 1q23.1 48 Cases Leptin, lipodystrophy, leptin-to-BMI ratio 0.05 (957)
306 Cases Leptin, BMI, waist-to-hip ratio (in Canadian Oji-Cree) 0.05 (958)
47 Cases Familial partial lipodystrophy 0.0001 (959)
186 Cases BMI, body weight, waist circumference, skinfolds,

subscapular
0.002 (960)
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Table 4. (continued)

Gene Location Subjects Phenotype p Reference

LPL 8p21.3 587 Cases BMI (in women) 0.02 (758)
249 Cases Body fat (%), fat mass, BMI, change (in white women) 0.01 (961)
236 Cases BMI 0.05 (962)

LRPAP1 4p16.3 235 Cases Abdominal obesity 0.045 (963)
LTA 6p21.3 5630 Subjects Waist circumference 0.009 (964)
MACS2 16p12.3 1976 Cases BMI 0.009 (965)

1976 Cases Waist-to-hip ratio 0.0011 (965)
MAOA Xp11.4-p11.3 50 Cases BMI � 35 0.005 (966)
MC3R 20q13.2-q13.3 314 Cases BMI, body fat (%), fat-free mass, fat mass, respiratory

quotient (in normal-weight and overweight individuals)
0.0005 (967)

244 Cases Leptin (in morbidly obese subjects) 0.05 (968)
MC4R 18q22 156 Cases BMI, body fat (%), fat-free mass, fat mass (in women) 0.003 (969)

520 Cases Obesity 0.017 (970)
1135 Cases Obesity (in children and adolescents) 0.006 (33)
332 Subjects BMI (offspring of the Quebec Family Study) 0.002 (971)
426 Cases Severe obesity 0.04 (38)
174 Subjects Weight loss after bariatric surgery (severely obese patients

undergoing bariatric surgery)
0.003 (972)

268 Cases BMI, waist-to-hip ratio 0.023 (973)
229 Cases Resting energy expenditure 0.007 (974)

MC5R 18q22 156 Cases BMI, body fat (%), fat-free mass, fat mass (in women) 0.002 (969)
MED12 Xq13.1 68 Cases Obesity 0.001 (975)
MTTP 4q24 258 Subjects Abdominal visceral fat 0.005 (976)
NCOA3 20q13.13 301 Cases BMI (in post-menopausal women with breast cancer) 0.01 (977)
NMB 15q25 291 Subjects 6-year change in BMI 0.037 (978)

291 Subjects 6-year change in waist circumference 0.018 (978)
291 Subjects 6-year change in percentage body fat 0.017 (978)

NPR3 5p14-p13 787 Cases BMI 0.048 (979)
787 Cases Waist-to-hip ratio 0.022 (979)

NPY 7p15.1 595 Cases BMI, waist-to-hip ratio 0.03 (980)
907 Subjects BMI (non-obese Swedish subjects) 0.005 (981)
369 Cases Body weight at birth 0.03 (982)

NPY2R 4q31 952 Cases BMI 0.017 (983)
952 Cases Waist-to-hip ratio 0.013 (983)
100 Cases, 67 controls, 167

men
Severe obesity (male Pima Indians) 0.002 (984)

NPY5R 4q31-q32 74 Cases Obesity (in Pima Indians) 0.05 (985)
NR0B2 1p35.3 294 Cases Body weight at birth 0.05 (986)

809 Cases BMI (in 7-year-olds) 0.05 (986)
809 Cases Waist circumference (in 7-year-olds) 0.01 (986)
305 Cases BMI (in women) 0.05 (986)
217 Cases Obesity, early onset 0.009 (987)

NR3C1 5q31 51 Cases Abdominal visceral fat (in lean subjects) 0.003 (988)
279 Cases BMI (in obese subjects) 0.04 (989)
135 Cases Waist-to-hip ratio (in men) 0.01 (990)
262 Cases Leptin, BMI, waist-to-hip ratio, waist circumference 0.001 (991)
369 Cases Overweight (in type 2 diabetics) 0.003 (992)
83 Cases Skinfolds, sum of (in girls) 0.01 (993)
480 Cases Abdominal visceral fat 0.001 (994)
12 Cases Body weight, gain 0.01 (995)
1963 Cases BMI 0.002 (996)
1963 Cases Waist-to-hip ratio 0.02 (996)
370 Cases BMI 0.05 (996)
337 Cases Lean mass 0.02 (997)

NTRK2 164 Subjects Minimum lifetime BMI (Spanish eating disorder patients) 0.001 (998)
PGR 11q22.2 301 Cases BMI (in post-menopausal women with breast cancer) 0.005 (977)
PLIN 15q26 117 Cases Lipolysis in adipocytes (in obese women) 0.0008 (999)

1538 Cases BMI 0.004 (1000)
1538 Cases BMI 0.004 (1000)
351 Subjects, 351 women Body fat (%) 0.016 (1113)
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Table 4. (continued)

Gene Location Subjects Phenotype p Reference

351 Subjects, 351 women Body fat (%) 0.014 (1113)
351 Subjects, 351 women Waist circumference 0.02 (1113)
351 Subjects, 351 women Waist circumference 0.045 (1113)
123 Cases, 623 controls Obesity (Malays from Singapore) 0.05 (1112)
77 Cases, 521 controls Obesity (Indians from Singapore) 0.05 (1112)

PNMT 17q21.2 149 Cases Weight loss (in women) 0.006 (1002)
POMC 2p22-p21 75 Cases Leptin (in obese children) 0.03 (860)

337 Cases Leptin (in Mexican Americans) 0.001 (1003)
118 Cases Leptin (in lean subjects) 0.003 (1004)

PON1 7q21.3 114 Cases BMI 0.045 (1005)
PON2 7q21.3 100 Cases Body weight at birth (in Trinidadian neonates and South

Asians)
0.05 (1006)

PPARA 22q13.31 698 Cases BMI 0.023 (1007)
570 Cases Body fat (%) 0.028 (1007)
154 Cases BMI (in type 2 diabetics) 0.02 (1008)

PPARD 6p21.2-p21.1 178 Cases BMI 0.03 (1009)
179 Cases BMI 0.04 (1009)

PPARG 3p25 414 Cases BMI 0.039 (1010)
921 Cases Leptin, BMI, waist circumference (in Mexican

Americans)
0.02 (1011)

203 Subjects BMI (Javanese non-diabetics) 0.0016 (1012)
333 Cases BMI (in the middle-aged) 0.03 (1013)
973 Cases BMI (in the elderly) 0.02 (1013)
422 Cases BMI 0.03 (1014)
752 Cases BMI, change (in obese men) 0.002 (1015)
869 Cases BMI, change (in lean men) 0.008 (1015)
1954 Subjects BMI over 15 years (whites of the CARDIA study) 0.01 (1016)
1954 Subjects Waist circumference over 15 years (whites of the

CARDIA study)
0.01 (1016)

1844 Subjects BMI over 15 years (Blacks of the CARDIA study) 0.05 (1016)
464 Cases BMI, obesity 0.01 (1017)
619 Cases BMI 0.04 (1018)
41 Cases BMI 0.02 (1019)
41 Cases Fat mass 0.02 (1019)
451 Cases BMI (in overweight Blacks) 0.02 (1020)
451 Cases Waist-to-hip ratio (in overweight Blacks) 0.01 (1020)
451 Cases Waist circumference (in overweight Blacks) 0.004 (1020)
1051 Subjects BMI 0.012 (1021)
1051 Subjects Waist-to-hip ratio 0.001 (1021)
1051 Subjects Fat mass 0.003 (1021)
1051 Subjects Body fat (%) 0.025 (1021)
228 Cases Obesity, morbid 0.02 (1022)
119 Cases Weight, increase, 10-year 0.009 (1023)
225 Cases Weight, decrease, 3-year 0.04 (1024)
140 Cases BMI 0.05 (1025)
838 Cases BMI, body weight, waist circumference, height 0.002 (1026)
1133 Subjects BMI 0.036 (1027)
820 Cases Leptin (in obese subjects) 0.001 (1028)
183 Cases Lipid oxidation, 24-hour 0.03 (1029)
183 Cases Lipid balance, 24-hour 0.02 (1029)
70 Cases Weight, increase 0.01 (1030)
100 Cases BMI 0.0012 (1031)
29 Subjects Endurance training-induced weight loss (healthy offspring

of type 2 diabetics)
0.05 (1032)

311 Cases Ponderal index at birth 0.007 (1033)
311 Cases Body weight gain 0.001 (1033)
121 Cases BMI 0.03 (1034)
714 Cases BMI 0.04 (1035)
596 Cases Fat mass 0.009 (1035)
685 Cases Waist circumference 0.03 (1035)
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Gene Location Subjects Phenotype p Reference

501 Cases Abdominal visceral fat 0.01 (1035)
501 Cases Abdominal subcutaneous fat 0.001 (1035)
268 Cases BMI 0.022 (1036)
3080 Cases BMI 0.037 (1037)
3080 Cases BMI 0.036 (1037)
375 Cases Obesity, severe, with early onset 0.05 (1038)
141 Cases BMI, body weight, fat mass, waist circumference, lean

body mass, hip circumference
0.002 (1039)

PPARGC1A 4p15.31 467 Cases Fat mass (in Austrian women) 0.005 (1040)
467 Cases BMI (in Austrian women) 0.006 (1040)
467 Cases Waist circumference (in Austrian women) 0.01 (1040)
467 Cases Hip circumference (in Austrian women) 0.03 (1040)
201 Cases Adipocyte size (in Pima Indians) 0.04 (1041)
165 Cases Lipid oxidation, 24-hour (in Pima Indians) 0.03 (1041)
165 Cases Lipid balance, 24-hour (in Pima Indians) 0.004 (1041)
156 Subjects BMI 0.031 (1042)

PTPN1 20q13.1-q13.2 1553 Cases BMI 0.0146 (1043)
1553 Cases BMI 0.018 (1043)
257 Cases BMI 0.03 (1044)

PTPRF 1p34 589 Cases BMI 0.03 (1045)
589 Cases Waist circumference 0.01 (1045)

PYY 17q21.1 100 Cases, 67 controls, 167
men

Severe obesity (male Pima Indians) 0.001 (984)

6022 Subjects Overweight 0.018 (1046)
RETN 19p13.2 777 Cases Body weight 0.005 (1047)

777 Cases Waist circumference 0.001 (1047)
777 Cases BMI 0.019 (1047)
773 Cases Waist circumference 0.026 (1047)
411 Cases BMI, obesity 0.0097 (1048)
814 Cases BMI 0.01 (1049)
814 Cases Waist circumference 0.048 (1049)
12 Cases Overfeeding-induced increase in abdominal visceral fat 0.033 (1050)
320 Subjects, 320 women BMI (women with polycystic ovary syndrome) 0.02 (1051)

SAH 16p13.11 4059 Cases BMI 0.0066 (1052)
SCARB1 12q24.31 288 Cases BMI (in healthy lean women) 0.004 (1053)

228 Cases Obesity, morbid 0.002 (1022)
SERPINE1 7q21.3-q22 1098 Cases Abdominal subcutaneous fat 0.0265 (1054)

472 Women BMI (women from the Quebec Family Study cohort) 0.009 (1055)
505 Cases Obesity 0.002 (1056)

SGK 6q23 263 Cases BMI 0.008 (1057)
SLC6A14 Xq23-q24 1267 Cases Obesity 0.0001 (1058)

1267 Cases Obesity, eating behavior 0.013 (1058)
299 Cases Obesity 0.0002 (1059)
1805 Cases Obesity 0.003 (1059)

SLC6A3 5p15.33 90 Cases Obesity (in black smokers) 0.006 (1060)
SORBS1 10q24.1 770 Cases Obesity 0.05 (1061)

114 Cases BMI 0.008 (1005)
SREBF1 17p11.2 807 Cases Obesity 0.038 (1062)

807 Cases Obesity 0.006 (1062)
TCF1 12q24.31 203 Cases BMI (in young early onset diabetics) 0.0024 (1063)
TGFB1 19q13.31 405 Cases Lean mass 0.002 (804)

284 Cases BMI (in Swedish men) 0.05 (1064)
284 Cases Sagittal abdominal diameter (in Swedish men) 0.05 (1064)

TH 11p15.5 2734 Cases Body weight 0.0014 (896)
TNF 6p21.3 176 Cases BMI 0.01 (1065)

159 Cases BMI 0.01 (1066)
159 Cases Body fat (%) 0.05 (1066)
159 Cases Waist circumference 0.05 (1066)
136 Cases Waist circumference (in women) 0.04 (1067)
38 Cases Body fat (%) 0.02 (1068)

Human Obesity Gene Map: The 2005 Update, Rankinen et al.

