DF- IFM- UFPel

Mecânica Geral I, prof. Eduardo. Segunda lista de questões.

- 1) Em relação ao oscilador harmônico simples, responda as seguintes solicitações. a) Por meio de leis de Newton mostre que a equação diferencial que rege o movimento é $m\ddot{x}=-kx$ ou $\ddot{x}+\omega_0^2x=0$, $\omega_0^2=k/m$. b) Sendo x_0 e v_0 a posição e a velocidade iniciais, mostre que $x=x(t)=x_0\cos{(\omega_0t)}+(v_0/\omega_0)\sin{(\omega_0t)}$ é a solução da equação diferencial do oscilador. c) Por um gráfico de x(t) com $v_0=0$, prove que $T=2\pi/\omega_0$ é o período do movimento. A escolha de uma velocidade inicial nula é relevante para a conclusão? d) Que escolha de A= amplitude e $\phi=$ fase fazem a solução se equivaler a $x(t)=A\cos{(\omega_0t-\phi)}$? e) Moste que, com a e b adequados, $x(t)=a\exp{(i\omega_0t)}+b\exp{(-i\omega_0t)}$. f) Analise o oscilador do ponto de vista da conservação da energia e levante seu diagrama de fases. g) (opcional) Mostre como se obtém a equação do oscilador a partir da equação de Lagrange do sistema, $(d/dt)(\partial L/\partial \dot{x})=\partial L/\partial x$, com L=T-U= lagrangiana = energia cinética energia potencial.
- 2) Um pêndulo, sob a ação da gravidade, tem comprimento l. a) Se θ é um pequeno desvio em relação ao ponto de equilíbrio estável, mostre por leis de Newton, equação $\vec{N} = \left(d\vec{L}/dt \right)$ ou, opcionalmente, por equação de Lagrange, que o movimento será oscilatório com período $T = 2\pi \sqrt{l/g}$. b) Construa o diagrama de fases do pêndulo. c) Descreva o movimento nas imediações do ponto de equilíbrio instável $\theta = \pi$.
- 3) Para um oscilador harmônico amortecido ("damped"), regido por $m\ddot{x}+b\dot{x}+kx=0$, ou $\ddot{x}+2\beta\dot{x}+\omega_0^2x=0$, analise os três casos possíveis de solução. Para facilitar, se necessário, tome $v_0=0$. (Para alternativa, ver texto do livro).
- 4) Para um oscilador forçado $\ddot{x}+2\beta\dot{x}+\omega_0^2x=A\cos{(\omega t)}$, subamortecido (β relativamente pequeno), obtenha a amplitude D e a fase δ da solução permanente $x_p(t)=D\cos{(\omega t-\delta)}$. Levante gráficos de D e δ e mostre que se β é relativamente pequeno o fator de qualidade $Q=\omega_R/2\beta$ (ω_R =frequência de ressonância) se aproxima de $\omega_0/\Delta\omega$, em que $\Delta\omega$ é uma faixa de freqências na curva de ressonância ($D(\omega)$) correspondentes a uma altura D equivalente a $1/\sqrt{2}$ da do valor máximo de D (dado em $\omega=\omega_R$). (resposta parcial: $\tan\delta=2\omega\beta/\left(\omega_0^2-\omega^2\right)$, $D=A/\sqrt{\left(\omega_0^2-\omega^2\right)^2+4\omega^2\beta^2}$. Para alternativa, ver o texto do livro).
- 5) a) Considere uma partícula de massa m nas proximidades da Terra, a uma pequena altura z do solo. A partir do potencial gravitacional $\Phi = -GM_T/r$, encontre g, mostre que a força peso tem intensidade mg e que a energia potencial, a menos de uma constante, é mgz (potencial gz). Encontre a velocidade de escape v_e da superfície da Terra. c) A que distância do centro de um planeta deve estar um satélite geoestacionário de órbita circular?
- 6) Analise os modos normais de vibração dos seguintes sistemas. a) Sistema linear de duas massas M, acopladas por uma mola de constante K. Cada uma dessas massas está também ligada a paredes (duas paredes, uma para

cada massa), por molas de constante k (ver seção 12.2 do livro). Encontre as coordenadas normais do sistema. b) Sistema linear de três massas, $m_1=m$, $m_2=M$ e $m_3=m$, em que a massa central M se liga às outras duas por molas de constante k (exemplo 12.5 do livro). Considere apenas oscilações longitudinais.

- 7) Solucione os seguintes problemas do capítulo 3 (oscilações) de TM: 3.7, 3.8, 3.9, 3.12.
- 8) Solucione os seguintes problemas do capítulo 5 de TM (gravitação): 5.2, 5.4, 5.7, 5.14.
- 9) Solucione os seguintes problemas do capítulo 12 de TM (osciladores acoplados): $12.3,\,12.12.$