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What happens when hadrons
collide?
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Proton – Proton Collisions

LHC is:
• Discovery Machine
• QCD machine (QCD is always present!)

Diffraction is:
• Vital aspect of QCD
• Place to look for New Physics



Diffraction in Optics

 Diffraction of light of wavelength λ from a 
circular target of size R0



Diffraction in Optics

 Diffraction of light of wavelength λ from a 
circular target of size R0

 The diffraction pattern is related to the size of the target and to the
wavelength of the light beam.
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Elastic cross section:

Integrated cross sections:
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Scattering theory in the short wavelength limit (high 
energies): Eikonal approximation

Black disc: 
No scattering outside
a disc of radius R and
strong absorption for 
|b| < R



 |t| ≈ (P θ)2 is the absolute value of the
squared four-momentum transfer. P is
the incident proton momentum and θ is
the scattering angle .

 One have that:  

The t-slope can be written as b = R2/4, 
where once again R is related to the target
size.

 A  dip followed by a secondary maximum
has also been observed, with the value of |t| in 
which the dip appears decreasing with
increasing proton momentum.
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 |t| ≈ (P θ)2 is the absolute value of the
squared four-momentum transfer. P is
the incident proton momentum and θ is
the scattering angle .

 One have that:  

The t-slope can be written as b = R2/4, 
where once again R is related to the target
size.

 Similar t distributions has been observed
for the other diffractive reactions
mentioned before, leading to the use of the
term diffraction for all such processes.

Diffraction in Particle Physics
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CMS/ATLAS (2012): 
<µ> ≈ 30
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 Diffractive reactions at hadron colliders are defined as reactions in 
which no quantum numbers are exchanged between colliding particles

 Identified by the presence of an intact leading particle or a large
rapidity gap (LRG).

Caveats: - LRG not always usable!



Diffraction in Particle Physics

 Diffractive reactions at hadron colliders are defined as reactions in 
which no quantum numbers are exchanged between colliding particles

 Identified by the presence of an intact leading particle or a large
rapidity gap (LRG).

Alternative : Proton tagging (and timing) detectors
e.g. CMS/Totem – PPS; ATLAS - AFP
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Perturbative QCD:
 Lowest order: Two – gluon exchange (Low –

Nussinov)
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 Diffractive reactions at hadron colliders are defined as reactions in 

which no quantum numbers are exchanged between colliding particles

 The exchanged object should be in a 
Colour Singlet State (Vacuum quantum numbers).
 At high energies: Pomeron (IP) exchange

What is the Pomeron (IP) ?
Regge Theory: (Soft Pomeron)

 IP is a Regge trajectory: 
αIP(t) = αIP (0) + α’.t

 σtot ≈  sα
IP

(0)

 Donnachie – Landshoff fit (92):
αIP (0) = 1.08 and α’ = 0.25 GeV-2

Perturbative QCD: (Hard Pomeron)
 In the leading log(1/x) approximation:

 F satisfies the Balitsky – Fadin – Kuraev –
Lipatov (BFKL) equation

 At leading order: αIP (0) = 1.5 
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 Diffractive reactions at hadron colliders are defined as reactions in 

which no quantum numbers are exchanged between colliding particles

 The exchanged object should be in a 
Colour Singlet State (Vacuum quantum numbers).
 At high energies: Pomeron (IP) exchange

What is the Pomeron (IP) ?
Perturbative QCD:
 Caveat: pQCD is inadequate to describe

(soft) processes where the energy scale is
of the order of the hadron size (≈ 1 fm)

 Diffractive processes mostly belongs
to soft processes (Ex. Total SD/DD cross
sections)  - Soft Diffraction
 However, if a hard scale is present, 
perturbative methods can be applied to
describe the diffrative process
(Ex. Dijet, Heavy quark, W, Z production)
- Hard diffraction
 Diffraction allows to bridge the gap 

between the hard and soft regimes of
Strong interactions.
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Diffraction in electron – proton
collisions

 Deep-inelastic electron-proton scattering (DIS) at DESY - HERA:

 Main goal of HERA was the investigation of the structure of the proton;
 Unexpectedly, in 1993 HERA saw that in 10 % of the DIS events there was a 

large gap where there were NO particle produced between the struck quark 
and the proton: Diffractive deep inelastic scattering (DDIS). 



DDIS - Definitions

= ξ at Tevatron and LHC



Leading-twist collinear
factorization in DDIS

 C2,a are the same coeficiente functions as 
in inclusive DIS;

 Diffractive PDFs fD
a/p satisfy DGLAP 

evolution;
 Proven by J. Collins [hep-ph/9709499] to

hold up to power-suppressed corrections.