568 OBESITY Vol. 14 No. 4 April 2006



Table 4. (continued)

Gene Location Subjects Phenotype p Reference

1351 Cases BMI 0.004 (1069)
378 Cases BMI, body fat (%) (in women) 0.02 (1070)
1047 Cases Obesity 0.04 (1071)
363 Cases BMI 0.01 (1072)
110 Cases Obesity 0.02 (1073)

TNFRSF1B 1p36.21 217 Cases Leptin, BMI 0.05 (1074)
UBL5 19p13.3 396 Cases Fat mass 0.026 (1075)

396 Cases Body fat (%) 0.001 (1075)
396 Cases Waist-to-hip ratio 0.034 (1075)

UCP1 4q28-q31 163 Cases Body weight, decrease, BMI, decrease 0.05 (1076)
526 Cases BMI (in overweight women) 0.02 (1077)
162 Cases Waist-to-hip ratio 0.003 (1078)
387 Subjects Waist-to-hip ratio 0.008 (1079)
387 Subjects Body fat (%) 0.014 (1079)
113 Cases Body weight (in Japanese women) 0.001 (1080)
99 Cases Body weight, change (in pre-menopausal women) 0.048 (1081)
22 Cases High-fat meal-induced thermogenesis 0.01 (1082)
123 Cases Fat, increase (in high-weight gainers) 0.05 (1083)
172 Subjects, 172 women Obesity 0.002 (1084)
24 Cases Body weight, resting metabolic rate 0.05 (1085)

UCP2 11q13.3 60 Cases Energy expenditure, 24-hour, spontaneous physical
activity, 24-hour, sleeping spontaneous physical
activity, respiratory quotient, 24-hour non-protein, fat
oxidation, 24-hour

0.005 (1086)

220 Cases BMI (in South Indian women) 0.02 (1087)
791 Cases BMI 0.03 (1088)
596 Cases Obesity 0.007 (1088)
813 Cases Obesity 0.002 (1089)
949 Cases Obesity 0.006 (1090)
147 Cases Resting energy expenditure 0.05 (1091)
147 Cases Glucose oxidation rate at rest 0.02 (1091)
147 Cases Lipid oxidation rate at rest 0.02 (1091)
307 Cases Obesity 0.01 (1092)
41 Cases Body weight, increase, fat mass, increase (in peritoneal

dialysis patients)
0.05 (1093)

82 Cases BMI, metabolic rate, 24-hour sleeping (in those �45
years old)

0.007 (1094)

63 Cases BMI 0.028 (1095)
105 Cases BMI, body fat (%), body weight, fat mass, overweight

(%), skinfolds, sum of four
0.001 (1096)

UCP3 11q13 120 Cases BMI, respiratory quotient, lean body mass, respiratory
quotient, non-protein, fat oxidation (in African
Americans)

0.008 (1097)

116 Cases Waist-to-hip ratio (in South Indian women, in European
women)

0.03 (1098)

722 Cases Fat mass 0.004 (1099)
722 Cases Lean mass 0.013 (1099)
722 Cases BMI 0.023 (1099)
722 Cases Body fat (%) 0.049 (1099)
419 Cases BMI 0.004 (1100)
73 Cases Resting energy expenditure (in Black women) 0.01 (1101)
734 Cases Leptin, BMI, body fat (%), fat mass, skinfolds, sum of six 0.0005 (1102)
393 Cases Skinfolds, sum of eight 0.01 (1103)
434 Cases BMI 0.01 (1104)
401 Cases BMI (in morbidly obese subjects) 0.0037 (1105)
382 Cases Body weight, BMI, current, BMI, maximum 0.02 (1106)
24 Cases Body weight, resting metabolic rate 0.01 (1085)
64 Cases Leptin, body fat (%) (in women) 0.03 (806)

VDR 12q13.11 153 Cases Fat mass 0.05 (1107)
153 Cases Body weight 0.05 (1107)
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Negative Associations with Obesity-Related Phenotypes
In addition to the positive studies summarized above, we

identified 92 studies dealing with 58 genes in which there
was no evidence of associations between DNA sequence
variations and obesity-related phenotypes. Among these
studies, the most frequent ones were those pertaining to
markers of PPARG (1012,1114–1126) (14 studies),
ADIPOQ (1127–1130), ADRB3 (1084,1121,1131,1132),
IL6 (1129,1133–1135) (four studies each), and ESR1
(1136–1138) (three studies). Other markers yielding nega-
tive findings were those related to ACE (710,1032), ACTN
(1139), ADIPOR1 (1140), ADIPOR2 (1140), ADRB1
(1132), ADRB2 (1132), AGER (1141), AHSG (1142),
APOA4 (1143), APOE (1144,1145), AR (1146), BDNF
(1147), CASQ1 (1148), COL1A1 (1134), CRP (1149),
ENPP1 (1150), FABP2 (1151), GNAS (1152), GNB3
(1152,1153), GPR40 (1154), H6PD (1155), HSD11B1
(1155,1156), ICAM1 (1157), IGF1 (1158), IL6R (1159),
INS (1160,1161), KCNJ11 (1120), KL (1146), LEP (1129),
LEPR (1162), LIPC (1163), LPL (1164), LTA (964), MKKS
(1165), MT-DLOOP (1166), MTHFR (1167), MTTP (1168),
NOS3 (1169,1170), NPY (1171), NR0B2 (1172), PARD6A
(1173), PLIN (1174), PPARGC1A (1115,1175), PRDM2
(1176), PTPN1 (1177), SCD (1178), SELE (1179),
TAS2R38 (1180), TNF (1181), UCP1 (1084), UCP2
(1182,1183), UCP3 (1182,1184), and VDR (1134,1185).

Drug-Induced BW Gain and Obesity
Unintentional weight gain and weight loss are potential

side effects associated with several pharmacological thera-
pies. In previous editions of the human obesity gene map,
these studies were summarized within the association stud-
ies section. However, because the number of reports ad-
dressing the contribution of DNA sequence variation in
specific candidate genes to the drug-induced weight
changes has increased, these studies will be reviewed in a
specific section from now on.

Drug-induced weight gain and obesity have been ob-
served after insulin therapy in patients with type 1 or 2
diabetes; in psychiatric therapy using anti-psychotics, anti-
depressants, or mood stabilizers; in neurological treatments
with anti-epileptic drugs; and in hypertension or steroid
hormone therapies (for review, see 1186). Drug-induced
weight changes could range from a loss of weight to a gain

of �50 kg in patients on anti-epileptic, anti-depressant, or
anti-psychotic medication (1186). Because modest weight
losses of 5% to 10% of initial BW are clinically significant
(1187), it is clear that even modest weight gain is an
undesirable side-effect of drugs.

Response to anti-psychotic treatment is considered to be
a complex trait in which many genes, each with a small
effect, are expected to play a role (1188). Few genes have
yet to be studied in relation to BW gain under anti-psychot-
ics (Table 4). The functional �759C�T variant (1189) in
the serotonin receptor 2C gene (HTR2C) was studied in
Chinese anti-psychotic-naı̈ve schizophrenic patients. Carri-
ers of the �759T variant showed three times lower anti-
psychotic-induced weight gain than those not carrying the T
allele (886). This result was confirmed in anti-psychotic-
naı̈ve Chinese men (893) but not in a third sample of
anti-psychotic-resistant Chinese (1190). However, in a
group of anti-psychotic-resistant African-American, white,
and Hispanic individuals, the association of the �759T
variant with a smaller weight gain was confirmed recently
(891), as in anti-psychotic-naı̈ve whites (892). In contrast,
Basile et al. (889) reported that carriers of the �759T allele
gained more weight than non-carriers in a mixed population
of anti-psychotic-resistant white and African-American pa-
tients. A Cys23Ser variant of the HTR2C locus showed no
association with BW gain in clozapine-treated anti-psychot-
ic-naı̈ve or resistant schizophrenics of white or African
American descent (1191–1193).

A significant effect of the cytochrome P450, subfamily
IID, polypeptide 6 (CYP2D6) genotypes on the percentage
change of BMI was reported in white men taking olanzapine
and carrying the poor *4 and intermediate *1/*3 metabo-
lizer genotypes (827,1194). On the other hand, no associa-
tion with BW changes in African Americans and whites
taking clozapine was observed with a dinucleotide repeat
polymorphism of the cytochrome P450 subfamily I,
polypeptide 2 (CYP1A2) gene (1191). Chinese anti-psy-
chotic-naı̈ve schizophrenic homozygotes for the A allele of
the �2548A�G polymorphism of the LEP gene showed
higher changes in BW than patients carrying A/G and G/G
genotypes (933). An opposite result was observed in anti-
psychotic-naı̈ve whites showing a higher BMI change in
homozygotes for the G allele (892). In two recent studies on
Chinese schizophrenic patients treated with clozapine, the

Table 4. (continued)

Gene Location Subjects Phenotype p Reference

588 Cases BMI 0.009 (1108)
302 Cases BMI 0.01 (1109)
302 Cases Fat-free mass 0.002 (1109)
260 Women BMI 0.042 (1110)
309 Cases BMI (in early onset type 2 diabetics) 0.0058 (1111)
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G/G homozygotes of the �1291C�G variant of the adren-
ergic �2A receptor (ADRA2A) locus showed a 3 times
greater weight gain than the C/C genotype (732). Further-
more, a 2 to 3 times greater weight gain was reported in the
TT genotype of the GNB3 825C�T variant in contrast to
carriers of the C allele (1195). Negative results were re-
ported previously for these two genes (1191,1196). Finally,
12 genes showed negative results with anti-psychotic-in-
duced weight changes. Those were the tumor necrosis factor
� (1191), the serotonin 1A and 2A receptors, the histamine
H1 and H2 receptors, the �3 and �1a-adrenergic receptors
(1191,1192,1196,1197), the serotonin transporter and the
serotonin receptor 6 (1192), the dopamine receptor 4
(1198), the cytochrome P450 1A2 (CYP1A2), which is
different from the CYP2D6 that had shown some association,
and the 25-kDa synaptosomal-associated protein (1199).

Treatment with lithium has long been recognized to be
associated with adverse metabolic effects, notably weight
gain (1200). No evidence for an association has been ob-
served between two polymorphisms (�35A�G in intron 3
and �7T�G in intron 10) in the � subunit of the olfactory
G-protein Golf gene and weight gain in response to lithium
treatment (1201). The combination of glitazones with insu-
lin may favor weight gain due to enhanced adipogenesis.
Patients with the PPARG Pro12Ala genotype show a better
response to rosiglitazone treatment than those with the
Pro12Pro genotype do, with no difference in weight or BMI
(1202).

Human QTLs
Linkage Studies

Linkage studies with obesity-related phenotypes are sum-
marized in Table 5. During the past year, 11 linkage studies
were published: nine genome scans, one bivariate linkage
analysis of metabolic syndrome phenotypes with markers
on chromosome 7q (1203), and a meta-analysis of genome-
wide linkage studies for BMI (1204).

Two genome scans for eating-related phenotypes were
reported last year. The first was a genome scan for total
caloric and macronutrient intakes assessed from a food
frequency questionnaire in 816 subjects from the San An-
tonio Family Heart Study (1235). Evidence of linkage was
found on chromosome 2p22-p21 near marker D2S1346 for
total caloric intake and intakes of fat, saturated fat, and
protein (LOD scores ranging from 2.09 to 2.62). The second
was a genome scan of eating behaviors assessed from the
Three-Factor Eating questionnaire in 660 subjects from the
Quebec Family Study (978). Evidence of linkage was found
on chromosomes 15q21-q23 (LIPC), 15q24-q25 (D15S206),
and 17q22-q24 (D17S1306, D17S1290, D17S1351) for sus-
ceptibility to hunger and on chromosome 19p13 (D19S215)
for disinhibition.

A genome-wide linkage analysis of obesity associated
with the use of anti-psychotics in patients treated for psy-

choses was performed in 508 subjects from 21 multigenera-
tional kindreds (1258). Obesity diagnosed from medical
files was found to be 2.5 times more prevalent in patients
treated with anti-psychotics than in untreated family mem-
bers. Linkage with obesity and a set of 470 microsatellite
markers was tested only in pedigrees with at least two
occurrences of obesity. Evidence of linkage with obesity
was found on chromosomes 6p23 (D6S260; LOD 	 1.72),
8q22-q23 (D8S1136; LOD 	 1.93), 9q34 (D9S282; LOD 	
1.71), and 12q23.1-q24.23 (D12S1279-D12S366; LOD 	
2.74).

Four genome scans reporting linkages with BMI and
body fatness phenotype were published during the past year.
In a study performed in West African families with type 2
diabetes (1236), linkage analysis of BMI and body compo-
sition assessed by bioelectric impedance revealed evidence
of three QTLs affecting body fatness chromosomes 2p16-
p13.3 (D2S2739-D2S441), 4q24 (D4S1647-D4S2623), and
5q14.3 (D5S1725). All linkages with BMI showed LOD
scores below 1.7 (1236). A second genome scan for loci
linked to BMI and percentage body fat assessed from bio-
electric impedance was conducted in 3383 subjects from
1124 hypertensive African-American and white families
(1227). Linkage to BMI and percentage body fat was tested
separately in men and women and also in the combined
sample. In the combined sample, evidence of linkage was
found on chromosome 3q13.33 for BMI (LOD 	 2.8) and
on chromosome 12q24.3 for percentage body fat (LOD 	
3.3). QTLs influencing both BMI and percentage body fat
were found over a broad region [102 to 200 centimorgans
(cM)] on chromosome 3 in men (3p12.2, 3q13.33, 3q26.33,
and 3q27.3). Evidence of linkage with percentage body fat
was also found on chromosomes 7q36.1 (LOD 	 1.8),
15q25.3 (LOD 	 3.0), and 18p11.22-p11.23 (LOD 	 1.7)
in men. In women, QTLs affecting percentage body fat were
found on chromosomes 2p24.2 (LOD 	 1.8), 12q24-q24.32
(LOD 	 3.8), and 21q21.2 (LOD 	 1.8), whereas linkage
with BMI was found on chromosome 11p13 (LOD 	 1.8).
The third study was undertaken in a European-American
sample of 1297 subjects from 260 families with the aim of
detecting imprinted genetic loci influencing obesity-related
traits (1224). Parent-specific linkage analyses of overweight
(BMI � 27), obesity (BMI � 30), and obesity-related
quantitative traits [BMI, percentage body fat, and waist
circumference (WC)] were performed with 391 microsatel-
lite markers. Several QTLs influencing obesity were uncov-
ered: a paternal effect for BMI and WC on 2p25.1, a
maternal effect for percentage body fat on 3p24, a paternal
effect for BMI on 3q12.3, a maternal effect for obesity on
9q22.33, a maternal effect for overweight on 10p12.2, a
paternal effect for percentage body fat on 11q12 and
11q13.3, a maternal effect for BMI and WC on 12q24.21, a
maternal effect for overweight on 13q13.3, and a paternal
effect for BMI and WC on 13q31.3. The fourth scan was
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Table 5. Evidence for the presence of linkage with obesity-related phenotypes

Gene/marker Location Population Phenotypes Score Reference

D1S468 1p36.32 1249 sibpairs, �10,000 relative
pairs

BMI LOD 	 2.75 (1205)

758 subjects, 53 pedigrees BMI LOD 	 2.32 (1206)
994 subjects, 37 pedigrees BMI LOD 	 2.5 (1207)

D1S508 1p36.23-p36.22 994 subjects, 37 pedigrees BMI LOD 	 2.2 (1207)
PGD 1p36.22 �168 pairs Skinfolds, suprailiac p 	 0.03 (1208)
D1S552 1p36.13 893 sibpairs BMI (in whites) LOD 	 2.03 (1209)
ATCT051 1p36 320 subjects, 154 families BMI MLS 	 2.14 (1210)
D1S3721 1p34.1 157 subjects, 7 families BMI (in whites) p 	 0.0099 (1211)
D1S193 1p34.1 202 to 251 pairs, 137 sibships of

adult brothers and sisters
BMI p 	 0.03 (1212)

D1S197 1p33 202 to 251 pairs, 137 sibships of
adult brothers and sisters

Insulin level, fasting p 	 0.05 (1212)

D1S200 1p32.2 202 to 251 pairs, 137 sibships of
adult brothers and sisters

Fat mass p 	 0.009 (1212)
BMI p 	 0.04

D1S476 1p32.2 202 to 251 pairs, 137 sibships of
adult brothers and sisters

Insulin level, integrated, after oral glucose
tolerance test

p 	 0.02 (1212)

BMI p 	 0.05
Fat mass p 	 0.02
Skinfolds, sum of six p 	 0.02

LEPR-IVS16CTTT 1p31.2 268 to 324 pairs Fat-free mass p 	 0.007 (935)
Fat mass p 	 0.03

