

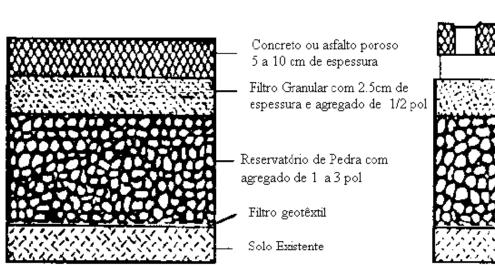
Concepção da Drenagem Urbana utilizando as BMPs

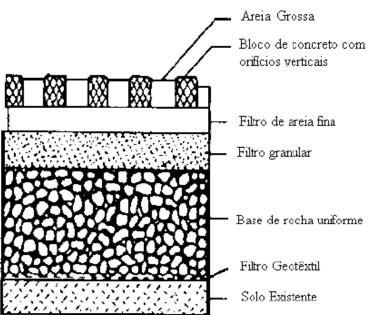
Prof. Dr. Hugo Alexandre Soares Guedes

Na aula passada...

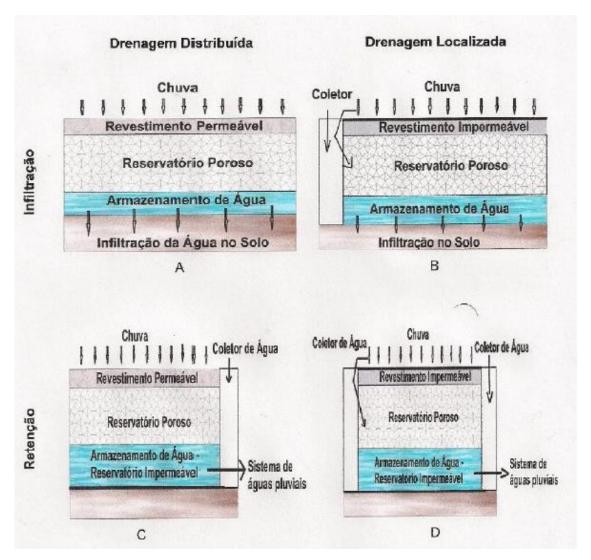
BMPs – Best Management Practices

Previnem, minimizam ou impedem que a poluição proveniente do escoamento superficial da água da chuva chegue até os rios, lagos e riachos.


Abordagem BMP


Principais estruturas de controle na fonte:

- □ Pavimentos permeáveis
- ☐ Trincheiras de infiltração
- □ Valas permeáveis
- ☐ Bacias de detenção e retenção
- ☐ Poços de infiltração
- ☐ Telhados verdes


São dispositivos que atuam no controle da produção do escoamento superficial, permitindo que a água proveniente da chuva passe através deles, reduzindo desse modo o escoamento superficial de um local e de áreas adjacentes (EPA, 1999).

Tipos de pavimentos permeáveis de acordo com o revestimento utilizado e a função de infiltração e armazenamento. Fonte: Adaptado de Azzout et al. (1994).

Vantagens do uso de pavimentos permeáveis:

- ☐ Tratamento da água do escoamento superficial, através da remoção dos poluentes;
- Menor necessidade de construção de canais de drenagem e meio-fios;
- □ Aumento do conforto e segurança das vias públicas devido a maior resistência à derrapagem; e
- ☐ Aumento da recarga de reservas subterrâneas de água.

Desvantagens do uso de pavimentos permeáveis:

- ☐ Colmatação do pavimento; e
- ☐ Poluição do lençol freático.

Pavimento permeável instalado no Instituto de Pesquisas Hidráulicas/UFRGS. Fonte: Acioli (2005).

Pavimento permeável na Califórnia – EUA. Fonte: ICPI (2008).

Pavimento permeável na Califórnia – EUA. Fonte: ICPI (2008).

Aberturas na superfície do pavimento de Blocos de concreto intertravados, promove mais rapidamente o derretimento da neve, reduzindo assim os perigos no inverno. Fonte: ICPI (2008).

Disposição da manta geotêxtil sobre o subleito. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Disposição da manta geotêxtil sobre o subleito. Fonte: Malysz et al. (2003), em 12^a Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução da base. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução da base. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução da base. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução da base. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução da base. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução do revestimento em blocos intertravados vazados. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução do revestimento em blocos intertravados vazados. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução do revestimento em blocos intertravados vazados. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução do revestimento em PMF (pré-misturado a frio). Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução do revestimento em PMF (pré-misturado a frio). Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução do revestimento em PMF (pré-misturado a frio). Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Execução do revestimento em PMF (pré-misturado a frio). Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

Estacionamento experimental permeável pronto. Fonte: Malysz et al. (2003), em 12ª Reunião de Pavimentação Urbana, Aracajú-SE. '

