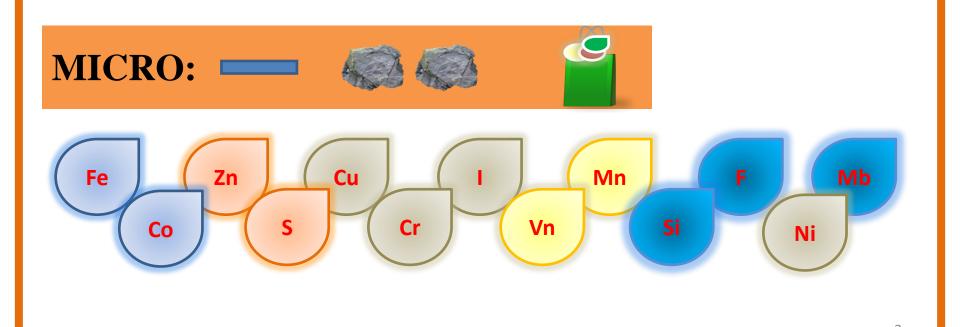
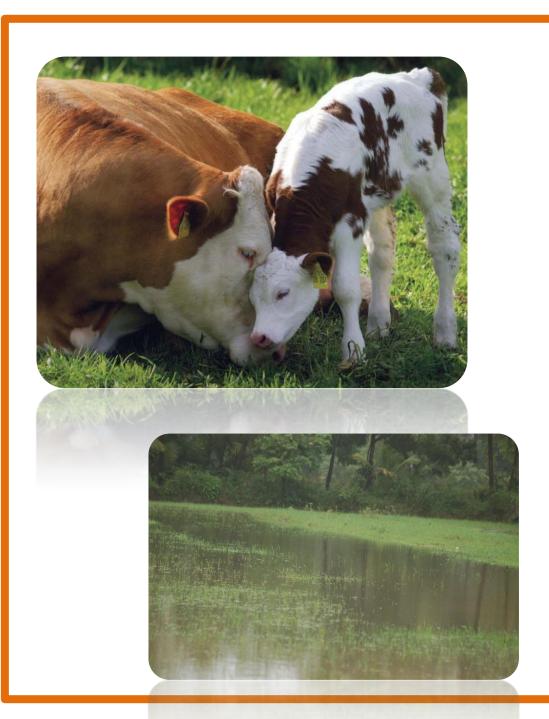


Universidade Federal de Pelotas Núcleo de Pesquisa, Ensino e Extensão em Pecuária


DEFICIÊNCIA MINERAL EM BOVINOS DE CORTE

Guilherme Pivato Bizani — Graduando em Medicina Veterinária Harrison Batista de Oliveira— Graduando em Agronomia Lucas Alfredo de Carvalho Bartoski — Graduando em Medicina Veterinária Mozer Manetti de Ávila - Doutorando em Biotecnologia


Pelotas, RS - 2016

Função	Minerais relacionados
Estrutural	 Ca, P, Mg, Fe e Si – Composição de ossos e dentes; P e S – Em proteínas musculares; Zn e P – Estabilidade estrutural de moléculas e membranas das quais fazem parte.
Fisiológica	 Na, K, Cl, Ca, e Mg - Presentes no sangue, fluido cérebro-espinal. Envolvidos com a manutenção da pressão osmótica, do balanço ácido-básico, da permeabilidade de membranas e irritabilidade dos tecidos.
Catalítica	 Zn, Cu - Agem como catalisadores nos sistemas enzimáticos, como componentes da estrutura de metaloproteínas ou como ativador do sistema.
Reguladora	 Ca, Zn - Ação reguladora na replicação e diferenciação celular. Influenciam o sinal de transdução e transcrição durante o mecanismo de síntese protéica no organismo animal.

PORQUÊ É DEFICITÁRIO?