Proton vertex factorization

 Proton vertex factorization (Ingelman, Schlein – 1985) separate xIP from the (β, Q2) 
dependences:

fD
a/p (xIP, β, Q

2) = fIP(xIP) . fa/IP (β, Q2)

Pomeron
flux 

Probability for a hadron
to radiate off a Pomeron
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Proton vertex factorization

 Proton vertex factorization (Ingelman, Schlein – 1985) separate xIP from the (β, Q2) 
dependences:

fD
a/p (xIP, β, Q

2) = fIP(xIP) . fa/IP (β, Q2)

Pomeron
PDFs

Pomeron
flux No QCD basis,

consistent with data



Pomeron PDFs

 Gluon dominates the Pomeron structure (60% of the exchanged momentum 
carried by gluons) ;

 Gluons weakly constrained in the high z region;

DGLAP 
Evolution
Equations



Pomeron PDFs

 Gluon dominates the Pomeron structure (60% of the exchanged momentum 
carried by gluons) ;

 Gluons weakly constrained in the high z region;
 Cross check: Use the resulting DPDFs as input in the calculations of other

diffractive observables measured at HERA and hadronic colliders (Tevatron and
LHC) 

DGLAP 
Evolution
Equations



Diffractive Di-jet Production
at the HERA

 Diffractive Di-jet production is sensitive to the gluon DPDF;
 Factorization is OK in DIS but not at Q2 = 0 !



Diffractive Di-jet Production
at the HERA

 Diffractive Di-jet production is sensitive to the gluon DPDF;
 Factorization is OK in DIS but not at Q2 = 0 !
 Contribution associated to the resolved structure of the photon is important at

low Q2.
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Diffractive Di-jet Production
at the Tevatron

 Predictions obtained using the HERA DPDFs fail by factor 5 - 7;
 Note: QCD factorization has not been proven for hadron – hadron collisions.
 Final state interaction between proton remnant and antiproton possible.

Gap survival probability is not equal to one !



Diffractive Di-jet Production
at the LHC

 Diffractive component is required for more complete description of data;
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Diffractive Di-jet Production
at the LHC

 Diffractive component is required for more complete description of data;
 Rapidity gap survival factor (Probability of non – emission by other soft processes 

into gap):  S2 = 0.16 ± 0.04 (stat) ± 0.08 (exp. Syst.)

 The inclusion of S2 is fundamental to describe the experimental data from hard 
diffractive processes. 

 Associated to soft reinteractions -> Nonperturbative physics !
 Main theoretical uncertainty in hard diffraction ! Universal? Depends on s1/2, η ...? 



Summary

 Diffraction offer us a unique opportunity to study the
hard and soft regimes of QCD and its interplay in unusual
settings.

Such studies are difficult:
 On the experimental side because the complexity of the environment makes

it difficult to separate the diffractive events;

 On the theoretical side, the subject can become highly technical, involving
sophisticated formalisms (e.g. Regge theory x QCD at high energies) whose
mutual relations are not always visible.         

 However, important experimental and theoretical
progress has been achieved in the recent years and much
more is expected in the coming years.
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Summary

 Diffraction offer us a unique opportunity to study the
hard and soft regimes of QCD and its interplay in unusual
settings.

Such studies are difficult:
 On the experimental side because the complexity of the environment makes

it difficult to separate the diffractive events;

 On the theoretical side, the subject can become highly technical, involving
sophisticated formalisms (e.g. Regge theory x QCD at high energies) whose
mutual relations are not always visible.         

 However, important experimental and theoretical
progress has been achieved in the recent years and much
more is expected in the coming years.

Thank you for your attention !



Extras



Diffraction in Hadronic Collisions:
Definitions



Hard Diffraction at the LHC

 Hard processes, calculable in perturbative QCD
 Measure proton structure, QCD at high parton densities, Discovery physics
 Some few examples:   

 W, Z production

 Flat for non-diffractive, asymmetric for diffractive events;
 Evidence of diffractive W production in the data.



 Typical pp events:

Many tracks + high pT particles

 Exclusive events:

Few tracks + low pT particles

Exclusive Processes at the LHC:
Exclusive Diffraction and Photon Exchange Processes 



Photon – Hadron Interactions at the LHC

 Diffractive vector meson photoproduction at HERA

 Transition soft to hard regime
with masses of the vector mesons. 
 The photoproduction of heavy 

vector mesons can be calculated
using perturbative QCD



Soft Diffraction:
Selected results



Soft Diffraction:
Selected results



Soft Diffraction:
Selected results



Soft Diffraction:
Selected results

P. Newman, Low-x 2016