LEPR-IVS3CA 1p31.2 268 to 324 pairs BMI p 	 0.04 (935)
Fat mass p 	 0.04
Skinfolds, sum of six p 	 0.02
Fat-free mass p 	 0.05

LEPR-Q223R 1p31.2 268 to 324 pairs Fat mass p 	 0.005 (935)
BMI p 	 0.02
Skinfolds, sum of six p 	 0.04
Fat-free mass p 	 0.05

D1S1665 1p31.1 198 subjects, 18 pedigrees Leptin LOD 	 3.4 (1213)
D1S550 1p31.1 236 pairs Respiratory quotient, 24-hour (in Pima

Indians)
LOD 	 2.8 (1214)

D1S2737 1p31.1 342 families Trends in BMI from childhood to adulthood LOD 	 2.2 (1215)
LEPR 1p31 302 subjects, 57 families, 545

sibpairs
Blood glucose, fasting (in Mexican

Americans)
p 	 0.018 (1216)

Blood pressure, diastolic (in Mexican
Americans)

p 	 0.003

D1S1631 1p21.2 514 subjects, 99 families, 347
sibships

Total energy intake p 	 0.0002 (1217)
Carbohydrate intake p 	 0.0026
Fat intake p 	 2e�05

AMPD1 1p13.2 514 subjects, 99 families, 347
sibships

Total energy intake p 	 0.0005 (1217)
Fat intake p 	 6e�05

D1S2726 1p12 342 families Trends in BMI from childhood to adulthood LOD 	 2.5 (1215)
D1S534 1p11.2 769 subjects, 182 families BMI (in Africans) LOD 	 2.24 (1218)

514 subjects, 99 families, 347
sibships

Total energy intake p 	 0.0008 (1217)
Fat intake p 	 0.00038

521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.3 (1219)
S100A1 1q21 514 subjects, 99 families, 347

sibships
Fat intake p 	 0.001 (1217)

D1S1679 1q21–1q22 3027 subjects, 401 families, 317
sibships

BMI (National Heart, Lung, and Blood
Institute Family Heart Study)

LOD 	 1.8 (1220)

D1S394 1q21.1 514 subjects, 99 families, 347
sibships

Fat intake p 	 0.00081 (1217)

ATP1A2 1q23.1 582 subjects, 171 families, 289
pairs

Respiratory quotient p 	 0.02 (812)

295 subjects, 164 families Adipocyte size LOD 	 1.7 (1221)
D1S194-D1S196 1q23.1-q23.2 897 subjects, 179 families, 2127

relative pairs
Waist circumference MLS 	 3.71 (1222)

ATP1B1 1q23.3 94 pairs Respiratory quotient p 	 0.04 (811)
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Table 5. (continued)

Gene/marker Location Population Phenotypes Score Reference

D1S222 1q31.1 514 dubjects, 99 families, 347
sibships

Fat intake p 	 0.0002 (1217)

D1S456 1q32.1 313 subjects, 126 families, 99
sibships

Protein intake (%) (in Blacks) p 	 0.0021 (1217)

D1S517 1q43 313 subjects, 126 families, 99
sibships

Sucrose intake (in Blacks) p 	 0.0018 (1217)

D1S204 1q44 313 subjects, 126 families, 99
sibships

Sucrose intake (in Blacks) p 	 0.0054 (1217)

D2S2976 2p25.3 2086 subjects, 330 pedigrees Waist circumference LOD 	 2.06 (1223)
D2S2952 2p25.1 1297 subjects, 260 families Waist circumference, paternal LOD 	 2 (1224)
D2S1400 2p25.1 1297 subjects, 260 families BMI, paternal LOD 	 2.45 (1224)
ACP1 2p25 300 pairs BMI p 	 0.004 (1225)

�168 pairs Skinfolds, triceps p 	 0.02 (1208)
D2S1360 2p24.2 1297 subjects, 260 families BMI LOD 	 1.7 (1226)

3383 subjects, 1124 families Body fat (%) (women) LOD 	 1.8 (1227)
D2S2337 2p24.1 264 sibpairs Leptin (in French whites) LOD 	 2 (1228)
D2S165 2p23.3 1100 subjects, 170 families Adiponectin (in Northern Europeans) LOD 	 2.7 (1229)

264 pairs Leptin LOD 	 2.4 (1230)
D2S367 2p23.1 1100 subjects, 170 families Adiponectin (in Northern Europeans) LOD 	 2.7 (1229)

264 pairs Leptin LOD 	 2.7 (1230)
D2S1788 2p22.3 5000 relative pairs Leptin LOD 	 4.9 (1231)

Fat mass LOD 	 2.8
337 subjects Leptin LOD 	 7.5 (1003)
1778 sibships BMI p 	 0.0006 (1232)
349 subjects, 66 pedigrees BMI (in whites) LOD 	 3.08 (1233)
720 subjects, 230 families Leptin p 	 0.008 (1234)

BMI p 	 0.008
D2S1346 2p22-p21 816 subjects, 42 families Total energy intake LOD 	 2 (1235)

Protein intake LOD 	 2.22
Fat intake LOD 	 2.09
Saturated fat intake LOD 	 2.62

D2S1356 2p22-p21 1778 sibships BMI p 	 0.0004 (1232)
D2S1352 2p16.3 1778 sibships BMI p 	 0.0004 (1232)
D2S2739 2p16 321 relative pairs Body fat (%) LOD 	 3.3 (1236)
D2S2739-D2S441 2p16-2p13.3 321 relative pairs Fat mass LOD 	 2.56 (1236)
D2S441 2p13.3 453 subjects, 99 families Abdominal subcutaneous fat LOD 	 1.88 (1237)
IGKC 2p11.2 �168 pairs Skinfolds, triceps p 	 0.03 (1208)
D2S293-D2S383 2q12.2-2q14.3 430 subjects, 27 sibpairs, 27

pedigrees
BMI LOD 	 2.9 (1238)

D2S160 2q13 1249 sibpairs, �10,000 relative
pairs

BMI LOD 	 2.56 (1205)

D2S410 2q14.1 2086 subjects, 330 pedigrees Waist circumference LOD 	 2 (1223)
D2S347 2q14.3 1249 sibpairs, �10,000 relative

pairs
BMI LOD 	 4.04 (1205)
Body fat (%) LOD 	 1.91
Fat mass LOD 	 2.03

758 subjects, 53 pedigrees BMI LOD 	 3.42 (1206)
D2S1334 2q21.3 453 subjects, 99 families Abdominal visceral fat LOD 	 1.97 (1237)
D2S1399 2q23.3 453 subjects, 99 families Abdominal visceral fat LOD 	 2.3 (1237)
D2S112-D2S396 2q33.2-2q36.3 506 subjects, 115 pedigrees BMI � 99th percentile LOD 	 2.73 (1239)

BMI � 97th percentile LOD 	 2.08
D2S434 2q35 453 subjects, 99 families Abdominal visceral fat LOD 	 2.5 (1237)
D2S1363-D2S1279 2q35-2q36.3 2467 subjects, 387 families BMI LOD 	 2.4 (1240)

Waist-to-hip ratio LOD 	 1.72
Subscapular skinfold LOD 	 2.55

D3S2387 3p26.3 320 subjects, 154 families BMI MLS 	 3.67 (1210)
215 subjects, 105 families Abdominal subcutaneous fat LOD 	 2.16 (1237)

D3S1259 3p25.2 1055 pairs BMI LOD 	 2 (1241)
D3S3608 3p25.2 624 subjects, 28 families Eating behavior, restraint (in Old Order

Amish)
LOD 	 2.5 (1242)

D3S2403 3p24 1297 subjects, 260 families Body fat (%), maternal LOD 	 2.2 (1224)
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Table 5. (continued)

Gene/marker Location Population Phenotypes Score Reference

D3S3038 3p24.3 893 sibpairs BMI, paternal effect (in whites) p 	 0.0065,
LOD 	 1.77

(1209)

D3S2432 3p22.3 377 pairs Body fat (%) (in Pima Indians) LOD 	 2 (1243)
D3S1768 3p22.2 580 families BMI LOD 	 3.4 (1244)
Chr3p-region 3p14 1848 subjects, 279 pedigrees BMI LOD 	 1.9 (1245)

BMI and systolic blood pressure LOD 	 2.13
BMI and diastolic blood pressure LOD 	 2.36

D3S2406 3p12.2 3383 subjects, 1124 families BMI (men) LOD 	 2 (1227)
D3S3045 3q12.3 1297 subjects, 260 families BMI, paternal LOD 	 3.66 (1224)

1297 subjects, 260 families BMI � 30 NPL 	 1.88 (1246)
1297 subjects, 260 families BMI � 30 NPL 	 1.88 (1226)

Chr3q-region 3q13.3 1848 subjects, 279 pedigrees BMI and systolic blood pressure and
diastolic blood pressure (trivariate)

LOD 	 2.59 (1245)

ATA28H11 3q13.33 3383 subjects, 1124 families BMI (men) LOD 	 2.3 (1227)
Body fat (%) (men) LOD 	 2.6
BMI (men and women) LOD 	 2.8

D3S1764 3q22.1 596 subjects, 158 families Factor central obesity MLS 	 2.61 (1247)
1055 pairs BMI LOD 	 3.4 (1241)

D3S1744 3q23 1778 sibships BMI p 	 0.0009 (1232)
D3S3053 3q26 1778 sibships BMI p 	 0.0015 (1232)
D3S2427 3q26.33 2209 subjects, 507 families BMI LOD 	 3.3 (1248)

Waist circumference LOD 	 2.4
3383 subjects, 1124 families BMI (men) LOD 	 1.7 (1227)
545 subjects, 128 families BMI (in African Americans) LOD 	 4.3 (1249)
1055 pairs BMI LOD 	 3.4 (1241)
618 subjects, 202 families BMI LOD 	 1.8 (1250)

D3S3676 3q26.33 545 subjects, 128 families BMI (in African Americans) LOD 	 4.3 (1249)
D3S1262 3q27.3 3383 subjects, 1124 families Body fat (%) (men) LOD 	 2.4 (1227)
D3S1311 3q29 215 subjects, 105 families Abdominal subcutaneous fat LOD 	 2.5 (1237)
D4S912 4p16.1 430 subjects, 27 sibpairs, 27

pedigrees
BMI LOD 	 4.5 (1238)

D4S2639 4p15.32 994 subjects, 37 pedigrees BMI LOD 	 2.2 (1207)
D4S2289 4p15.31 994 subjects, 37 pedigrees BMI LOD 	 2.6 (1207)
D4S2397 4p15.2 521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.4 (1219)
D4S3350 4p15.1 994 subjects, 37 pedigrees BMI LOD 	 9.2 (1207)
D4S2632 4p15.1 994 subjects, 37 pedigrees BMI MLS 	 6.1 (1207)
D4S1627 4p13 994 subjects, 37 pedigrees BMI LOD 	 3.4 (1207)
D4S3019 4q12 994 subjects, 37 pedigrees BMI LOD 	 2.1 (1207)
D4S1592 4q12 1249 sibpairs, �10,000 relative

pairs
BMI LOD 	 2.29 (1205)

D4S3248 4q13.1 994 subjects, 37 pedigrees BMI LOD 	 2 (1207)
D4S1647 4q24 59 pedigrees, 277 sibships BMI LOD 	 2.63 (1251)
D4S1647-D4S2623 4q24-4q25 321 sibpairs Body fat (%) LOD 	 2.39 (1236)
D4S1644 4q28.3 1297 subjects, 260 families BMI LOD 	 1.71 (1226)

1297 subjects, 260 families BMI LOD 	 1.71 (1246)
D4S2417 4q31.1 893 sibpairs BMI, paternal effect (in whites) p 	 0.005,

LOD 	 1.84
(1209)

521 subjects, 156 families Abdominal subcutaneous fat LOD 	 1.8 (1219)
GYPA 4q31.1 160 pairs Skinfolds, trunk-to-extremity ratio p 	 0.02 (1252)
D4S1629 4q32.1 893 sibpairs BMI, maternal effect (in whites) p 	 0.005,

LOD 	 1.89
(1209)

D4S406 4q34.1 447 subjects, 109 pedigrees BMI � 35 LOD 	 2.55 (1253)
D4S2431 4q34.1 215 subjects, 105 families Abdominal subcutaneous fat LOD 	 2.3 (1237)
D5S817 5p15.2 1100 subjects, 170 families Adiponectin (in Northern Europeans) LOD 	 4.1 (1229)

618 subjects, 202 families BMI LOD 	 1.9 (1250)
D5S426 5p13.3 264 pairs Leptin LOD 	 2.9 (1230)
D5S2489 5p13.2 1526 pairs BMI (in Pima Indians) LOD 	 1.7 (1254)
ISL1 5q11.2 226 pairs Obesity p 	 0.03 (1255)

Leptin p 	 0.0004
BMI p 	 0.0004
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Table 5. (continued)

Gene/marker Location Population Phenotypes Score Reference

D5S407 5q11.2 1249 sibpairs, �10,000 relative
pairs

Fat-free mass LOD 	 1.59 (1205)

D5S2500 5q12.1 1526 pairs BMI (in Pima Indians) LOD 	 1.7 (1254)
D5S1725 5q14.3 321 sibpairs Fat mass LOD 	 2.25 (1236)

Body fat (%) LOD 	 2.56
D5S1463 5q14.3 447 subjects, 109 pedigrees BMI � 27 LOD 	 2.68 (1253)
D5S1453 5q21.3 342 families Trends in BMI from childhood to adulthood LOD 	 2 (1215)
D5S1505 5q23.1 342 families Long-term burden in BMI LOD 	 2.2 (1215)
D5S658 5q31.3 453 subjects, 99 families Abdominal subcutaneous fat LOD 	 2.06 (1237)

Abdominal total fat LOD 	 1.84
NR3C1 5q31 88 pairs BMI p 	 0.009 (1256)
D5S1480 5q32 453 subjects, 99 families Abdominal total fat LOD 	 2.1 (1237)
D5S820-D5S1456 5q33.2-5q35.1 729 subjects, 275 families Abdominal subcutaneous fat MLS 	 2.64 (1210)
D5S1471 5q35.1 893 sibpairs BMI (in whites) p 	 0.0006,

LOD 	 2.48
(1209)

D5S211 5q35.2 3027 subjects, 401 families, 317
sibships

BMI (National Heart, Lung, and Blood
Institute Family Heart Study)

LOD 	 1.8 (1220)

2072 subjects, 407 families Factor central obesity MLS 	 1.87 (1247)
D5S408 5q35.3 157 subjects, 7 families BMI (in whites) p 	 0.0039 (1211)
SE30 6p25.1 803 subjects, 192 families BMI LOD 	 2.13 (1257)