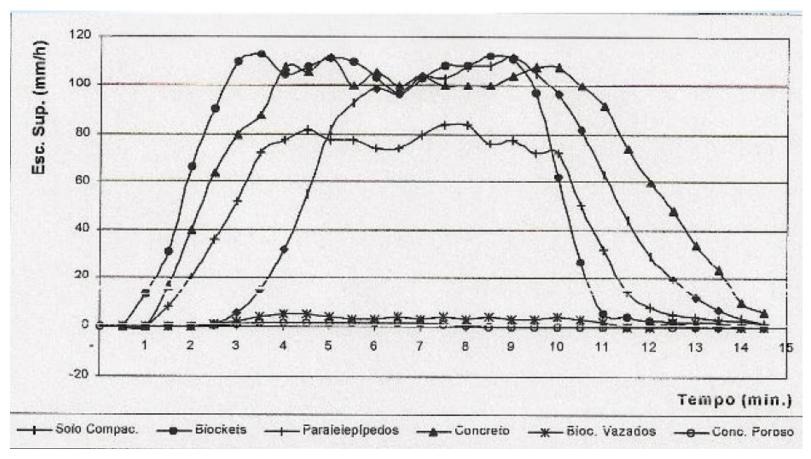
Pavimento Permeável no Supermercado Maxi – Pelotas/RS.

Pavimento Permeável no Supermercado Maxi – Pelotas/RS.

Pavimento Permeável no Supermercado Maxi – Pelotas/RS.

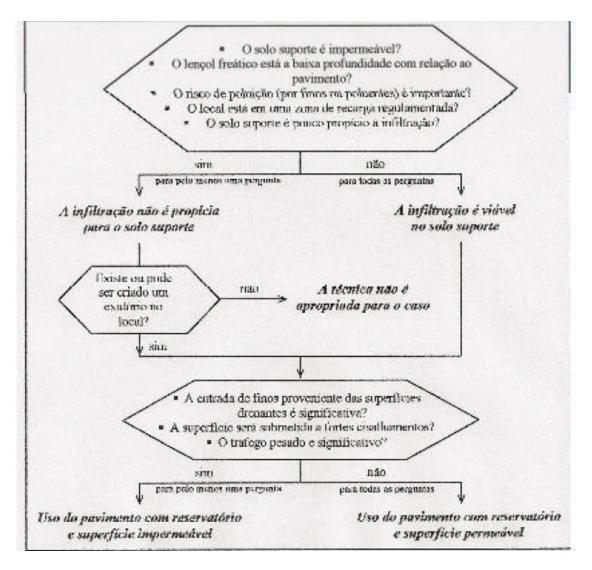
Pavimento Permeável no Supermercado Maxi – Pelotas/RS.

Pavimento Permeável no Supermercado BIG zona sul – Porto Alegre/RS.



Pavimento Permeável no Supermercado BIG zona sul – Porto Alegre/RS.

ARAUJO, P.R.; TUCCI, C.E.M.; GOLDENFUM, J.A. 2000. Avaliação da eficiência dos pavimentos permeáveis na redução do escoamento superficial. Revista Brasileira de Recursos Hídricos, v.5, n.3, p. 21-29.


Fonte: Araújo et al., (2000)

Fonte: Araújo et al., (2000)

	Solo Compactado	Concreto	Bloco de Concreto	Paralelepípedo	Bloco Vazado
Data	03/06/98	28/10/98	29/07/98	13/10/98	27/01/99
Hora início	14:06	15:15	15:20	11:20	10:08
Intensidade Simulada (mm/h)	112	110	116	110	110
Chuva Total (mm)	18,66	18,33	19,33	18,33	18,33
Escoamento total (mm)	12,32	17,45	15,00	10,99	0,5
Coef. de Escoamento	0,66	0,95	0,78	0,60	0,03
Umidade inicial (cm³/cm³)	32,81	32,73	32,71	32,72	32,24

Fonte: Araújo et al., (2000)

Viabilidade de implementação dos pavimentos permeáveis. Fonte: adaptado de Azzout et al. (1994).

Características do subsolo adjacente

Para garantir o bom funcionamento da estrutura de infiltração é necessária uma detalhada caracterização do solo suporte, assim como seu comportamento em presença da água.

Características do subsolo adjacente

Parâmetros do solo que devem ser determinados:

1) Taxa de infiltração do solo saturado: importante para o caso de pavimentos permeáveis de infiltração. A taxa de infiltração deve ser calculada através de ensaios in situ, em diversos pontos do local de implantação. A EPA (1999) recomenda uma taxa de infiltração mínima de 13 mm/h.