FORNECIMENTO

Noticiário EDIÇÃO 486 ANO 59

Para uma nova era, uma geração exclusiva de produtos de alta performance

Bovigold Beta Pré-Parto e Bovigold Beta Pós-Parto: lançamentos para o período de transição de vacas leiteiras

BIODISPONIBILIDADE

- Inorgânicos: Forma livre Não tem competição de ligação
- Orgânicos: minerais + quelantes evitam interferências

Elemento mineral	Orgânico	Inorgânico
Cálcio	92-96%	22-53%
Magnésio	85-94%	26-48%
Ferro	85-94%	26-48%
Zinco	87-94%	15-35%
Cobre	91-98%	15-29%
Cobalto	85-89%	30-36%
Manganês	83-87%	12-24%
Selênio	88-90%	09-26%

QUELANTES

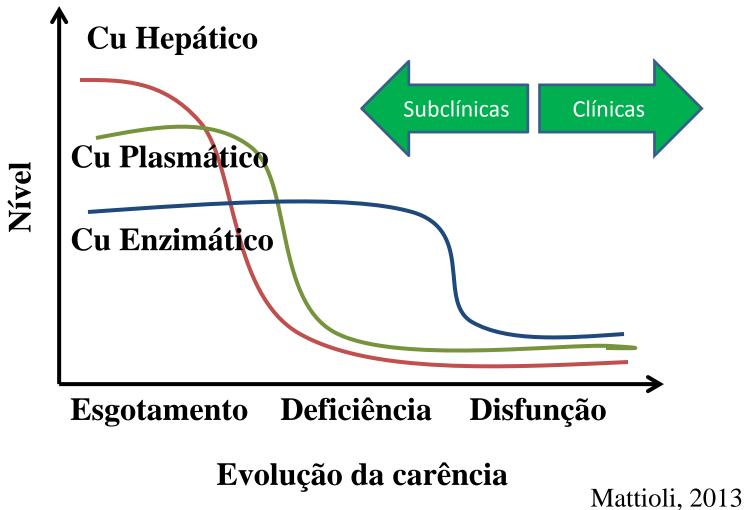
O que são? Compostos orgânicos ligados industrialmente aos minerais, como proteínas, aminoácidos ou carboidratos.

AUMENTO DA ABSORÇÃO A NÍVEL INTESTINAL

ANULA INTERFERÊNCIAS ENTRE OS MINERAIS

ELEMENTO	FONTE	(%)	BIODISPONIBILIDADE
Enxofre	sulfato cálcio	12,0-20,1	baixa
	sulfato potássio	28,0	alta
	sulfato sódio	10,0	intermediário
	sulfato sódio anidro	22,0	
	fluor enxofre	96,0	baixa
Cobre	sulfato cobre	25,0	alta
	carbonato cobre	53,0	intermediário
	cloreto cobre	37,2	alta
	óxido cobre	80,0	baixa
	nitrato cobre	33,9	intermediário
Ferro	óxido ferro	46,0-60,0	indisponível
	carbonato ferro	36,0-42,0	baixa
	sulfato ferro	29,0-30,0	alta
Zinco	carbonato zinco	52,0	alta
	cloreto zinco	48,0	intermediária
	sulfato zinco	22,0-36,0	alta
	óxido zinco	46,0-73,0	alta

NÍVEIS DA AUSÊNCIA DE MINERAIS


ESGOTAMENTO

DEFICIÊNCIA

DISFUNÇÃO

ENFERMIDADE

FASES EVOLUTIVAS DA CARÊNCIA MINERAL

ABSORÇÃO DO Cu

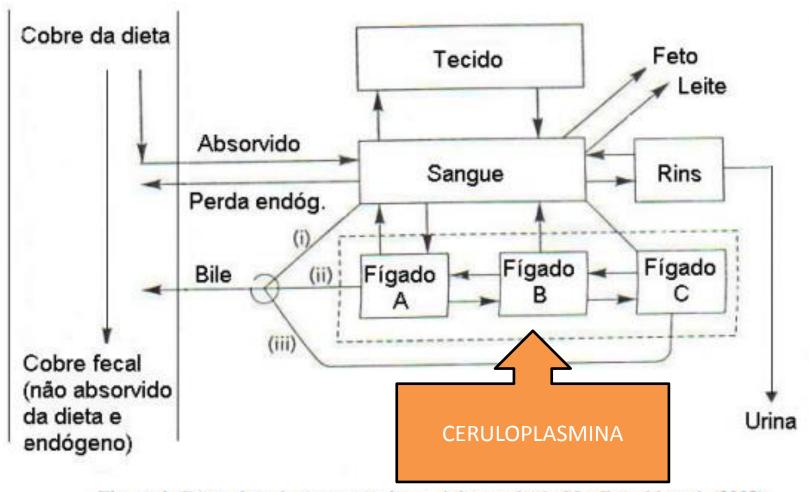


Figura 1: Rotas do cobre no organismo. Adapatado de MacDonald et al. (2002).