596 subjects, 158 families Factor central obesity MLS 	 2.07 (1247)
D6S2434 6p23 596 subjects, 158 families Factor central obesity MLS 	 1.94 (1247)
D6S260 6p23 508 subjects, 21 families Obesity under anti-psychotics LOD 	 1.72 (1258)
D6S1959 6p22.3-p22.2 618 subjects, 202 families Body fat (%) LOD 	 2.7 (1250)
D6S276 6p22.1 624 subjects, 28 families Eating behavior, restraint (in Old Order

Amish)
LOD 	 2.3 (1242)

BF 6p21.31 �168 pairs Skinfolds, subscapular p 	 0.01 (1208)
Skinfolds, triceps p 	 0.01
Skinfolds, suprailiac p 	 0.01

GLO1 6p21.3-p21.1 �168 pairs Body weight p 	 0.004 (1259)
Skinfolds, suprailiac p 	 0.004

TNF 6p21.3 �255 pairs, 304 sibpairs Body fat (%) (in Pima Indians) p 	 0.002 (1072)
D6S271 6p21.1 1199 pairs Leptin LOD 	 2.1 (1260)
D6S462 6q22.31 447 subjects, 109 pedigrees BMI � 35 LOD 	 2.49 (1253)
D6S462-D6S441 6q22.31-6q23.2 506 subjects, 115 pedigrees BMI � 97th percentile LOD 	 3.27 (1239)

BMI � 95th percentile LOD 	 3.13
D6S1009 6q23.3 2086 subjects, 330 pedigrees Waist circumference LOD 	 3.3 (1223)

330 pedigrees, 1702 sibships BMI LOD 	 2.79 (1261)
D6S403 6q23.3 261 subjects, 27 pedigrees (BMI, leptin, fasting specific insulin) (in

Mexican Americans)
LOD 	 4.2 (1262)

D6S1003 6q24.1 261 subjects, 27 pedigrees (BMI, leptin, fasting specific insulin) (in
Mexican Americans)

LOD 	 4.2 (1262)

D6S264 6q27 261 subjects, 27 pedigrees (Systolic blood pressure, diastolic blood
pressure) (in Mexican Americans)

LOD 	 4.9 (1262)

D6S281 6q27 1249 sibpairs, �10,000 relative
pairs

BMI LOD 	 1.77 (1205)
Fat mass LOD 	 2.02

D7S2477 7p22.3 349 subjects, 66 pedigrees BMI (in whites) LOD 	 2.53 (1233)
D7S1819 7p22.2 349 subjects, 66 pedigrees BMI (in whites) LOD 	 2.53 (1233)
D7S2557 7p21.2 342 families Long-term burden in BMI LOD 	 2.9 (1215)
D7S3051 7p21.1 1055 pairs BMI LOD 	 2.7 (1241)
D7S1802 7p15.3 803 subjects, 192 families BMI LOD 	 2.4 (1257)
NPY 7p15.1 302 subjects, 57 families, 545

sibpairs
Obesity (in Mexican Americans) p 	 0.042 (1216)
Body weight (in Mexican Americans) p 	 0.02
Abdominal circumference (in Mexican

Americans)
p 	 0.031

Hip circumference (in Mexican Americans) p 	 0.012
Diastolic blood pressure (in Mexican

Americans)
p 	 0.005

Body mass, body size (in Mexican
Americans)

p 	 0.048
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Gene/marker Location Population Phenotypes Score Reference

D7S1808 7p15.1 336 sibpairs, 609 relative pairs Fat-free mass LOD 	 2.72 (1263)
D7S817 7p14.3 769 subjects, 182 families BMI (in Africans) LOD 	 3.83 (1218)
D7S484 7p14.2 342 families Long-term burden in BMI LOD 	 2.4 (1215)
D7S1818 7p12.3 342 families Trends in BMI from childhood to adulthood LOD 	 2.2 (1215)
D7S506-D7S653 7p11.2-7q11.22 430 subjects, 27 sibpairs, 27

pedigrees
BMI LOD 	 1.9 (1238)

D7S3046 7q11.22 514 subjects, 99 families, 347
sibships

Protein intake (%) p 	 0.0012 (1217)

D7S653 7q11.22 440 subjects, 27 families Bivariate BMI: high-density lipoprotein MLS 	 3.86 (1203)
Bivariate BMI: triglycerides MLS 	 4.21
Bivariate waist circumference: high-density

lipoprotein
MLS 	 3.47

Bivariate waist circumference: triglycerides MLS 	 3.74
Bivariate BMI: insulin MLS 	 2.44
Bivariate waist circumference: insulin MLS 	 1.86
Bivariate BMI: waist circumference MLS 	 2.98

D7S653-D7S479 7q11.22-7q22.1 440 subjects, 27 families BMI MLS 	 2.4 (1203)
Waist circumference MLS 	 2

D7S821 7q21.3 1297 subjects, 260 families BMI � 35 NPL 	 1.93 (1226)
D7S479 7q22.1 261 subjects, 27 pedigrees High-density lipoprotein, in triglycerides (in

Mexican Americans)
LOD 	 3.2 (1262)

D7S1799 7q22.1 1297 subjects, 260 families BMI � 35 NPL 	 2.25 (1226)
1297 subjects, 260 families BMI � 27 NPL 	 2.52 (1246)

BMI � 30 NPL 	 2.04
BMI � 35 NPL 	 2.25

D7S692 7q22.3 1020 subjects, 200 families BMI (in whites) p 	 0.0002,
LOD 	 2.75

(1264)

D7S523 7q31.1 1020 subjects, 200 families BMI (in whites) p 	 0.0009,
LOD 	 2.11

(1264)

D7S471 7q31.1 261 subjects, 27 pedigrees High-density lipoprotein, in triglycerides (in
Mexican Americans)

LOD 	 3.2 (1262)

LEP 7q31.3 302 subjects, 57 families, 545
sibpairs

Waist-to-hip ratio (in Mexican Americans) p 	 0.01 (1216)
Cholesterol, total (in Mexican Americans) p 	 0.03
Cholesterol, high-density lipoprotein (in

Mexican Americans)
p 	 0.026

47 pairs, 47 healthy
female/female dizygotic twins

body fat p 	 0.008 (1265)

D7S2847 7q31.31 1055 pairs BMI LOD 	 2.4 (1241)
D7S680 7q32.2 60 pairs BMI p 	 0.002 (1266)
D7S514 7q32.2 60 pairs BMI p 	 0.002 (1266)

545 pairs BMI (in Mexican Americans) p 	 0.0001 (1267)
Skinfolds, extremity (in Mexican Americans) p 	 0.0001
Waist circumference (in Mexican

Americans)
p 	 0.0001

Fat mass (in Mexican Americans) p 	 0.0001
D7S504 7q32.2 46 pairs, 103 affected sibpairs BMI (in African Americans) p 	 0.001 (1268)

78 families, 59 pairs BMI p 	 0.04 (1269)
D7S1875 7q32.2 302 subjects, 57 families, 545

sibpairs
Waist-to-hip ratio (in Mexican Americans) p 	 0.009 (1216)

521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2 (1219)
88 trios (index probands and

both parents)
BMI (in German children and adolescents) p 	 0.04 (1270)

D7S530 7q32.3 60 pairs BMI p 	 0.002 (1266)
D7S1804 7q32.3 3027 subjects, 401 families, 317

sibships
BMI (National Heart, Lung, and Blood

Institute Family Heart Study)
MLS 	 4.9, p

� 0.00001
(1220)

D7S640 7q33 672 subjects, 28 pedigrees Leptin (in Old Order Amish) LOD 	 1.9
adjusted for
BMI

(1271)

D7S495 7q34 545 pairs BMI (in Mexican Americans) p 	 0.0001 (1267)
Skinfolds, extremity (in Mexican Americans) p 	 0.0001
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Fat mass (in Mexican Americans) p 	 0.0001
Waist circumference (in Mexican

Americans)
p 	 0.0001

D7S1824 7q34 157 subjects, 7 families BMI (in whites) p 	 0.0008 (1211)
KEL 7q35 160 pairs BMI p 	 0.0001 (1252)

Skinfolds, sum of six p 	 0.0001
D7S2195 7q35 157 subjects, 7 families BMI (in whites) p 	 0.001 (1211)
D7S3068 7q35 157 subjects, 7 families BMI (in whites) p 	 0.004 (1211)
D7S636 7q36.1 672 subjects, 28 pedigrees Leptin (in Old Order Amish) LOD 	 1.9

adjusted for
BMI

(1271)

D7S3070 7q36.1 3383 subjects, 1124 families Body fat (%) (men) LOD 	 1.8 1227)
215 subjects, 105 families Abdominal total fat training response LOD 	 2.5 (1237)

Chromosome 8
region

8pter-p23.3 2814 subjects, 505 families BMI p 	 4.6e�05 (1204)

D8S264 8p23.3 2072 subjects, 407 families Factor central obesity MLS 	 1.92 (1247)
D8S277 8p23.1 893 sibpairs BMI, paternal effect (in whites) p 	 0.003,

LOD 	 1.98
(1209)

GATA151F02 8p22 769 subjects, 182 families BMI (in Africans) LOD 	 2.34 (1218)
D8S549 8p22 1249 sibpairs, �10,000 relative

pairs
Fat mass LOD 	 1.95 (1205)

D8S282 8p21.3 994 subjects, 37 pedigrees BMI LOD 	 2 (1207)
D8S1121 8p11.23 470 subjects, 10 families BMI p 	 0.0001,

MLS 	 3.21
(1272)

D8S1110 8q11.22 5000 sibpairs Leptin LOD 	 2.2 (1231)
D8S1110-D8S1113 8q11.22-8q12.1 729 subjects, 275 families Abdominal subcutaneous fat MLS 	 2.24 (1210)
D8S1113 8q12.1 893 sibpairs BMI (in whites) p 	 0.0013,

LOD 	 2.05
(1209)

D8S2324 8q13.3 1297 subjects, 260 families BMI � 35 NPL 	 1.9 (1226)
1297 subjects, 260 families BMI � 35 NPL 	 1.9 (1246)

GATA8B01 8q21.3 59 pedigrees, 277 sibships BMI LOD 	 2.56 (1251)
D8S1136 8q22.3 508 subjects, 21 families Obesity MLS 	 1.93 (1258)
D8S556 8q23.1 522 subjects, 99 families, 364

sibpairs
BMI (in whites) LOD 	 2 (1273)

D8S1132 8q23.1 157 subjects, 7 families BMI (in whites) p 	 0.005 (1211)
D8S1179 8q24.11 729 subjects, 275 families Waist-to-hip ratio MLS 	 2.06 (1210)
D9S910 9q22.33 1297 subjects, 260 families BMI � 30, maternal LOD 	 2.28 (1224)

1297 subjects, 260 families BMI � 30 NPL 	 2.09 (1246)
1297 subjects, 260 families BMI � 30 NPL 	 2.09 (1226)

D9S1122 9q21-q22 521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.4 (1219)
D9S257 9q22.1 521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.4 (1219)
D9S299-D9S930 9q31-9q31 430 subjects, 27 sibpairs, 27

pedigrees
BMI LOD 	 2.1 (1238)

ORM1 9q33.1 �168 pairs Skinfolds, suprailiac p 	 0.03 (1208)
D9S282 9q34 508 subjects, 21 families Obesity under anti-psychotics LOD 	 1.71 (1258)
AK1 9q34.13 �168 pairs Skinfolds, suprailiac p 	 0.01 (1208)
D9S158 9q34.3 522 subjects, 99 families, 364

sibpairs
BMI (in whites) LOD 	 2.3 (1273)

D10S1435 10p15.3 522 subjects, 99 families, 364
sibpairs

BMI (in whites) LOD 	 2.7 (1273)
Fat mass (in whites) LOD 	 2.7

1526 pairs BMI (in Pima Indians) LOD 	 1.7 (1254)
D10S189 10p15.1 522 subjects, 99 families, 364

sibpairs
BMI (in whites) MLS 	 2.7,

SEGPATH
(1273)

Fat mass (in whites) MLS 	 1
1526 pairs BMI (in Pima Indians) LOD 	 1.7 (1254)

D10S1423 10p12.33 893 sibpairs BMI, paternal effect (in whites) p 	 0.005,
LOD 	 1.89

(1209)

D10S582 10p12.31 667 subjects, 244 families Obesity (in whites and African Americans) NPL 	 2.68 (1274)
862 subjects, 170 families Obesity (in African Americans, in European

Americans)
p 	 0.0005 (1275)
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D10S197 10p12.2 1297 subjects, 260 families BMI � 27, maternal LOD 	 2.71 (1224)
264 pairs Obesity LOD 	 4.9 (1230)
369 subjects, 89 families Obesity (in white children and adolescents) LOD 	 2.24 (1276)

D10S204 10p12.1 386 subjects, 93 families Obesity LOD 	 2.5 (1277)
D10S193 10p12.1 386 subjects, 93 families Obesity LOD 	 2.5 (1277)
D10S208 10p11.23 667 subjects, 244 families Obesity (in whites and African Americans) NPL 	 2.68 (1274)

862 subjects, 170 families Obesity (in African Americans, in European
Americans)

p 	 0.0005 (1275)

D10S1781 10p11.2 386 subjects, 93 families Obesity LOD 	 2.5 (1277)
SHGC-31480 10p11.23 386 subjects, 93 families Obesity LOD 	 2.5 (1277)
D10S220 10q21.1 672 subjects, 28 pedigrees Leptin (in Old Order Amish) LOD 	 2.7 (1271)
D10S107 10q21.1 862 subjects, 170 families Obesity (in African Americans, in European

Americans)
p 	 0.0005 (1275)

D10S1646 10q22.1 667 subjects, 244 families Waist circumference (in whites and African
Americans)

LOD 	 2.5 (1274)

BMI (in whites and African Americans) NPL 	 2.24
D10S535 10q22.3 667 subjects, 244 families Waist circumference (in whites and African

Americans)
LOD 	 2.5 (1274)

BMI (in whites and African Americans) NPL 	 2.24
D10S1267 10q24.32 447 subjects, 109 pedigrees BMI � 27 LOD 	 2.47 (1253)
D10S1679 10q26.13 667 subjects, 244 families Waist-to-hip ratio (in whites and African

Americans)
NPL 	 2.22 (1274)

Obesity (in whites and African Americans) NPL 	 2.25
D10S1656 10q26.2 667 subjects, 244 families Waist-to-hip ratio (in whites and African

Americans)
NPL 	 2.22 (1274)

Obesity (in whites and African Americans) NPL 	 2.25
Chr10q-region 10q26.3 1848 subjects, 279 pedigrees BMI LOD 	 1.98 (1245)