Características do subsolo adjacente

Parâmetros do solo que devem ser determinados:

2) Capacidade de carga: o conhecimento dessa propriedade do solo é importante para o dimensionamento mecânico do pavimento.

Características do subsolo adjacente

Parâmetros do solo que devem ser determinados:

3) Comportamento do solo em presença da água: essa avaliação deve ser realizada de forma a se evitar a possibilidade de contaminação do lençol freático, assim como detectar riscos como a perda da capacidade de carga do solo em função do aumento da umidade. A variação da capacidade de carga em função da umidade do solo também deve ser observada.

Características do subsolo adjacente

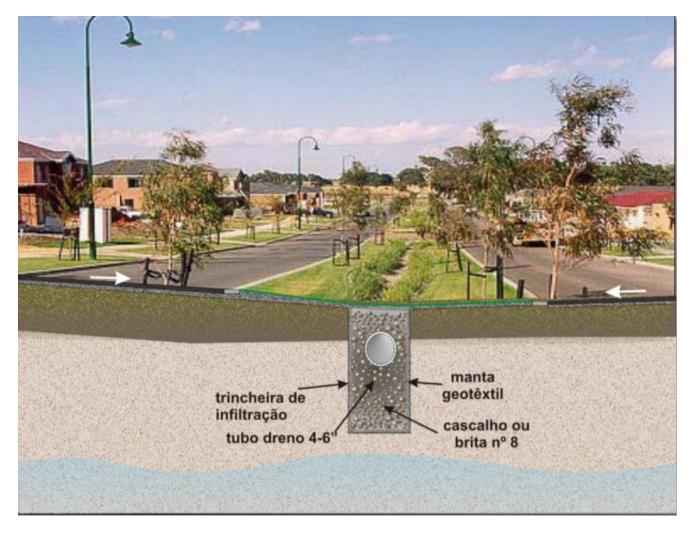
Parâmetros do solo que devem ser determinados:

4) Estudos Hidrogeológicos: identificar as características do lençol freático: i) flutuações sazonais; ii) a cota do lençol, assim como sua vulnerabilidade e propriedades qualitativas.

Características do subsolo adjacente

Nos casos em que o lençol estiver a uma profundidade inferior a um metro, ou ainda quando esse for usado para o abastecimento de água potável, é desaconselhado o uso de pavimentos permeáveis, assim como outros dispositivos de infiltração.

- ✓ São técnicas lineares implantadas junto à superfície ou a pequenas profundidade.
- ✓ Tem como objetivo recolher as águas pluviais perpendicular a seu comprimento (armazenamento e infiltração).
- ✓ São muito versáteis! A associação pode ser com o sistema viário, junto a estacionamentos, canteiros centrais e passeios, etc.



Fonte: http://aquafluxus.com.br.

- ✓ As trincheiras de infiltração apresentam os mesmos pontos positivos que os pavimentos permeáveis.
- ✓ As trincheiras são mais indicadas para aplicação em áreas residenciais e comerciais de média e alta densidade de ocupação, onde o solo é suficientemente permeável, sendo capaz de garantir uma taxa de infiltração razoável, e onde o nível do lençol freático é baixo o suficiente para evitar a sua contaminação (Miguez et al., 2016).

Trincheira de infiltração em pátio de estacionamento - Austrália. Fonte: Plano Municipal de Saneamento de Macatuba (2019).

Trincheira de infiltração no canteiro central - Austrália. Fonte: Plano Municipal de Saneamento de Macatuba (2019).

Os jardins de chuva (células de bioretenção ou bioinfiltração) são bacias rasas compostas por vegetação que coletam e absorvem o escoamento de telhados, calçadas e ruas.

Canteiro pluvial ao lada da garagem do Liberty Center em Portland, Oregon/EUA. Fonte: Nathaniel S. Cormier.

Desconexão das calhas do telhado direcionando a água pluvial para superfícies permeáveis com drenagem. Fonte: http://www.portlandoregon/bes/article/343724.

Desconexão das calhas do telhado direcionando a água pluvial para superfícies permeáveis com drenagem. Fonte: http://water.epa.gov.br/infrastructure/greeninfrastructure/gi_what.cfm.

