

Universidade Federal de Pelotas Faculdade de Veterinária Núcleo de Pesquisa, Ensino e Extensão em Pecuária www.ufpel.edu.br/nupeec

Apresentação: Jéssica Halfen

Orientador de campo: Med. Vet. Augusto Pês

08 de Maio de 2014

Local de estágio

Fábrica de ração GPR Nutrição Animal

- Formulação de dietas
- Administração
- Acompanhamento técnico de propriedades

Período de estágio: 05 à 18 de março de 2014

Visita técnica

Pontos analisados:

Esterco

Silagem / ração

Condição corporal dos animais

Visita técnica

Pontos analisados:

Visita técnica

Ração produzida na propriedade

Moagem inadequada do grão de milho.

Universidade Federal de Pelotas Faculdade de Veterinária Núcleo de Pesquisa, Ensino e Extensão em Pecuária www.ufpel.edu.br/nupeec

Efeito da época de colheita e métodos de processamento do grão de milho na ingestão, digestão e produção de leite em vacas leiteiras - uma méta-analise

Apresentadora: Jéssica Halfen

Orientador: Med. Vet. Flávia Plucani Amaral

08 de Maio de 2014

Artigo

F.I: 2,566

J. Dairy Sci. 96:533-550 http://dx.doi.org/10.3168/jds.2012-5932 © American Dairy Science Association[®], 2013.

Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis

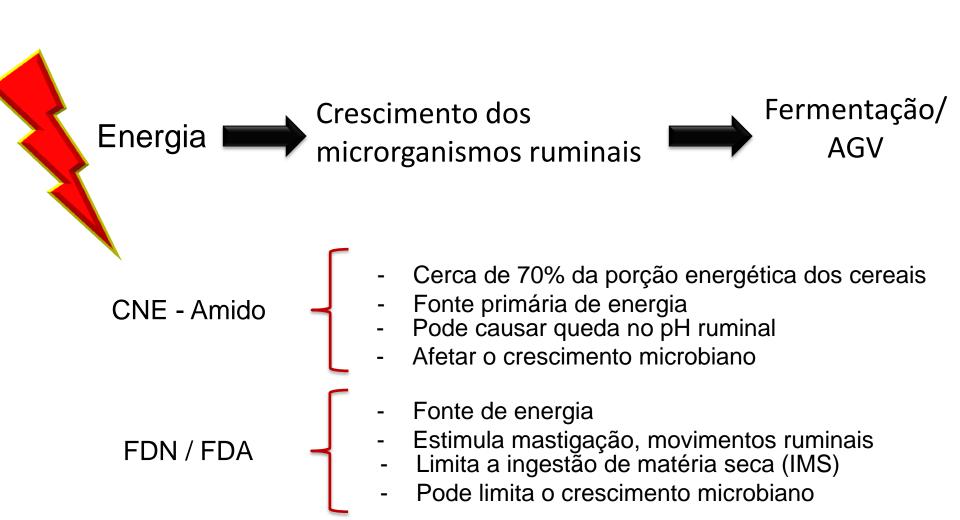
L. F. Ferraretto,* P. M. Crump,† and R. D. Shaver*1

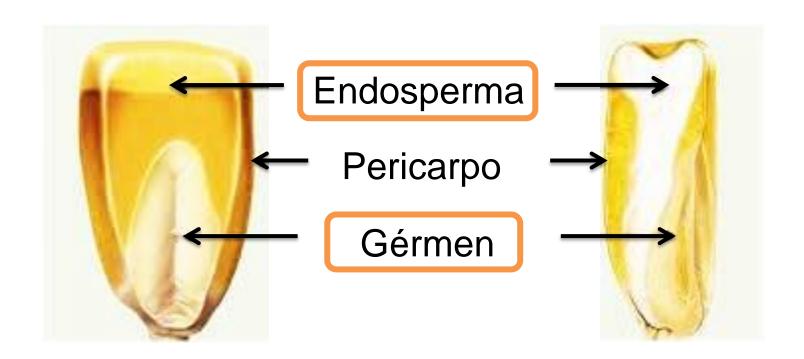
*Department of Dairy Science, and

†Department of Computing and Biometry, 1675 Observatory Dr., University of Wisconsin-Madison 53706

....Qual é a importância dos grãos?

Fonte de energia na dieta


- Carboidratos estruturais: FDN e FDA
- Carboidratos não estruturais (CNE) : Amido, açucares, pectina e glucanos



....Qual é a importância dos grãos?

....Como o processamento do grão vai afetar o aproveitamento?

....Como o processamento do grão vai afetar o aproveitamento?