BMI and systolic blood pressure LOD 	 2.55
BMI and diastolic blood pressure LOD 	 3.2
BMI and systolic blood pressure and

diastolic blood pressure
LOD 	 4.09

D10S212 10q26.3 59 pedigrees, 277 sibships BMI LOD 	 2.08 (1251)
198 subjects, 18 pedigrees BMI LOD 	 3.3 (1213)

D11S984-D11S988 11p15.5-
11p15.5

430 subjects, 27 sibpairs, 27
pedigrees

BMI LOD 	 2.5 (1238)

CCKBR 11p15.4 226 pairs Leptin p 	 0.01 (1255)
C11P15 3 11p15.2 215 subjects, 105 families Abdominal subcutaneous fat LOD 	 1.85 (1237)
D11S419 11p15.2 67 pairs BMI (in French whites) p 	 0.003 (708)
ATA34E08 11p13 3383 subjects, 1124 families BMI (Women) LOD 	 1.8 (1227)

215 subjects, 105 families Abdominal subcutaneous fat LOD 	 1.75 (1237)
D11S1993 11q12 1297 subjects, 260 families Body fat (%), paternal LOD 	 2.21 (1224)
D11S1313 11q12.1 369 subjects, 89 families Obesity (in white children and adolescents) LOD 	 1.65 (1276)
D11S2006-

D11S2371
11q12.13-

11q13.3
729 subjects, 275 families Abdominal visceral fat MLS 	 2.36 (1210)

D11S916 11q13.3 640 subjects, 240 relative pairs,
155 pedigrees

Resting metabolic rate p 	 0.006 (1278)

D11S2371 11q13.3 1297 subjects, 260 families Body fat (%), paternal LOD 	 2 (1224)
D11S1321 11q13.3 640 subjects, 240 relative pairs,

155 pedigrees
Resting metabolic rate p 	 0.02 (1278)
Body fat (%) p 	 0.04
Fat mass p 	 0.02

D11S911 11q13.4 640 subjects, 240 relative pairs,
155 pedigrees

Resting metabolic rate p 	 2e�06 (1278)

D11S2002 11q13.3 1510 subjects, 509 families Factor central obesity MLS 	 2.19 (1247)
D11S940-

D11S2000
11q22-11q22.3 562 subjects, 178 families BMI LOD 	 2.5 (1279)

D11S2000 11q22.3 769 subjects, 182 families BMI (in Africans) LOD 	 3.35 (1218)
277 siblings Body fat (%) (in Pima Indians) p 	 0.0028 (1243)
157 subjects, 7 families BMI (in whites) p 	 0.0079 (1211)

D11S2366 11q23.1 277 siblings Body fat (%) (in Pima Indians) p 	 0.0009 (1243)
D11S1998 11q23.3 1526 pairs BMI (in Pima Indians) LOD 	 2.7 (1254)
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D11S976 11q23.3 236 pairs Energy expenditure, 24-hour (in Pima
Indians)

LOD 	 2 (1214)

D11S4464 11q24.1 430 subjects, 27 sibpairs, 27
pedigrees

BMI LOD 	 2.3 (1238)

1526 pairs BMI (in Pima Indians) LOD 	 2.7 (1254)
1778 sibships BMI p 	 0.0023 (1232)
994 subjects, 37 pedigrees BMI LOD 	 2.8 (1207)

D11S934 11q24.2 994 subjects, 37 pedigrees BMI LOD 	 2.6 (1207)
D11S912 11q24.3 264 families, 1766 pairs, 966

siblings
BMI LOD 	 3.6 (1280)

1778 sibships BMI p 	 0.0003 (1232)
994 subjects, 37 pedigrees BMI LOD 	 2.7 (1207)

D11S2359 11q25 1778 sibships BMI p 	 0.0012 (1232)
GATA49D12N

(D3S2395)
12p13.31 1297 subjects, 260 families BMI � 27 NPL 	 2.12 (1226)

893 sibpairs BMI, paternal effect (in whites) p 	 0.006,
LOD 	 1.83

(1209)

1297 subjects, 260 families BMI � 27 NPL 	 2.12 (1246)
D12S391 12p13.2 342 families Trends in BMI from childhood to adulthood LOD 	 2.9 (1215)
D12S1042 12p12.1 522 subjects, 99 families, 364

sibpairs
BMI (in whites) MLS 	 2.1 (1273)
Fat mass (in whites) MLS 	 1.2

D12S297-
D12S1294

12q13.13-12q15 729 subjects, 275 families Waist-to-hip ratio MLS 	 2.67 (1210)

D12S83 12q13.3 1249 sibpairs, �10,000 relative
pairs

Fat-free mass LOD 	 1.79 (1205)

D12S1691 12q14.1 514 subjects, 99 families, 347
sibships

Fat intake p 	 0.0013 (1217)

D12S1052 12q21 729 subjects, 275 families Waist-to-hip ratio MLS 	 2.6 (1210)
349 subjects, 66 pedigrees BMI (in whites) LOD 	 3.41 (1233)

D12S1052-
D12S1064

12q21-12q21.33 729 subjects, 275 families Waist-to-hip ratio MLS 	 2.91 (1210)

D12S1064 12q21.33 342 families Trends in BMI from childhood to adulthood LOD 	 2.1 (1215)
349 subjects, 66 pedigrees BMI (in whites) LOD 	 3.41 (1233)

PAH 12q22-q24.2 1297 subjects, 260 families BMI � 30 NPL 	 1.92 (1246)
PAH-D12S2070 12q22-q24.2-

12q24.21
729 subjects, 275 families Waist-to-hip ratio MLS 	 2.48 (1210)

D12PAH 12q23.1 342 families Trends in BMI from childhood to adulthood LOD 	 2.3 (1215)
Long-term burden in BMI LOD 	 3

1297 subjects, 260 families BMI � 30 NPL 	 1.92 (1226)
D12S79-D12S1366 12q23.1-

12q24.23
508 subjects, 21 families Obesity under anti-psychotics MLS 	 2.74 (1258)

IGF1 12q23.3 521 subjects, 156 families Abdominal subcutaneous fat LOD 	 1.9 (1219)
502 subjects, 99 families, 352

pairs, 190 parents, 312
offspring

Abdominal visceral fat (in whites) p 	 0.02 (895)
Fat-free mass (in whites) p 	 0.0002

D12S1339 12q24.2 1297 subjects, 260 families Body fat (%) LOD 	 4.08 (1246)
D12S2070 12q24.21 514 subjects, 99 families, 347

sibships
Fat intake (%) p 	 0.002 (1217)

1297 subjects, 260 families BMI, maternal MLS 	 4.01 (1224)
Waist circumference, maternal MLS 	 3.69

1297 subjects, 260 families Body fat (%) LOD 	 3.79 (1226)
1297 subjects, 260 families BMI LOD 	 3.57 (1246)

Waist circumference LOD 	 3.05
D12S395-

D12S2078
12q24-12q24.32 3383 subjects, 1124 families Body fat (%) (women) LOD 	 3.8 (1227)

D12S2078 12q24.32 521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.9 (1219)
D12S2078-

D12S1045
12q24.32-

12q24.33
3383 subjects, 1124 families Body fat (%) (men and women) LOD 	 3.3 (1227)

D12S1045 12q24.33 521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.9 (1219)
D12S1638 12q24.33 59 pedigrees, 277 sibships BMI LOD 	 1.94 (1251)
D13S175 13q12.11 580 families BMI LOD 	 3.3 (1244)
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D13S221 13q12.13 580 families BMI LOD 	 3.3 (1244)
D13S1493 13q13.2 1297 subjects, 260 families BMI � 40 NPL 	 2.03 (1226)

3383 subjects, 1124 families BMI and blood pressure response to postural
change

LOD 	 3.2 (1281)

D13S894 13q13.3 1297 subjects, 260 families BMI � 27, maternal LOD 	 2.34 (1224)
1297 subjects, 260 families BMI � 40 NPL 	 2.63 (1226)
1297 subjects, 260 families BMI � 27 NPL 	 1.88 (1246)

ESD 13q14.11 160 pairs Body fat (%) p 	 0.04 (1252)
Skinfolds, sum of six p 	 0.04

D13S257 13q14.2 3027 subjects, 401 families, 317
sibships

BMI (National Heart, Lung, and Blood
Institute Family Heart Study)

MLS 	 3.2
p 	 0.00006

(1220)

D13S1807 13q21.1 1297 subjects, 260 families BMI LOD 	 2.67 (1226)
D13S800 13q21.32 342 families Trends in BMI from childhood to adulthood LOD 	 2 (1215)

1297 subjects, 260 families BMI LOD 	 2.7 (1226)
1297 subjects, 260 families BMI LOD 	 2.7 (1246)

D13S793 13q31.3 1297 subjects, 260 families BMI, paternal LOD 	 4.79 (1224)
Waist circumference, paternal LOD 	 3.11

1297 subjects, 260 families BMI LOD 	 2.78 (1226)
1312 subjects, 696 families Factor central obesity MLS 	 2.17 (1247)

D13S779 13q32.2 1297 subjects, 260 families BMI LOD 	 2.82 (1226)
1312 subjects, 696 families Factor central obesity MLS 	 2.67 (1247)
1297 subjects, 260 families BMI LOD 	 2.82 (1246)

Waist circumference LOD 	 1.8
D13S285 13q34 330 pedigrees, 1702 sibships Obesity before age 35 p 	 0.001 (1282)

521 subjects, 156 families Abdominal subcutaneous fat LOD 	 1.9 (1219)
D14S742 14q11.2 522 subjects, 99 families, 364

sibpairs
Fat mass (in whites) MLS 	 1.7 (1273)
BMI (in whites) MLS 	 2.2

893 sibpairs BMI (in whites) p 	 0.002,
LOD 	 1.95

(1209)

D14S283 14q11.2 522 subjects, 99 families, 364
sibpairs

Fat mass (in whites) p 	 0.0006 (1273)
Leptin (in whites) p 	 0.003
Fat mass (in whites) MLS 	 2
BMI (in whites) MLS 	 1.8

D14S1280 14q11.2 522 subjects, 99 families, 364
sibpairs

Fat-free mass (in whites) MLS 	 1.1 (1273)
BMI (in whites) MLS 	 2.4

D14S608 14q12 1100 subjects, 170 families Adiponectin (in Northern Europeans) LOD 	 3.2 (1229)
D14S599 14q13.1 1100 subjects, 170 families Adiponectin (in Northern Europeans) LOD 	 3.2 (1229)
D14S276 14q22.2 672 subjects, 28 pedigrees Waist circumference (in Old Order Amish) LOD 	 1.8 (1271)
D14S588 14q24.1 215 subjects, 105 families Abdominal subcutaneous fat LOD 	 2.4 (1237)
D14S74 14q24.3 672 subjects, 28 pedigrees Leptin (in Old Order Amish) LOD 	 2.5 (1271)
D14S280 14q32.12 672 subjects, 28 pedigrees Leptin (in Old Order Amish) LOD 	 2.5 (1271)
D14S617 14q32.12 1055 pairs BMI LOD 	 2.2 (1241)
D15S128-D15S513 15q12-15q15.1 506 subjects, 115 pedigrees Age adiposity rebound LOD 	 2.53 (1239)
D15S1232 15q13.3 3027 subjects, 401 families, 317

sibships
BMI (National Heart, Lung, and Blood

Institute Family Heart Study)
LOD 	 1.7 (1220)

D15S641 15q15.2 478 subjects, 10 families asp levels LOD 	 2.1 (1283)
asp and high-density lipoprotein 2a-

cholesterol
LOD 	 3.2

LIPC 15q21-23 660 subjects, 202 families, 315
sibpairs, 274 men, 386 women

Eating behavior, hunger LOD 	 1.76 (978)

D15S206 15q24-q25 660 subjects, 202 families, 315
sibpairs, 274 men, 386 women

Eating behavior, hunger LOD 	 3 (978)

D15S655 15q25.3 3383 subjects, 1124 families Body fat (%) (men) LOD 	 3 (1227)
D15S652 15q26.1 336 sibpairs, 609 relative pairs Fat-free mass LOD 	 3.56 (1263)
D15S657 15q26.2 336 sibpairs, 609 relative pairs Fat-free mass LOD 	 2 (1263)
D16S510 16p13.3 672 subjects, 28 pedigrees Leptin (in Old Order Amish) LOD 	 1.7 (1271)

BMI (in Old Order Amish) LOD 	 1.7
D16S404 16p13.2 893 sibpairs BMI (in whites) p 	 0.00025,

LOD 	 3.12
(1209)
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D16S764 16p13.12 893 sibpairs BMI (in whites) p 	 0.0006,
LOD 	 2.45

(1209)

D16S3253 16q12.2 330 pedigrees, 1702 sibships BMI LOD 	 3.21 (1261)
D16S415-D16S420 16q12.2-

16q24.1
506 subjects, 115 pedigrees Age adiposity rebound LOD 	 2.54 (1239)

D16S2620 16q21 1055 pairs BMI LOD 	 2.6 (1241)
D16S265 16q21 1199 pairs Leptin LOD 	 2 (1260)
D16S422 16q23.3 995 subjects, 153 families Resting energy expenditure LOD 	 2.96 (1284)
D17S849-D17S799 17p13-17p13 506 subjects, 115 pedigrees BMI � 95th percentile LOD 	 2.25 (1239)
D17S1308 17p13.3 729 subjects, 275 families Abdominal subcutaneous fat MLS 	 2.06 (1210)
D17S1303 17p13.1 478 subjects, 10 families asp levels LOD 	 2.7 (1283)
D17S947 17p12 1100 subjects, 170 families Adiponectin (in Northern Europeans) LOD 	 1.7 (1229)

2209 subjects, 507 families Leptin LOD 	 5 (1248)
1055 pairs BMI LOD 	 2.5 (1241)

D17S1293 17q11.2 470 subjects, 10 families BMI p 	 0.001 (1272)
D17S2180 17q21.32 521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.2 (1219)
D17S1306 17q22 660 subjects, 202 families, 315

sibpairs, 274 men, 386 women
Eating behavior, hunger MLS 	 2.06 (978)

D17S1290 17q23.2 660 subjects, 202 families, 315
sibpairs, 274 men, 386 women

Eating behavior, hunger MLS 	 2.45 (978)

729 subjects, 275 families BMI MLS 	 2.76 (1210)
521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.2 (1219)

D17S944 17q23.3-q25.1 447 subjects, 109 pedigrees BMI � 35 LOD 	 3.16 (1253)
D17S1351 17q23-q24 660 subjects, 202 families, 315

sibpairs, 274 men, 386 women
Eating behavior, hunger LOD 	 1.75 (978)

D17S1301 17q25.2 521 subjects, 156 families Abdominal subcutaneous fat LOD 	 2.2 (1219)
D18S481 18p11.3 342 families Trends in BMI from childhood to adulthood LOD 	 2 (1215)
D18S843-D18S53 18p11.22-