INTERFERÊNCIAS DA ABSORÇÃO DO Cu

Ceruloplasmina = 95% do Cu Armazena e transporta o Cu Mantença da homeostase do Cu

Cupro-tiomolibdato = insolúvel e indisponível á absorção;

A formação dos CuTMs provoca a diminuição a concentração tissular e aumenta a concentração plasmática de Cu, assim surgindo os sinais de deficiência.

TM's+Cu =
Cupro-tiomolibdatos

Mo+4S = TM's

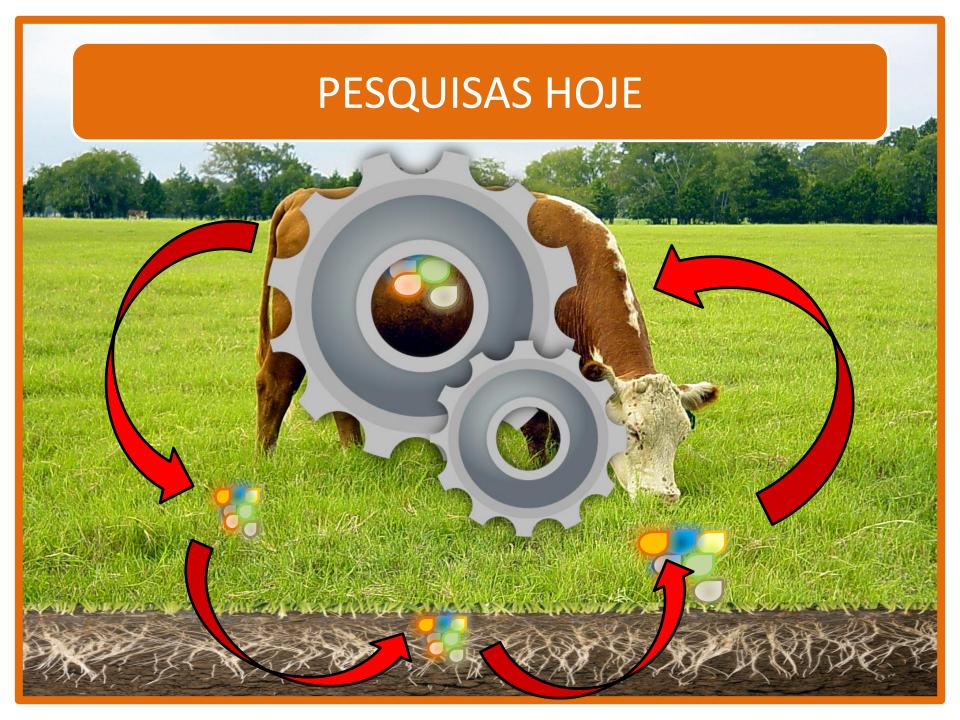
Cu-TMs + Albumina //Ceruloplasmina

Deficiente

Não apresenta resposta satisfatória em suas funções

Fe Mn Mo Zn

de produção e repr


Ótima

Quando as quantid dentro de certos passa a diminuir à diminui o nível do

das nal ou

011)

O ARTIGO

txanc.org

Texas Animal Nutrition Council

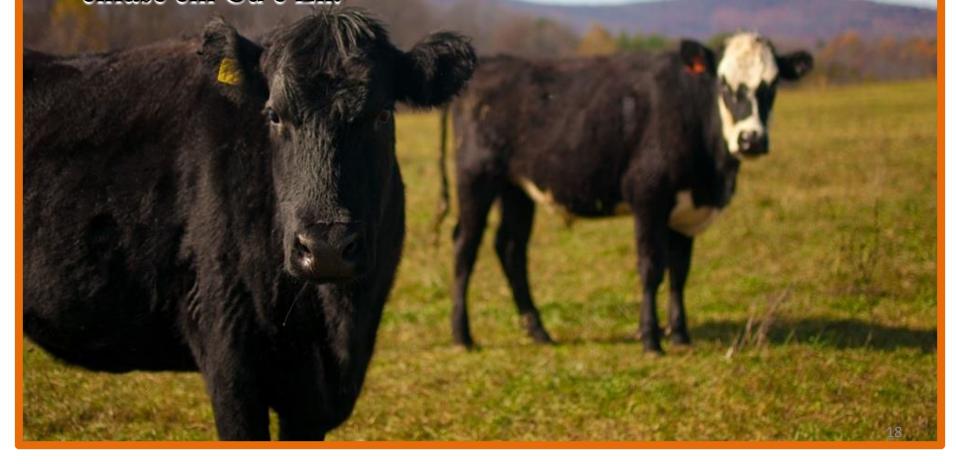
2015 Membership Directory

Officers

Conferences

Proceedings

Meetings


Assessing the Role of Copper and Zinc in the Cow-Calf Production Cycle

John Paterson^a, Connie Swenson^b, Bruce Johnson^b and Ray Ansotegui^a

Montana State University and ^b Zinpro Corporation

Assim, o estudo objetivou realizar uma revisão bibliográfica acerca da deficiência de microminerais, com ênfase em Cu e Zn.