Matriz amido - proteína

Endosperma: 88% do amido + proteínas Gérmen: 1,6 %do amido + proteínas

Dificulta a ação de enzimas e microrganismos

Fatores que afetam a matriz e a digestibilidade:

- Estádio de maturidade do grão (época de colheita)
- Tipo de variedade
- Processamento

Objetivo

Analisar a partir de dados publicados, os efeitos do tipo de grão, época de colheita e métodos de processamento de grão de milho na digestão do amido, FDN, ingestão e produção de leite de vacas leiteiras.

Materiais e métodos

- ➤ 102 artigos
- > 414 tratamentos
- Publicados entre 2000 2011

Unidade experimental : Vacas leiteiras em lactação Alimentação: Ração Misturada Total (TMR)

Materiais e métodos

Grupos

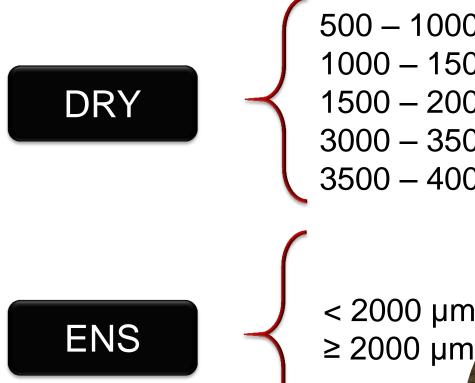
DRY

ENS

STM

Grão seco moído Grão alta umidade moído

Grão floculado



Materiais e métodos

Granulometria

 $500 - 1000 \mu m$ 1000 – 1500 μm 1500 - 2000 µm $3000 - 3500 \mu m$ $3500 - 4000 \mu m$ $< 2000 \mu m$

Tab. 1.: Efeito da época de colheita e processamento do grão de milho na digestão ruminal e digestão no trato gastrointestinal (TGI) dos nutrientes da dieta.

Item	DRY	ENS	STM	SEM	P-valor	
Digestão ruminal (%)						
FDN	37,6	37,6 35,7		4,5	0,17	
Amido	53,5	64,1	64,1 58,5		0,12	
Digestão no TGI (%)						
MS ¹	66,2	67,7	67,7 65,8		0,11	
MO ²	68,0	69,4	67,6	0,8	0,11	
FDN	45,8	42,2	44,6	1,4	0,02	
Amido	92,0 b	94,2 ^a	93,9 ^a	0,8	0,001	

¹ Matéria seca

² Matéria orgânica

^{a,b} Indicam diferença estatística entre colunas (P ≤ 0,05)



ENS

Philippeau e Michalet - Doreau , 1998; Hoff-man et al. , 2011, resultados relacionados ao rompimento da matriz proteica devido à proteólise durante a ensilagem.

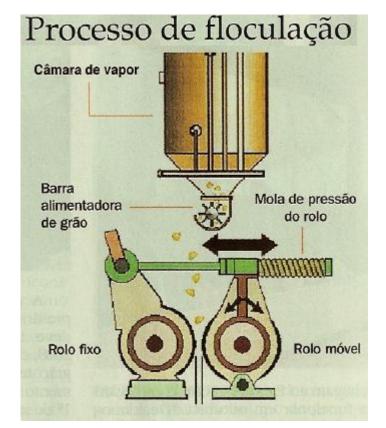
Ensilagem:

Anaerobiose Fermentação Queda de pH

Solubilização da matriz proteica

STM

Rooney e Pflugflerder, 1986, resultados relacionados ao rompimento da matriz proteica pelo calor;


Processo de floculação do grão:

1º Grão exposto a altas temperaturas

2º Expansão do amido e desnaturação proteica

3º Prensagem dos grãos por meio de rolos metálicos

Tab. 2.: Efeito da época de colheita e processamento do grão de milho na produção de vacas leiteiras.

Item	DRY	ENS STM		SEM	P-valor
IMS¹ (kg/d)	23,6ª	22,4 ^b	23,4 ^{a,b}	0,4	0,01
Leite (kg/d)	37,6	35,7	51,3	4,5	0,75
4% GCL ² (KG/d)	33,4ª	32,1 ^b	32,7 ^{a,b}	0,5	0,05
Gordura no leite (%)	3,59ª	3,41 ^b	3,48 ^{a,b}	0,06	0,01
Proteína no leite (%)	3,10	3,41	3,48	0,03	0,07
NUL³ (mg/dL)	13,9	-	13,2	0,5	0,11
Kg de leite/ kg de IMS	1,50ª	1,58 ^b	1,52 ^{a,b}	0,03	0,001

¹ Ingestão de matéria seca

² Gordura corrigida do leite

³ Nitrogênio ureico do leite

a,b Indicam diferença estatística entre colunas (P ≤ 0,05)

A conversão (kg de leite/ kg IMS), segundo Wilkerson et al., 1997, foi melhor no grupo ENS devido a maior ENL comparada ao grupo DRY.