18p11.23
3383 subjects, 1124 families Body fat (%) (men) LOD 	 1.7 (1227)

MC5R 18p11.21 289 pairs BMI p 	 0.001 (969)
Skinfolds, sum of six p 	 0.005
Fat mass p 	 0.001
Body fat (%) p 	 0.02
Fat-free mass p 	 0.008
Resting metabolic rate p 	 0.002

D18S877 18q12.1 336 sibpairs, 609 relative pairs Fat-free mass LOD 	 3.6 (1263)
236 pairs Body fat (%) (in Pima Indians) LOD 	 2.3 (1214)

D18S535 18q12.3 336 sibpairs, 609 relative pairs Fat-free mass LOD 	 3.58 (1263)
D18S858 18q21.31 3383 subjects, 1124 families BMI and blood pressure response to postural

change
LOD 	 2.6 (1281)

D18S1155 18q21.32 367 subjects, 166 families, 193
pairs

Obesity (in Finns) LOD 	 2.4 (1285)

MC4R 18q22 289 pairs Respiratory quotient p 	 0.04 (969)
D19S714 19p13.3 404 subjects Resistin mRNA levels in adipose tissue

(adult baboons)
LOD 	 3.84 (1286)

LDLR 19p13.2 522 subjects, 99 families, 364
sibpairs

Skinfolds, sum of eight (in whites) p 	 0.002 (1273)
Leptin (in whites) p 	 0.0009
Body fat (%) (in whites) p 	 0.009

D19S221-D19S414 19p13-19q13.11 506 subjects, 115 pedigrees Age adiposity rebound LOD 	 2.13 (1239)
D19S215 19p13 660 subjects, 202 families, 315

sibpairs, 274 men, 386 women
Eating behavior, disinhibition LOD 	 1.8 (978)

D19S418 19q13.3-q13.43 447 subjects, 109 pedigrees BMI � 35 LOD 	 3.21 (1253)
D19S414 19q13.11 369 subjects, 89 families Obesity (in white children and adolescents) LOD 	 1.97 (1276)
D19S254 19q13.43 330 pedigrees, 1702 sibships Obesity before age 35 p 	 0.001 (1282)
D20S482 20p13 893 sibpairs BMI (in whites) p 	 0.00016,

LOD 	 3.55
(1209)

D20S851 20p12.2 893 sibpairs BMI (in whites) p 	 4.6e�05,
LOD 	 4.08

(1209)

1724 subjects, 1202 families Factor central obesity MLS 	 1.97 (1247)
D20S604 20p12.1 1724 subjects, 1202 families Factor central obesity MLS 	 2.46 (1247)
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Table 5. (continued)

Gene/marker Location Population Phenotypes Score Reference

D20S601 20q11.22-
q11.23

236 pairs Respiratory quotient, 24-hour (in Pima
Indians)

LOD 	 3 (1214)

D20S478 20q12 994 subjects, 37 pedigrees BMI LOD 	 2 (1207)
D20S438 20q12 1711 subjects, 103 pedigrees BMI (in Utah pedigrees) LOD 	 3.5 (1287)

994 subjects, 37 pedigrees BMI LOD 	 2 (1207)
D20S465 20q12 994 subjects, 37 pedigrees BMI LOD 	 2 (1207)
D20S107 20q12 513 subjects, 92 families, 423

pairs
BMI LOD 	 3.2 (1288)
Body fat (%) LOD 	 3.2

D20S476 20q13 513 subjects, 92 families, 423
pairs

BMI LOD 	 3.06 (1288)

ADA 20q13.12 160 pairs BMI p 	 0.001 (1252)
skinfolds, sum of six p 	 0.001

D20S481 20q13.12 994 subjects, 37 pedigrees BMI LOD 	 2.2 (1207)
D20S17 20q13.12 650 subjects, 258 pairs, 152

pedigrees
Body fat (%) p 	 0.0078 (662)

D20S178 20q13.13 667 subjects, 244 families Body fat (%) (in whites and African
Americans)

NPL 	 2.57 (1274)

D20S887 20q13.13 514 subjects, 99 families, 347
sibships

Fat intake p 	 0.0093 (1217)

D20S869 20q13.13 514 subjects, 99 families, 347
sibships

Carbohydrate intake p 	 0.0023 (1217)
Fat intake p 	 0.0005
Protein intake p 	 9e�05

D20S857 20q13.13 514 subjects, 99 families, 347
sibships

Total energy intake p 	 7e�05 (1217)
Carbohydrate intake p 	 0.0008
Fat intake p 	 0.0006
Protein intake p 	 0.00022

D20S839 20q13.13 514 subjects, 99 families, 347
sibships

Total energy intake p 	 0.00014 (1217)
Carbohydrate intake p 	 0.0009
Fat intake p 	 0.0019
Protein intake p 	 0.00041

D20S480 20q13.13 514 subjects, 99 families, 347
sibships

Total energy intake p 	 0.0003 (1217)
Carbohydrate intake p 	 0.0006
Fat intake p 	 0.0016
Protein intake p 	 0.0009

D20S211 20q13.2 513 subjects, 92 families, 423
pairs

BMI LOD 	 3.2 (1288)

513 subjects, 92 families, 423
pairs

Body fat (%) LOD 	 3.2 (1288)

D20S876 20q13.13 514 subjects, 99 families, 347
sibships

Total energy intake p 	 0.00012 (1217)
Carbohydrate intake p 	 0.001
Protein intake p 	 0.00085

D20S120 20q13.2 650 subjects, 258 pairs, 152
pedigrees

Body fat (%) p 	 0.004 (662)

D20S149 20q13.31-qter 667 subjects, 244 families Body fat (%) (in whites and African
Americans)

NPL 	 2.57 (1274)

513 subjects, 92 families, 423
pairs

BMI LOD 	 3.2 (1288)
Body fat (%) LOD 	 3.2

D21S1442 21q21.2 3383 subjects, 1124 families Body fat (%) (women) LOD 	 1.8 (1227)
D21S2052 21q21.3 1510 subjects, 509 families Factor central obesity MLS 	 2.13 (1247)
D21S1440 21q22.12 1510 Subjects, 509 families Factor central obesity MLS 	 2.13 (1247)
D21S1446 21q22.3 1297 subjects, 260 families Body fat (%) LOD 	 4.21 (1226)

1297 subjects, 260 families Body fat (%) LOD 	 4.27 (1246)
D22S264 22q11.21 453 subjects, 99 families Abdominal subcutaneous fat LOD 	 1.96 (1237)
D22S1685

(D20S608)
22q11.21 318 subjects, 10 families Leptin p 	 0.001 (1289)

A4GALT 22q13.31 �168 pairs Body weight p 	 0.03 (1208)
DXS8099 Xp22.13 994 subjects, 37 pedigrees BMI LOD 	 2.6 (1207)
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undertaken in the same sample of European American fam-
ilies with the aim of detecting epistatic interactions among
QTLs (1226). QTLs influencing BMI were found on chro-
mosomes 2p24.2 and 4q28.3 and over a broad region of
chromosome 13q21.1-q32.2, whereas QTLs influencing
percentage body fat were found on chromosomes 12q24.21
and 21q22.3. Linkages with different obesity affection sta-
tus (BMI � 27, 30, 35, and 40) were found on chromosomes
3q12.3, 7q21.3, 7q22.1, 8q13.3, 9q22.33, 12p13.31,
12q23.1, 13q13.2, and 13q13.3. Significant evidence of
interactions was found between loci on chromosome re-
gions 2p25-p24 and 13q13-q21 (1226).

A search for genes influencing BMI, WHR, and abdom-
inal fat assessed by computed tomography scan was under-
taken in 330 subjects from 154 African-American families
and in 729 subjects from 275 Hispanic-American families
(1210). In the African-American families, significant link-
age to BMI was found on chromosomes 1p36 (LOD 	 2.14)
and 3p26.3 (LOD 	 3.67). In the Hispanic-American fam-
ilies, a QTL for BMI was found on chromosome 17q23.2
and QTLs for WHR were found on chromosomes 8q24.11,
12q13.13-q15, 12q21-q21.33, and 12q22-q24.21. QTLs for
abdominal fat were found on chromosomes 5q33.2-q35.1,
8q11.22-q12.1, and 17p13.3 for abdominal subcutaneous fat
and on chromosome 11q12.13-q13.3 for abdominal visceral
fat. The last genome scan study was a genome-wide linkage
analysis of four factors related to the metabolic syndrome
derived from a factor analysis of 10 risk factors (1247).
Factor analysis yielded four different metabolic syndrome
factors (obesity-insulin, blood pressure, lipids-insulin, and
central obesity) that were tested for linkage with 400 mi-
crosatellite markers in four different ethnic groups (blacks,
whites, Hispanics, Asians). Only results with the central
obesity factor are reported in Table 5. Evidence of linkage

was found on chromosomes 13q31.3, 13q32.2, 20p12.2, and
20p12.1 in blacks, on chromosomes 11q13.3, 21q21.3, and
21q22.12 in whites, and on chromosomes 3q22.1, 5q35.2,
6p25.1, 6p23, and 8p23.3 in Asians. No evidence of linkage
was found in Hispanics (1247).

A bivariate linkage analysis of metabolic syndrome phe-
notypes (BMI, WC, lipids, and insulin) with 19 markers
located on chromosome 7q11.22-q22.1 performed in 440
subjects from 27 Mexican-American families revealed evi-
dence of univariate linkage for BMI (LOD 	 2.4) and WC
(LOD 	 2.0) between markers D7S653 and D7S479 and
linkages (LOD scores ranging from 1.86 to 4.21) for most of
the bivariate traits (BMI-lipids, BMI-insulin, WC-lipids,
WC-insulin, BMI-WC) to a 6-cM region near marker
D7S653 (1203).

Finally, a meta-analysis of genome scans that used BMI
as their primary obesity phenotype and were published
before July 2003 was undertaken to identify QTLs influ-
encing obesity (1204). A total of 29 genome scans were
identified from the literature; of these studies, 13 analyzed
BMI as a quantitative trait. Access to detailed results was
requested from the authors of the 13 studies, and informa-
tion was obtained in only 5 of the 13 studies. The results
from these five studies, which included a total of 2814
individuals from 505 families, were jointly analyzed using a
variance component approach. For the purpose of the anal-
ysis, the genome was divided into 121 30-cM regions called
bins in such a way that the first bin on chromosome 1 (1.1)
includes the results of markers tested between locations 0
and 30 cM, the second bin (1.2) encompasses the 30- to
60-cM region of chromosome 1, and so on for all chromo-
somes. For each scan, the bins were then sorted according to
the maximum LOD score in that bin, and ranks were as-
signed with the lowest rank assigned to the bin with the

Table 5. (continued)

Gene/marker Location Population Phenotypes Score Reference

DXS997 Xp21.3 1148 subjects, 133 families, 190
European-American families
(940 members); 43 African-
American families (208
members)

Waist-to hip ratio (in European Americans
and African Americans)

LOD 	 2.7 (1290)

DXS1003 Xp11.3 1148 subjects, 133 families, 190
European-American families
(940 members); 43 African-
American families (208
members)

Waist-to-hip ratio (in European Americans
and African Americans)

LOD 	 2.7 (1290)

DXS1059 Xq23 994 subjects, 37 pedigrees BMI LOD 	 2 (1207)
DXS6804 Xq23 367 subjects, 166 families, 193

pairs
Obesity (in Finns) LOD 	 3.1 (1285)

DXS1220 Xq24 184 families, 218 sibships Obesity MLS 	 1.93 (1059)
AGTR25747C/T Xq24 184 families, 218 sibships Obesity MLS 	 2.3 (1059)

LOD, logarithm of odds; MLS, maximum LOD score; NPL, non-parametric linkage.
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highest LOD score. Within each study, the ranks were
weighted according to the number of genotyped individuals
in the sample, and the weighted average rank was then
calculated for each bin across the five studies. The bin with
the lowest weighted average rank for all studies corre-
sponded to the region of the genome showing the most
evidence of linkage across all studies retained in the meta-
analysis. The results of the analysis revealed that the lowest
weighted average rank was found in bin 8.1, suggesting that
the best evidence of linkage to BMI across all five studies is
found at the location 0 to 30 cM on chromosome 8 (8pter-
p23.3). Based on permutation testing, this was the only
region showing significant (p 	 0.0005) evidence of link-
age to BMI. Interestingly, only two of the five studies
retained in the meta-analysis showed suggestive evidence of
linkage to BMI in that region of chromosome 8.

Conclusion
The 2005 human obesity gene map is depicted in Figure

1. The map includes �600 loci from single-gene mutations
in mouse models of obesity, non-syndromic human obesity
cases due to single-gene mutations, obesity-related Mende-
lian disorders that have been mapped, transgenic and KO
mice models, QTLs from cross-breeding experiments and
genome-wide scans, and genes or markers that have been
shown to be associated or linked with an obesity phenotype.
The map reveals that putative loci affecting obesity-related
phenotypes are found on all chromosomes except Y. The
number of genes and other markers associated or linked
with human obesity phenotypes continues to increase, as
indicated by the numbers collated in Table 6. Based on the
various lines of evidence reviewed in the different sections
of this report, there are now 135 different candidate genes
that have been associated and/or linked with obesity-related
phenotypes. The majority of the 127 candidate genes asso-
ciated with obesity have been identified in association stud-
ies (Table 4). With the growing number of genes and loci
indexed in the map, several genes and QTLs identified from
association and genome scan studies have been replicated.
We can now identify 22 different genes that have shown

associations with obesity-related phenotypes in at least five
studies. Among them, those showing replications in 10
studies and more include PPARG (30 studies), ADRB3 (29),
ADRB2 (20), LEPR (16), GNB3 (14), UCP3 (12), ADIPOQ
(11), LEP (11), UCP2 (11), HTR2C (10), NR3C1 (10), and
UCP1 (10). The number of obesity QTLs identified from
genome scans now reaches 253, which include 15 QTLs that
have been replicated in at least three studies. The large
number of genes and loci depicted in the obesity gene map
is a good indication of the complexity of the task of iden-
tifying genes associated with the susceptibility to obesity.
Although several of the genes listed in this report may be
false positives, it is also clear that some genes are more
important than others based on the numbers of replications
from independent studies. A recent meta-analysis of genetic
association studies concluded that, although false positive
associations are abundant in the literature, 20% to 30% of
genetic associations are real and have modest effects on risk
of common diseases (1291). This would suggest that per-
haps as many as 20 to 30 of the obesity candidate genes
identified in this report might contribute to the risk of
obesity in humans. Of course, the goal remains to identify
the right combination of genes and mutations that are asso-
ciated with this increased risk and to determine how envi-

™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™3
Figure 1: The 2005 human obesity gene map. The map includes all
obesity-related genes and QTLs identified from the various lines of
evidence reviewed in this article. This year’s map consists of a
862-band-resolution cytogenetic map overlaid with build 35.1 of
the human genome sequence available from National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.gov). This
allows the human genes (as abbreviated in the tables and appendix
and located to the right of each chromosome in this figure) to be
placed at precise positions on both the sequence and the cytoge-
netic map. For all loci, we used the name preferred by UniSTS or
Entrez Gene. The ruler to the left of each figure represents kilo-
basepairs. Chromosomes are drawn to scale only within a given
page and not on the last page. These maps, along with information
from this report, can be browsed and searched interactively at the
Obesity Gene Map web site (http://obesitygene.pbrc.edu).