"HIPÓTESE"

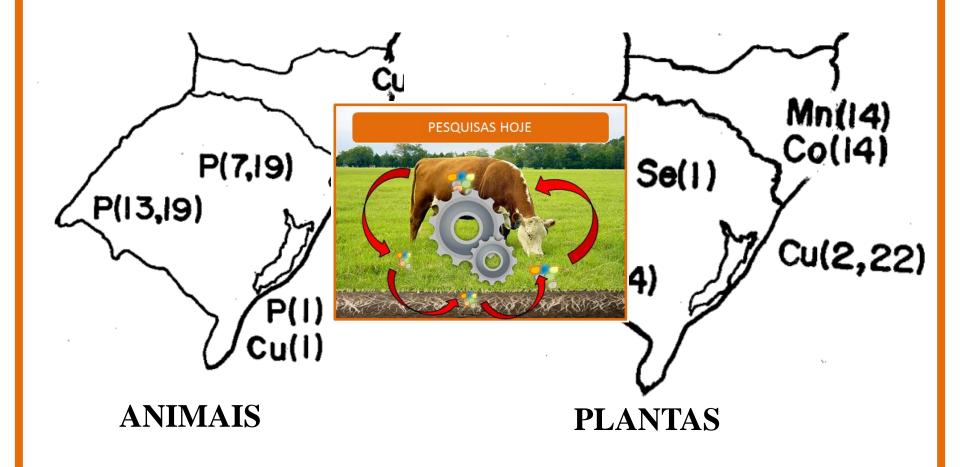
Existe uma interação entre o desequilíbrio mineral no processo vertical solo-planta-animal em diferentes microrregiões de uma mesma localidade.

"METODOLOGIA"

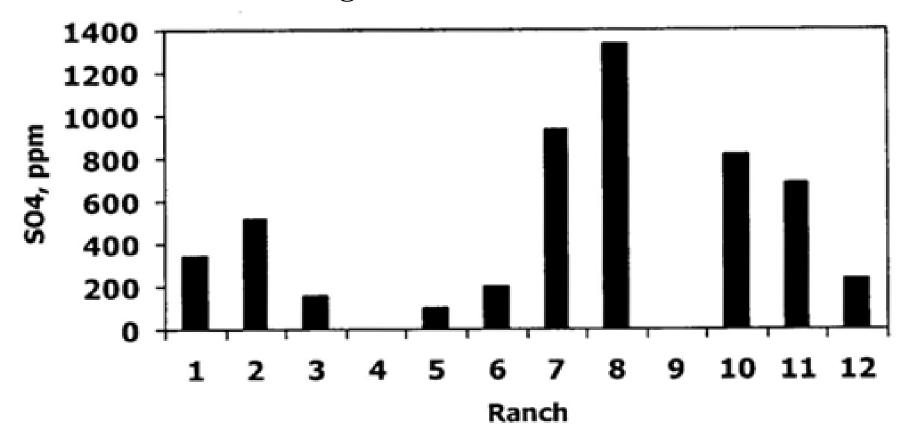
Concentração média de nutrientes de gramíneas, mix de forragens e leguminosas.

Forage Type	No. Samples	Crude	TDN %	Ca	P	S	Cu,	Mo,	Cu:Mo	Zn,
		Protein%		%	%	%	ppm	ppm	ratio	Ppm
Grasses	151	9.6	54.9	.62	.16	.14	5.2	1.45	3.6	18.2
Forage-Mix	163	13.1	57.9	.85	.21	.19	7.0	.81	8.6	19.2
Legumes	58	17.9	62.7	1.4	.24	.26	8.8	1.15	7.7	21.4