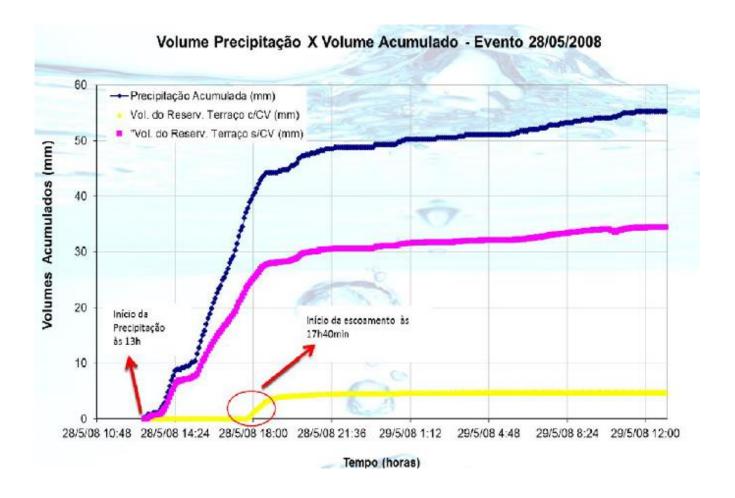
- ✓ Canteiros pluviais ou jardins de chuva podem ser utilizados em pequenos espaços urbanos.
- ✓ Remoção dos poluentes no first flush.

Canteiros pluviais junto do New Seasons Market, em Portland, Oregon/EUA. Fonte: Nathaniel S. Cormier.

Pátio do apartamento de Buckmam Heigths – Portland. Fonte: http://aquafluxus.com.br/?p=2637.

Telhados Verdes

Os telhados verdes são estruturas que se caracterizam pela aplicação de cobertura vegetal nas edificações. Consistem basicamente em uma camada de vegetação, uma camada de substrato (onde a água é retida e a vegetação é escorada) e uma camada de drenagem responsável pela retira da água adicional.

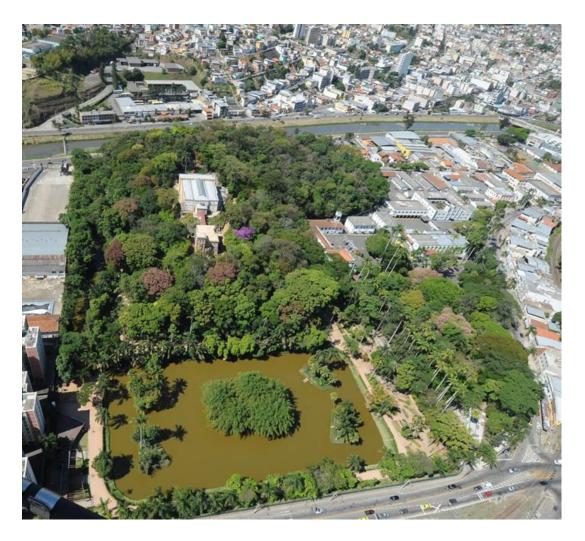


Fonte: http://www.jardinaria.com.br/site/2011/08/telhado-verde.

Fonte: http://www.ecotelhado.com.br/dafault.aspx.

Telhados Verdes

Exemplo da eficiência das coberturas verdes na diminuição do escoamento superficial. Fonte: Castro (2011).


Bacias de Retenção:

✓ O escoamento de um dado evento de cheia é armazenado e NÃO É DESCARREGADO no sistema de drenagem a jusante durante o evento.

- ✓ A água armazenada pode ser utilizada para irrigação, manutenção de vazão mínima, evaporada ou infiltrada no solo.
- ✓ O reservatório é permanentemente preenchido com água (reservatório "molhado").

Lagoa da Pampulha – Belo Horizonte/MG. Fonte: http://lagoadapampulha.com.br/pontos-turísticos-da-lagoa-da-Pampulha/.

Museu Mariano Procópio, Juiz de Fora/MG. Fonte: JF Hipermídia (2014)

Parque Marinha do Brasil, Porto Alegre/RS. Fonte: Neves e Merten (2005)

Parque Barigui, Curitiba/PR. Fonte: Prefeitura Municipal de Curitiba (2018)

Bacias de Detenção:

✓ O armazenamento é de curto prazo, com atenuação do pico de vazão de saída a um valor inferior ao de entrada.

- ✓ O volume de água descarregada é igual ao afluente, apenas distribuído em um tempo maior.
- ✓ Usualmente, esvaziam em menos de um dia.
- ✓ A área é seca e pode ser utilizada para fins recreacionais.

Exemplo de bacia de detenção com fundo impermeabilizado em concreto conjugada com área de esporte (Paris, França). Fonte: Baptista et al. (2005).

Uso de reservatórios como pista de skate no período de estiagem, Rabalder Parken, Dinamarca. Fonte: Revista PINI, Setembro de 2013.

Piscinão em São Paulo/SP.

Bacia de amortecimento de cheias (detenção) em Porto Alegre, RS. Foto: Guilherme Santos/PMPA.

Bacia de detenção subterrânea da Praça Celso Luft em Porto Alegre, RS. Foto: Sidney Charles Day.

Concepção da Drenagem Urbana utilizando as BMPs

Prof. Dr. Hugo Alexandre Soares Guedes