Table 6. Evolution in the status of the Human Obesity Gene Map

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Single-gene mutations* 2 6 6 6 6 6 6/7 10 11
KO and Tg 38 55 166 244
Mendelian disorders with map location 8 12 13 16 16 20 24 25 33 41 49 50
Animal QTLs 7 9 24 55 67 98 115 165 168 183 221 408
Human QTLs from genome scans 3 8 14 21 33 68 139 204 317
Candidate genes with positive findings 9 10 13 21 29 40 48 58 71 90 113 127

* Number of genes, not number of mutations.
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ronmental factors interact with these genes and mutations to
determine the risk. We hope that the information provided
in this publication will contribute in the years ahead to the
resolution of this enormous challenge.
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Appendix. Symbols, full names, and cytogenetic location of genes and loci of the 2005 human obesity gene map

Gene or locus Name Location (NCBI)

A4GALT � 1,4-Galactosyltransferase (P1 blood group) 22q13.31
ABCA7 ATP-binding cassette, subfamily A, member 7 19p13.3
ABCC8 ATP-binding cassette, subfamily C (CFTR/MRP), member 8 (sulfonylurea receptor) 11p15.1
ABCG5 ATP-binding cassette, subfamily G (WHITE), member 5 (sterolin 1) 2p21
ACACB Acetyl-coenzyme A carboxylase � 12q24.1
ACADVL Acyl-coenzyme A dehydrogenase, very long chain 17p13-p11
ACE Angiotensin I-converting enzyme (peptidyl-dipeptidase A) 1 17q24.1
ACP1 Acid phosphatase 1, soluble 2p25
ADA Adenosine deaminase 20q13.12
ADAM12 ADAM metallopeptidase domain 12 (meltrin �) 10q26.3
ADAMTS1 A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1 21q21.2
ADCYAP1 Adenylate cyclase-activating polypeptide 1 (pituitary) 18p11
ADIPOQ Adiponectin, C1Q, and collagen domain containing 3q27
ADRA1B Adrenergic, �-1B-, receptor 5q23-q32
ADRA2A Adrenergic, �-2A-, receptor 10q24-q26
ADRA2B Adrenergic, �-2B-, receptor 2q11.2
ADRB1 Adrenergic, �-1-, receptor 10q24-q26
ADRB2 Adrenergic, �-2-, receptor, surface 5q31-q32
ADRB3 Adrenergic, �-3-, receptor 8p12-p11.2
AEBP1 AE-binding protein 1 7p13
AGPAT2 1-Acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid acyltransferase, �)

(Bernardinelli-Seip congenital lipodystrophy 1)
9q34.3

AGRP Agouti-related protein homolog (mouse) 16q22
AGT Angiotensinogen (serine or cysteine) proteinase inhibitor, clade A (�-1 anti-proteinase,

anti-trypsin; member 8)
1q42.2

AGTR2 Angiotensin II receptor, type 2 Xq22-23
AHO2 AHO 2 15q11-q13
AHSG �-2-HS-glycoprotein 3q27
AK1 Adenylate kinase 1 9q34.13
AKT1 v-akt Murine thymoma viral oncogene homolog 1 14q32.3
AKT2 v-akt Murine thymoma viral oncogene homolog 2 19q13.1-13.2
ALMS1 Alstrom syndrome 1 2p13
ALPI Alkaline phosphatase, intestinal 2q37.1
AMACR �-Methylacyl-coenzyme A racemase 5p13.2-q11.1
ANGPTL4 Angiopoietin-like 4 19p13.3
ANGPTL6 Angiopoietin-like 6 19p13.2
ANMA Anisomastia (with obesity) 16q13-q21
APOA1 Apolipoprotein A-I 11q23.3
APOA2 Apolipoprotein A-II 1q23.1
APOA4 Apolipoprotein A-IV 11q23.3
APOA5 Apolipoprotein A-V 11q23
APOB Apolipoprotein B [including Ag(x) antigen] 2p24.2
APOC1 Apolipoprotein C-I 19q13.2
APOC3 Apolipoprotein C-III 11q23.1-q23.2
APOD Apolipoprotein D 3q26.2-qter
APOE Apolipoprotein E 19q13.32
AQP7 Aquaporin 7 9p13
AR Androgen receptor (dihydrotestosterone receptor, testicular feminization, spinal and bulbar

muscular atrophy, Kennedy disease)
Xq11.2-q12

ARID5B AT-rich interactive domain 5B (MRF1-like) 10q21.2
ARL6 ADP-ribosylation factor-like 6 3q11.2
ASIP Agouti signaling protein, non-agouti homolog (mouse) 20q11.2-q12
ASPA Aspartoacylase (Canavan disease) 17pter-p13
ATP12A ATPase, H�/K� transporting, non-gastric, � polypeptide 13q12.12
ATP1A2 ATPase, Na�/K� transporting, �2 (�) polypeptide 1q23.1
ATP1B1 ATPase, Na�/K� transporting, �1 polypeptide 1q23.3
ATP8B1 ATPase, class I, type 8B, member 1 18q21-q22
BATF Basic leucine zipper transcription factor, ATF-like 14q24.3
BBS1 Bardet-Biedl syndrome 1 11q13.1
BBS2 Bardet-Biedl syndrome 2 16q21
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Appendix. (continued)

Gene or locus Name Location (NCBI)

BBS3(ARL6) Bardet-Biedl syndrome 3 3p13-p12
BBS4 Bardet-Biedl syndrome 4 (myosin IXA) 15q22.3-23
BBS5 Bardet-Biedl syndrome 5 2q31
BBS7 Bardet-Biedl syndrome 7 4q27
BBS8(TTC8) Tetratricopeptide repeat domain 8 14q32.1
BDNF BDNF 11p13
BF B-factor, properdin 6p21.31
BRS3 Bombesin-like receptor 3 Xq26-q28
BSCL2 Bernardinelli-Seip congenital lipodystrophy 2 (seipin) 11q13
BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog � (yeast) 15q15
C19orf20 Chromosome 19 open reading frame 20 19p13.3
C3 Complement component 3 19p13.3
CAPN10 Calpain 10 2q37.3
CART Cocaine- and amphetamine-regulated transcript 5q13.2
CAV1 Caveolin 1 7q31.1
CAV3 Caveolin 3 3p25
CBFA2T1 Core-binding factor, runt domain, � subunit 2; translocated to, 1; cyclin D-related 8q21.3
CBL Cas-Br-M (murine) ecotropic retroviral transforming sequence 11q23.3
CCKAR Cholecystokinin A receptor 4p15.1-15.2
CCKBR Cholecystokinin B receptor 11p15.4
CCND3 Cyclin D3 6p21
CD36 CD36 antigen (collagen type I receptor, thrombospondin receptor) 7q11.2
CDH2 Cadherin 2 (N-cadherin) (N-cadherin 1) 18q11.2
CDKN1A Cyclin-dependent kinase inhibitor 1A 6p21.2
CDKN1B p27Kip1 12p13.1-p12
CEBPA CCAAT/enhancer-binding protein (C/EBP), � 19q13.1
CEBPB C/EBP, � 20q13.13
CEBPD C/EBP, � 8p11.2-11.1
CHM Choroideremia (Rab escort protein 1) Xq21.2
CHRM3 Cholinergic receptor, muscarinic 3 1q41-q44
CIDEA Cell death-inducing DFFA-like effector a 18p11.21
CLOCK Clock homolog (mouse) 4q12
CNR1 Cannabinoid receptor (brain) 6q14-q15
CNTFR Ciliary neurotrophic factor receptor 9p13.2
COH1 Cohen syndrome 1 8q22.2
COL8A2 Collagen, type VIII, �2 1p34.3
COMT Catechol O-methyltransferase 22q11.21
CORIN Corin, serine peptidase 4p13-12
CPE Carboxypeptidase E 4q32.3
CPT1A Carnitine palmitoyltransferase 1A (liver) 11q13.1-13.2
CRH Corticotropin-releasing hormone 8q13
CRHR1 Corticotropin-releasing hormone receptor 1 17q12-q22
CRHR2 Corticotropin-releasing hormone receptor 2 7p14.3
CYB5R4 Cytochrome b5 reductase 4 6pter-q22.33
CYP11B2 Cytochrome P450, family 11, subfamily B, polypeptide 2 8q21-q22
CYP19A1 Cytochrome P450, family 19, subfamily A, polypeptide 1 15q21.1
CYP2D6 Cytochrome P450, family 2, subfamily D, polypeptide 6 22q13.1
CYP7A1 Cytochrome P450, family 7, subfamily A, polypeptide 1 8q12.1
DBH Dopamine �-hydroxylase (dopamine �-monooxygenase) 9q34
DF D component of complement (adipsin) 19p13.3
DGAT1 Diacylglycerol O-acyltransferase homolog 1 (mouse) 8q24.3
DHCR24 24-Dehydrocholesterol reductase 1p33-31.1
DIO1 Deiodinase, iodothyronine, type I 1p33-p32
DLK1 �-Like 1 homolog (Drosophila) 14q32.3
DNAJC3 DnaJ (Hsp40) homolog, subfamily C, member 3 13q32
DPT Dermatopontin 1q12-23
DRD2 Dopamine receptor D2 11q23.2
DRD3 Dopamine receptor D3 3q13.3
DRD4 Dopamine receptor D4 11p15.5
EIF4EBP1 Eukaryotic translation initiation factor 4E-binding protein 1 8p12
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Appendix. (continued)

Gene or locus Name Location (NCBI)

ENPP1 Ectonucleotide pyrophosphatase/phosphodiesterase 1 6q23.1
EREG Epiregulin 4q13.3
ESD Esterase D/formylglutathione hydrolase 13q14.11
ESR1 Estrogen receptor 1 6q25.1
ESR2 Estrogen receptor 2 (ER �) 14q23.2
ESRRA Estrogen-related receptor � 11q13
FABP1 Fatty acid-binding protein 1, liver 2p11
FABP2 Fatty acid-binding protein 2, intestinal 4q27
FABP4 Fatty acid-binding protein 4, adipocyte 8q21
FABP5 Fatty acid-binding protein 5 (psoriasis-associated) 8q21.13
FASN Fatty acid synthase 17q25
FGF21 Fibroblast growth factor 21 19q31.1-qter
FGFR3 Fibroblast growth factor receptor 3 (achondroplasia, thanatophoric dwarfism) 4p16.3
FKHL18 Forkhead-like 18 (Drosophila) 20q11.1-11.2
FMR1 Fragile X mental retardation 1 Xq28
FOSB FBJ murine osteosarcoma viral oncogene homolog B 19q13.32
FOXA2 Forkhead box A2 20p11
FOXC2 Forkhead box C2 (MFH-1, mesenchyme forkhead 1) 16q22-q24
FSHR Follicle-stimulating hormone receptor 2p21
FXYD4 FXYD domain containing ion transport regulator 4 10q11.21
GABRG3 �-Aminobutyric acid A receptor, �3 15q11-q12
GAD2 Glutamate decarboxylase 2 (pancreatic islets and brain, 65 kDa) 10p11.23
GAL Galanin 11q13.2
GAMT Guanidinoacetate N-methyltransferase 19p13.3
GAS6 Growth arrestic-specific 6 13q34
GAST Gastrin 17q21
GCGR Glucagon receptor 17q25
GCK Glucokinase (hexokinase 4, maturity onset diabetes of the young 2) 7p15.3-p15.1
GDF3 Growth differentiation factor 3 12p13.1
GDF8 Growth differentiation factor 8 2q232.2
GFPT1 Glutamine-fructose-6-phosphate transaminase 1 2p13
GFRA2 GDNF family receptor �2 8p21
GH1 Growth hormone (GH) 1 17q22-q24
GHR GH receptor 5p13-12
GHRH GH-releasing hormone 20q11.2
GHRHR GH-releasing hormone receptor 7p14
GHRL Ghrelin, GH secretagogue receptor ligand 3p26-p25
GHSR GH secretagogue receptor 3q26.31
GIPR Gastric inhibitory polypeptide receptor 19q13.3
GLO1 Glyoxalase I 6p21.3-p21.1
GNAS GNAS complex locus 20q13.2-q13.3
GNB3 Guanine nucleotide-binding protein (G-protein), � polypeptide 3 12p13
GNG3 Guanine nucleotide-binding protein (G-protein), �3 11p11
GPAM Glycerol-3-phosphate acyltransferase, mitochondrial 10q25.2
GPC1 Glypican 1 2q35-q37
GPC3 Glypican 3 Xq26.2
GPC4 Glypican 4 Xq26.1
GPD2 Glycerol-3-phosphate dehydrogenase 2 (mitochondrial) 2q24.1
GPHB5 Glycoprotein hormone �5 14q23.2
GPR10 G-protein-coupled receptor 10 10q26.13
GPR109A G-protein-coupled receptor 109A 12q24.31
GPR24 G-protein-coupled receptor 24 22q13.3
GPR35 G-protein-coupled receptor 35 2q37.3
GPR40 G-protein-coupled receptor 40 19q13.1
GPR7 G-protein-coupled receptor 7 8p22-q21.13
GPX1 Glutathione peroxidase 1 3p21.3
GRM5 Glutamate receptor, metabotropic 5 11q14.3
GRM8 Glutamate receptor, metabotropic 8 7 (q31.3-q32.1)
GSK3B Glycogen synthase kinase 3 � 3q13.3
GYPA Glycophorin A (includes MN blood group) 4q31.1
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Appendix. (continued)

Gene or locus Name Location (NCBI)

