Resumo dos Testes de Convergência

NOME	PROPOSIÇÃO	COMENTÁRIO
Teste da Divergência (2.4.1)	Se $\lim_{k \to +\infty} u_k \neq 0$, então $\sum u_k$ diverge.	Se $\lim_{k \to +\infty} u_k = 0$, então $\sum u_k$ pode ou não convergir.
Teste da Integral (2.4.4)	Seja $\sum u_k$ uma série com termos positivos e seja $f(x)$ a função que resulta quando k for substituído por x no termo geral da série. Se f for decrescente e contínua para $x \ge 1$, então	Este teste aplica-se apenas para séries com termos positivos.
	$\sum_{k=1}^{\infty} u_k \text{e} \int_{1}^{+\infty} f(x) dx$ ambas convergem ou divergem.	Tente este teste quando $f(x)$ for fácil de integrar.
Teste da Comparação (2.6.1)	Sejam $\sum_{k=1}^{\infty} a_k$ e $\sum_{k=1}^{\infty} b_k$ séries com termos não-negativos tal que	Este teste aplica-se apenas para séries com termos não-negativos.
	$a_1 \le b_1, \ a_2 \le b_2, \dots, a_k \le b_k, \dots$ Se $\sum b_k$ convergir, então $\sum a_k$ converge, se $\sum a_k$ divergir, então $\sum b_k$ diverge.	Tente este teste em último caso; outros testes são freqüentemente mais fácil de se aplicar.
Teste da Razão (2.6.5)	Seja $\sum u_k$ uma série com termos positivos e suponha que $\rho = \lim_{k \to +\infty} \frac{u_{k+1}}{u_k}$ (a) A série converge se $\rho < 1$. (b) A série diverge se $\rho > 1$ ou $\rho = +\infty$. (c) O teste é inconclusivo se $\rho = 1$.	Tente este teste quando u_k envolver fatoriais ou k -ésimas potências.
Teste da Raiz (2.6.6)	 Seja ∑u_k uma série com termos positivos tal que ρ = lim ^k√u_k (a) A série converge se ρ < 1. (b) A série diverge se ρ > 1 or ρ = +∞. (c) O teste é inconclusivo se ρ = 1. 	Tente este teste quando u_k envolves k -ésimas potências.
O Teste da Comparação dos Limites (2.6.4)	Sejam $\sum a_k$ e $\sum b_k$ séries com termos positivos tal que $\rho = \lim_{k \to +\infty} \frac{a_k}{b_k}$ Se $0 < \rho < +\infty$, então as séries convergem ou divergem.	Isso é mais fácil de se aplicar do que o teste de comparação, mas ainda requer algumas habilidades na escolha da série $\sum b_k$ para comparação.
Teste da Série Alternada (2.7.1)	Se $a_k > 0$ para $k = 1, 2, 3, \ldots$, então as séries $a_1 - a_2 + a_3 - a_4 + \cdots$ $-a_1 + a_2 - a_3 + a_4 - \cdots$ convergem se as seguintes condições são satisfeitas: (a) $a_1 > a_2 > a_3 > \cdots$ (b) $\lim_{k \to +\infty} a_k = 0$	Este teste aplica-se apenas para séries alternadas.
Teste da Razão para Convergência Absoluta (2.7.5)	Seja $\sum u_k$ uma série com termos diferentes de zero tal que $\rho = \lim_{k \to +\infty} \frac{ u_{k+1} }{ u_k }$ (a) A série converge absolutamente se $\rho < 1$. (b) A série diverge se $\rho > 1$ ou $\rho = +\infty$. (c) O teste é inconclusivo se $\rho = 1$.	A série não necessita ter termos positivos e não precisa ser alternada para usar este teste.