ENL: Energia necessária para a produção e mantença do animal.

Tab. 3.: Efeito do tamanho de partícula e tratamento a vapor de grãos de milho na digestão do TGI dos nutrientes da dieta.

	DRY							
Item	500 1000 μm	1000 1500μm	1500 2000 µm	3000 3500 μm	3500 4000 μm	SEM	P-valor	
MS	69,5 ^a	69,3 ^a	67,8 ^{a,b}	66,1 ^b	59,2°	1,5	0,001	
MO	70,9 ^a	70,7 ^a	69,3°	69,0ª	61,4 ^b	1,6	0,001	
FDN	46,0	48,2	49,2	48,8	41,5	2,6	0,48	
Amido	93,3 ^a	93,2 ^a	89,8 ^b	89,6 ^b	77,7°	1,4	0,001	

^{a,b,c} Indicam diferença estatística entre colunas (P ≤ 0,05)

Menor partícula maior área de superfície para a digestão bacteriana e enzimática (Huntington, 1997).

Partículas mais grossas tem maior taxa de passagem através do TGI (Nocek e Tamminga, 1991).

Tab. 4.: Efeito do tamanho de partícula e tratamento a vapor de grãos de milho na digestão do TGI dos nutrientes da dieta.

	ENS				STM				
Item	<2000 µm	≥ 2000 µm	SEM	P-valor		Floculado	Quebrado	SEM	P-valor
MS	71,9	69,4	1,5	0,04		67,4	65,6	3,5	0,73
MO	73,1	70,9	1,4	0,06		70,8	68,9	3,3	0,69
FDN	44,4	44,0	1,9	0,74	l	46,6	49,7	5,3	0,70
Amido	95,2	89,5	1,3	0,001		94,6	91,9	2,9	0,51

Menor partícula maior área de superfície para a digestão bacteriana e enzimática (Huntington, 1997).

Partículas mais grossas tem maior taxa de passagem através do TGI (Nocek e Tamminga, 1991).

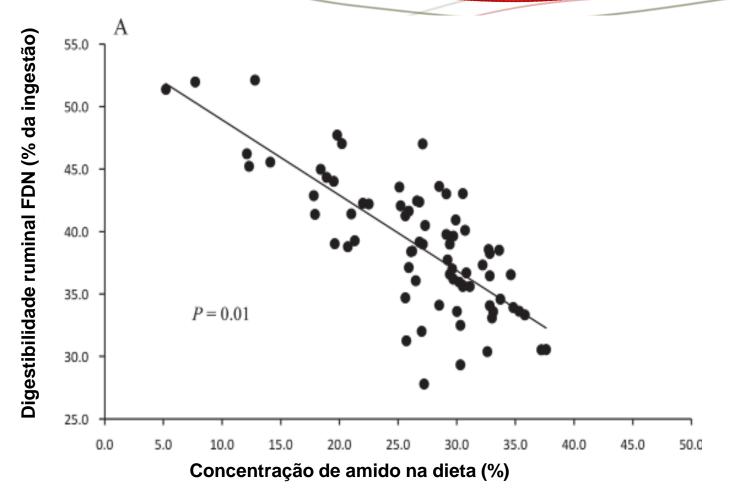


Fig. 1.: Efeito da concentração de amido da dieta sobre a digestão ruminal da FDN.

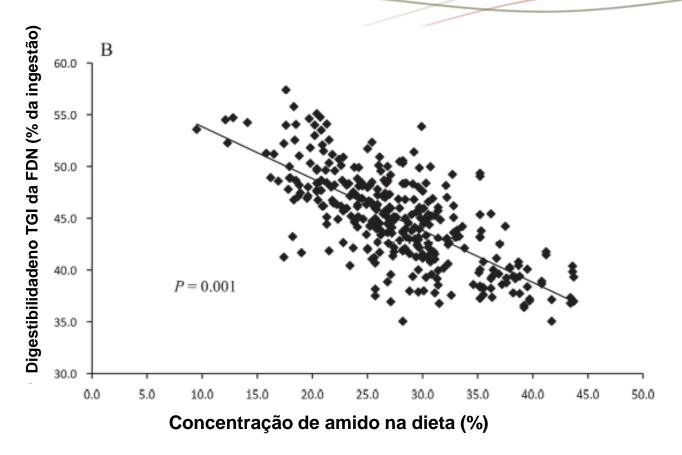


Fig. 1.: Efeito da concentração de amido da dieta sobre a digestão no TGI da FDN.

- pH devido a quantidade de amido
- J pH afeta o crescimento microbiano e aderência bacteriana

Conclusão

O processamento, assim como, a época de colheita afetam consideravelmente a digestibilidade do amido presente no grão de milho, porém, não afetam a produção de leite.