GYS1 Glycogen synthase 1 (muscle) 19q13.33
H6PD Hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase) 1pter-p36.13
HCRT Hypocretin (orexin) neuropeptide precursor 17q21
HD Huntington (Huntington disease) 4p16.3
HDC Histidine decarboxylase 15q21-q22
HEXB Hexosaminidase B (� polypeptide) 5q13
HMGA2 High-mobility group AT-hook 2 12q15
HRH1 Histamine receptor H1 3p25
HRH3 Histamine receptor H3 20q13.3
HSD11B1 Hydroxysteroid (11-�) dehydrogenase 1 1q32-q41
HSD11B2 Hydroxysteroid (11-�) dehydrogenase 2 16q22
HSD3B1 Hydroxy-�-5-steroid dehydrogenase, 3 �- and steroid �-isomerase 1 1p11.2
HSPA1B Heat shock 70-kDa protein 1B 6p21.31
HTR1B 5-Hydroxytryptamine (serotonin) receptor 1B 6q14.1
HTR2A 5-Hydroxytryptamine (serotonin) receptor 2A 13q14.11
HTR2C 5-Hydroxytryptamine (serotonin) receptor 2C Xq24
ICAM1 Intercellular adhesion molecule 1 (CD54), human rhinovirus receptor 19p13.2
IDE Insulin-degrading enzyme 10q23-q25
IDH1 Isocitrate dehydrogenase 1 (NADP�), soluble 2q33.3
IFRD1 Interferon-related developmental regulator 1 7q22-q31
IGF1 Insulin-like growth factor 1 (somatomedin C) 12q23.3
IGF2 Insulin-like growth factor 2 (somatomedin A) 11p15.5
IGFBP6 Insulin-like growth factor-binding protein 6 12q13
IGKC Immunoglobulin kappa constant 2p11.2
IL1RN Interleukin 1 receptor antagonist 2q14.2
IL6 Interleukin 6 (interferon, �2) 7p21
IL6R Interleukin 6 receptor 1q22
INPPL1 Inositol polyphosphate phosphatase-like 1 11q23
INS Insulin 11p15.5
INSR Insulin receptor 19p13.3-p13.2
IPW Imprinted in Prader-Willi syndrome 15q11.2
IRS1 Insulin receptor substrate 1 2q36.3
IRS2 Insulin receptor substrate 2 13q34
ISL1 ISL1 transcription factor, LIM/homeodomain, (islet-1) 5q11.2
KCNA3 Potassium voltage-gated channel, shaker-related subfamily, member 3 1p13.3
KCNJ11 Potassium inwardly rectifying channel, subfamily J, member 11 11p15.1
KEL Kell blood group 7q35
KLF5 Kruppel-like factor 5 (intestinal) 13q22.1
LDLR Low-density lipoprotein receptor (familial hypercholesterolemia) 19p13.2
LEP Leptin (obesity homolog, mouse) 7q31.3
LEPR Leptin receptor 1p31
LHB Luteinizing hormone � polypeptide 19q13.32
LIPA Lipase A, lysosomal acid, cholesterol esterase (Wolfman disease) 10q23.2-q23.3
LIPC Lipase, hepatic 15q21-23
LIPE Lipase, hormone-sensitive 19q13.2
LMNA Lamin A/C 1q23.1
LPIN1 Lipin 1 2p25.1
LPL Lipoprotein lipase 8p21.3
LRPAP1 Low-density lipoprotein receptor-related protein-associated protein 1 4p16.3
LTA Lymphotoxin � (TNF superfamily, member 1) 6p21.3
MACS2 SAH family member, acyl-coenzyme A synthetase for fatty acids 16p12.3
MAGEL2 MAGE-like 2 15q11.2
MAOA Monoamine oxidase A Xp11.4-p11.3
MAPK3 Mitogen-activated protein kinase 3 6p12-p11.2
MAPK8IP1 Mitogen-activated protein kinase 8-interacting protein 1 11p11.2
MC3R Melanocortin 3 receptor 20q13.2-q13.3
MC4R Melanocortin 4 receptor 18q22
MC5R Melanocortin 5 receptor 18p11.21
MECP2 Methyl CpG-binding protein 2 (Rett syndrome) Xq28
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Appendix. (continued)

Gene or locus Name Location (NCBI)

MED12 Trinucleotide repeat contain mediator of RNA polymerase II transcription, subunit 12 homolog
(yeast)

Xq13.1

MEHMO Mental retardation, epileptic seizures, hypogonadism and -genitalism, microcephaly, and obesity
syndrome

Xp22.13-p21.1

MEN1 Multiple endocrine neoplasia I 11q13
MEST Mesoderm-specific transcript homolog (mouse) 7q32
MKKS McKusick-Kaufman syndrome 20p12
MKRN3 Makorin, ring finger protein, 3 15q11.2
MLXIPL MLX-interacting protein-like 7q11.23
MMP11 Matrix metallopeptidase 11 (stromelysin 3) 22q11.23
MMP19 Matrix metallopeptidase 19 12q14
MRXS11 Mental retardation, X-linked, syndromic 11 Xq26-q27
MRXS7 Mental retardation, X-linked, syndromic 7 Xp11.3-q22.1
MT1A Metallothionein 1A (functional) 16q13
MTTP Microsomal triglyceride transfer protein 4q24
MYC Avian myelocytomatosis viral (v-myc) oncogene homolog 8q24.12-q24.13
NCB5OR NADPH cytochrome B5 oxidoreductase 6pter-q22.33
NCOA3 Nuclear receptor coactivator 3 20q13.13
NDN Necdin homolog (mouse) 15q11.2
NHLH2 Nescient helix loop helix 2 1p12-p11
NMB Neuromedin B 15q22-qter
NMU Neuromedin U 4q12
NOS2A Nitric oxide synthase 2A (inducible, hepatocytes) 17q11.2-12
NPB Neuropeptide B 17q25.3
NPR3 Natriuretic peptide receptor C/guanylate cyclase C (anti-natriuretic peptide receptor C) 5p14-p13
NPY Neuropeptide Y 7p15.1
NPY1R Neuropeptide Y receptor Y1 4q31.3-q32
NPY2R Neuropeptide Y receptor Y2 4q31
NPY5R Neuropeptide Y receptor Y5 4q31-q32
NR0B2 Nuclear receptor subfamily 0, group B, member 2 1p35.3
NR1H2 nuclear receptor subfamily 1, group H, member 2 19q13.3-13.2
NR1I3 Nuclear receptor subfamily 1, group I, member 3 1q23.3
NR3C1 Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) 5q31
NTRK2 Neurotrophic tyrosine kinase receptor type 2 9q22.1
NTSR1 Neurotensin receptor 1 (high affinity) 20q13-20q13
OPRM1 Opioid receptor, �1 6q24-q25
ORM1 Orosomucoid 1 9q33.1
PAH Phenylalanine hydroxylase 12q22-q24.2
PARP1 Poly (ADP-ribose) polymerase family, member 1 1q41-q42
PAX6 Paired box gene 6 (aniridia, keratitis) 11p13
PCSK1 Proprotein convertase subtilisin/kexin type 1 5q15-q21
PCSK1N Proprotein convertase subtilisin/kexin type 1 inhibitor Xp11.23
PEG3 Paternally expressed 3 19q31.4
PEMT Phosphatidylethanolamine N-methyltransferase 17p11.2
PGD Phosphogluconate dehydrogenase 1p36.22
PGR Progesterone receptor 11q22.2
PHF6 PHD finger protein 6 Xq26.3
PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (p85 �) 5q13.1
PIP5K2B Phosphatidylinositol-4-phosphate 5-kinase, type II, � 17q12
PLA2G1B Phospholipase A2, group IB (pancreas) 12q23-q24.1
PLIN Perilipin 15q26
PLSCR1 Phospholipid scramblase 1 3q23
PLSCR3 Phospholipid scramblase 3 17p13.1
PMCH Promelanin-concentrating hormone 12q23-q24.1
PMM2 Phosphomannomutase 2 16p13.2
PNMT Phenylethanolamine N-methyltransferase 17q21.2
POMC proopiomelanocortin (adrenocorticotropin/�-lipotropin/�-melanocyte stimulating hormone/�-

melanocyte stimulating hormone/�-endorphin)
2p23.3

PON1 Paraoxonase 1 7q21.3
PON2 Paraoxonase 2 7q21.3
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Appendix. (continued)

Gene or locus Name Location (NCBI)

POR P450 (cytochrome) oxidoreductase 7q11.2
PPARA Peroxisome proliferative-activated receptor, � 22q13.31
PPARD Peroxisome proliferative-activated receptor, � 6p21.2-p21.1
PPARG Peroxisome proliferative-activated receptor, � 3p25
PPARGC1A Peroxisome proliferative-activated receptor, �, coactivator 1 � 4p15.1-15.2
PPARGC1B Peroxisome proliferative-activated receptor, �, coactivator 1, � 5q32
PPP1R3A Protein phosphatase 1, regulatory (inhibitor) subunit 3A (glycogen and sarcoplasmic reticulum-

binding subunit, skeletal muscle)
7q31.1

PPP1R3C Protein phosphatase 1, regulatory (inhibitor) subunit 3C 10q23-q24
PPY Pancreatic polypeptide 17q21
PRKAA2 Protein kinase, AMP-activated, �2 catalytic subunit 1p31
PRKAG3 AMP-aprotein kinase, AMP-activated, �3 non-catalytic subunit 2q35
PRKAR1A protein kinase, cAMP-dependent, regulatory, type I, � (tissue-specific extinguisher 1) 17q24.3
PRKAR2B Protein kinase, cAMP-dependent, regulatory, type II, � 7q22
PRKCQ Protein kinase C, � 10p15
PRLHR Prolactin-releasing hormone receptor 10q26.13
PROP1 Prophet of Pit1, paired-like homeodomain transcription factor 5q35.3
PROX1 Prospero-related homeobox 1 1q32.2-q32.3
PTPN1 Protein tyrosine phosphatase, non-receptor type 1 20q13.1-q13.2
PTPN11 Protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1) 12q24
PTPNS1 Protein tyrosine phosphatase, non-receptor type substrate 1 20p13
PTPRF Protein tyrosine phosphatase, receptor type, F 1p34
PTTG1 Pituitary tumor-transforming 1 5q35.1
PWCR1 Prader-Willi syndrome critical region 1 15q11.2
PWLSX Prader-Willi-Like Syndrome, X-linked Xq23-q25
PYY Peptide YY 17q21.1
RAI1 Retinoic acid induced 1 17p11.2
RASGRF1 Ras protein-specific guanine nucleotide-releasing factor 1 15q24
REN Renin 1q32
RETN Resistin (FIZZ3) 19p13.2
RETNLB Resistin-like � 3q13.1
RPS6KA3 Ribosomal protein S6 kinase, 90 kDa, polypeptide 3 X p22.2-p22.1
RPS6KB1 Ribosomal protein S6 kinase, 70 kDa, polypeptide 1 17q23.2
RSC1A1 Regulatory solute carrier protein, family 1, member 1 1p36.1
RXRG Retinoid X receptor � 1q22-q23
SAH SA hypertension-associated homolog (rat) 16p13.11
SCARB1 Scavenger receptor class B, member 1 12q24.31
SCD1 Stearyl-coenzyme A desaturase 1 10
SDC1 Syndecan 1 2p24.1
SDC3 Syndecan 3 (N-syndecan) 1pter-p22.3
SERPINE1 Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 7q21.3-q22
SFRP1 Secreted frizzled-related protein 1 8p12-p11.1
SGBS2 Simpson-Golabi-Behmel syndrome, type 2 Xp22
SGK Serum/glucocorticoid regulated kinase 6q23
SH2B SH2-B homolog 16p11.2
SIM1 Single-minded homolog 1 (Drosophila) 6q16.3-q21
SLC2A2 Solute carrier family 2 (facilitated glucose transporter), member 2 3q26.31
SLC2A4 Solute carrier family 2 (facilitated glucose transporter), member 4 17p13
SLC6A1 Solute carrier family 6 (neurotransmitter transporter, � -aminobutyric acid), member 1 3p25-p24
SLC6A14 Solute carrier family 6 (amino acid transporter), member 14 Xq23-q24
SLC6A3 Solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 5p15.33
SNRPN Small nuclear ribonucleoprotein polypeptide N 15q12
SOAT2 Sterol O-acyltransferase 2 12q13.13
SOCS3 Suppressor of cytokine signaling 3 17q25.3
SORBS1 Sorbin and SH3 domain containing 1 10q24.1
SOX8 SRY (sex determining region Y)-box 8 16p13.3
SPARC Secreted protein, acidic, cysteine-rich (osteonectin) 5q31.3-q32
SREBF1 Sterol regulatory element-binding transcription factor 1 17p11.2
STAT3 Signal transducer and activator of transcription 3 (acute-phase response factor) 17q21.31
STAT5B Signal transducer and activator of transcription 5B 17q11.2
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Appendix. (continued)

Gene or locus Name Location (NCBI)

STK25 Serine/threonine kinase 25 (STE20 homolog, yeast) 2q37.3
TBX3 T-box 3 (ulnar mammary syndrome) 12q24.21
TCF1 Transcription factor 1, hepatic; LF-B1, hepatic nuclear factor (HNF1), albumin proximal factor 12q24.31
TGFB1 Transforming growth factor, �1 (Camurati-Engelmann disease) 19q13.31
TH Tyrosine hydroxylase 11p15.5
THRA Thyroid hormone receptor, � [erythroblastic leukemia viral (v-erb-a) oncogene homolog, avian] 17q11.2
THRB Thyroid hormone receptor, � [erythroblastic leukemia viral (v-erb-a) oncogene homolog 2, avian] 3p24.1
TKT Transketolase (Wernicke-Korsakoff syndrome) 3p14.3
TNF TNF (TNF superfamily, member 2) 6p21.3
TNFRSF1B TNF receptor superfamily, member 1B 1p36.21
TUB Tubby homolog (mouse) 11p15.5
TXNIP Thioredoxin-interacting protein 1q21.1
UBL5 Ubiquitin-like 5 19p13.3
UBR1 Ubiquitin protein ligase E3 component n-recognin 1 15q13
UCP1 Uncoupling protein 1 (mitochondrial, proton carrier) 4q28-q31
UCP2 Uncoupling protein 2 (mitochondrial, proton carrier) 11q13.3
UCP3 Uncoupling protein 3 (mitochondrial, proton carrier) 11q13
UNC5C unc-5 homolog C (C. elegans) 4q21-q23
VDR Vitamin D (1,25- dihydroxyvitamin D3) receptor 12q13.11
VGF VGF nerve growth factor inducible 7q22
VLDLR Very-low-density lipoprotein receptor 9p24
VSX1 Visual system homeobox 1 homolog, CHX10-like (zebrafish) 20p11.21
WBSCR14 Williams Beuren syndrome chromosome region 14 7q11.23
WNT10B Wingless-type MMTV integration site family, member 10B 12q13
WT1 Wilms tumor 1 11p13
WTS Wilson-Turner X-linked mental retardation syndrome Xq21.2-q22
ZFP36 Zinc finger protein 36, C3H type, homolog (mouse) 19q13.1
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