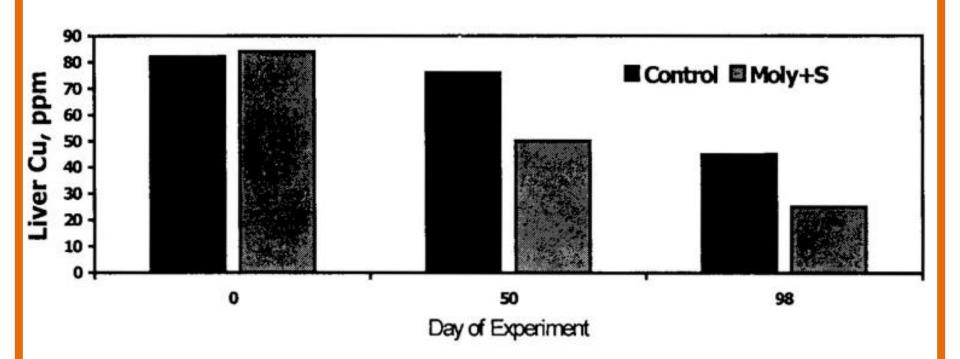
Variação no conteúdo mineral de gramíneas nativas do Texas.


Mineral	Average	Commonly Observed
Calcium, %	.48	.2967
Phosphorus, %	.10	.0416
Magnesium, %	.12	.0717
Potassium, %	.91	.28-1.54
Sulfur, %	.13	.0719
Iron, ppm	205	43-367
Copper, ppm	5	3-7
Manganese, ppm	50	25-75
Zinc, ppm	21	13-29

DEFICIÊNCIAS MINERAIS DIAGNOSTICADAS NO BRASIL ATÉ 1976

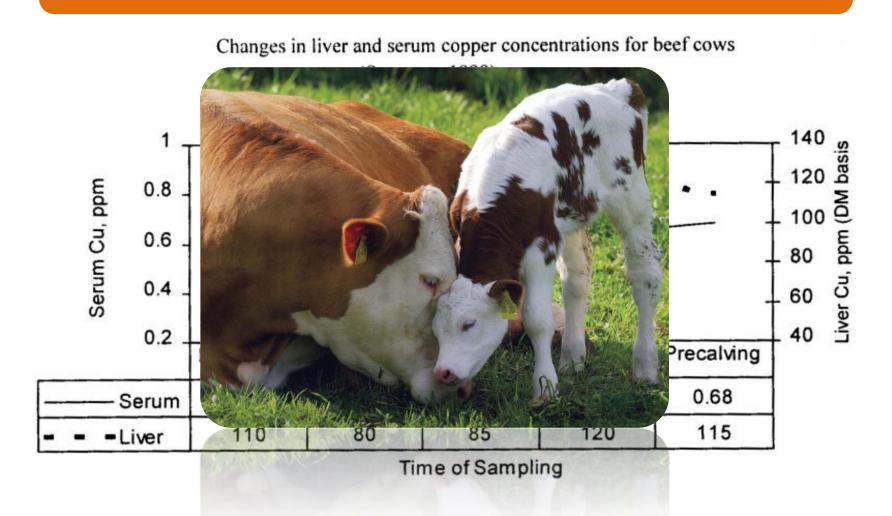


DEFICIÊNCIAS MINERAIS EM BOVINOS E OVINOS

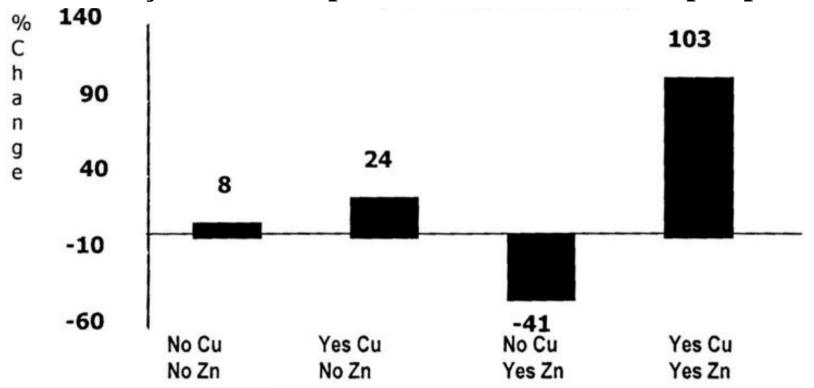


Análise da concentração de sulfatos da água de doze ranchos da região de Montana.

Mudanças na concentração de Cu hepático quando os animais foram suplementados com Mo e S.


Concentrações médias, mínimas e máximas de Cu, Zn, Mn e Mo hepáticos de oito estados dos EUA.

State	No. Animals Sampled	Cu (Min-Max)	Zn (Min-Max)	Mn (Min-Max)	Mo (Min-Max)
CO	329	73	125	14.7	5.7
		(5.3-368)	(2.9-299)	(1.9-1222)	(2.1-16.0)
KS	257	108	181	11.5	(2.8.2)
MO	22	(1.3-454)	(13-980)	(2.0-241)	(2-8.2)
MO	32	122 (19-237)	109 (89-145)	16.0 (7.5-128)	3.7 (1.5-4.5)
MT	182	102	120	8.3	3.6
		(29-304)	(89-196)	(5.6-11.9)	(2.2-6.1)
NE	78	20.4	126.6	8.5	3.5
		(4.1-125)	(4.7-227)	(5.1-54.5)	(2.2-5.1)
ND	113	12	144	8.0	2.9
		(3.9-78)	(1.4-640)	(6.2-10.0)	(1.8-3.7)
SD	162	39	123	8.6	3.5
		(3.8-291)	(83-237)	(6.4-11.3)	(2.4-5.7)
TX	60	121	143	11.2	3.1
		(6.5-458)	(57-759)	(1.4-60.8)	(.2-6.8)


Appreciation is expressed to Drs. Brink (NE), Corah (KS), Johnson, Whittier (CO) and Wikse (TX) who contributed data for this survey.

Percentual dos animais que foram classificados como deficientes, marginais ou adequados, conforme a concentração de Cu hepático.

State	No Cattle	Deficient <30 ppm	f cattle Marginal < 60 ppm	Adequate >90 ppm
CO	329	30 30	49	30
KS	257	16	39	51
MO	32	6	13	63
MT	182	.2	12	61
NE	78	55	77	12
ND	113	92	96	0
SD	162	65	69	27
TX	60	10	23	62

Efeito da suplementação de Cu, Zn ou Cu+Zn na alteração das concentrações de Cu hepático em animais 90 dias pós-parto.

Efeito da forma mineral na performance de novilhos

Parâmetro	Controle	Óxido	Sulfato	Complexo	SE
N. animais	31	31	31	31	31
Peso inicial	204,3	204,3	205,2	203,4	2,83
	GMD				
Dia 0-14	1,31 ^{ab}	$1,24^{ab}$	1,21 ^b	$\left(1,54^{\mathrm{a}}\right)$	0,13
Dia 0-28	0,90	0,79	0,78	0,94	0,08
		CMS			
Dia 0-14	3,28 ^{ab}	3,19 ^{ab}	3,01 ^b	$\left(3,16^{a}\right)$	0,10
Dia 0-28	4,45	4,50	4,50	4,68	0,15
^{ab} Letras diferentes na mesma linha diferem (P<0,01).					

³²

Efeito da suplementação mineral na fertilidade pós-parto de novilhas.

Item	Sup	Não Sup		
Infecções				
Bactérias isoladas da cervix e útero, %	5	25		
Atividade ovariana				
Folículos maduros nos 30-80 dias pós-parto, %	35	5 20		
Imunidade embriônica				
Perda embrionaria nos 35-55 dias pós-inseminação,	% 0	20		
Incidência da descamação endometrial	10	58		

TRABALHOS NUPEEC

MACRO LINHA DE PESQUISA

Eficiência ambiental em nutrição, saúde animal e me

Metabolismo e Inovação Farmacêutica em Veterinári

Metabolismo e Nutrição

Metabolismo e Reprodução

Metabolismo e Saúde / Doenças Metabólicas

Dissertações Defendidas

Influência da dieta aniônica sobre os parâmetro: induzidas à hipocalcemia subclínica no pré-parto Download Resumo Download Completo

DESENVOLVIMENTO DE UMA ESTRATÉGIA PARA PREVENÇÃO DE HIPOCALCEMIA SUBCLÍNICA DE VACAS LEITEIRAS

R. R. ULGUIM¹, K. GOULARTE³, L. VIANA², J. PARDIEE³, L. LINS², P. MONTAGNER*, L. T. HAX*, M. N. CORRÊA³

Perfil metabólico e desempenho produtivo de vacas leiteiras com alterações podais - Antonio Barbosa - Download Resumo Download Completo

Guilherme Bizani – gbizani@gmail.com
Harrison Oliveira– harrisonb.oliveira@gmail.com
Lucas Bartoski – lucasalfredo20111@hotmail.com
Mozer Ávila – avilazootec@gmail.com
