EXCLUSIVE VECTOR MESON

PHOTOPRODUCTION AT THE LHC AND THE FCC:

A CLOSER LOOK ON THE FINAL STATE

Gustavo G. da Silveira, Victor Gonçalves, & Miguel Medina

GRUPO DE ALTAS E MÉDIAS ENERGIAS UFPel, Pelotas, RS. Brasil. Seminário

14 de Outubro de 2016

¹ arXiv:1609.09854

- Introdução à fotoprodução de mesons vetoriais
- Status
- Idéia do trabalho!
- □ SuperCHIC2...
- Resultados
- Resumo

FOTOPRODUÇÃO DE MESONS VETORIAS NO HERA [3] Variáveis de Mandelstam (invariantes de Lorentz)

 $W_{\gamma p} = (q + p)^{2}$ $Q^{2} = -q^{2}$ $= -(k - k')^{2}$ $s = (k + p)^{2}$ $t = (p - p')^{2}$ $x = M_{V}^{2}/W_{\gamma p}^{2}$ $= M/\sqrt{s}e^{\pm y}$

Sistema de Centro de massa:

$$\square$$
 para $s \gg m^2$: cos $heta = 1 + 2t/s, \ t pprox - p_{\perp}^2$

 θ é o ângulo de espalhamento do proton $Q^2 \sim 0$ fotoprodução, $Q^2 > 0$ eletroprodução

Dependência com W?

- $\Box \sigma(\gamma p) \propto W^{\delta}$
- \blacksquare δ incrementa com a massa do meson vectorial
- □ O rápido crecimento da seção de choque com $W_{\gamma p}$ pode ser explicado pelo aumento da densidade glúons com a diminuição da fração de momento $x \sim 1/W_{\gamma p}^2$

ABORDAGEM TEORICA Regge vs pQCD

Física macia: não pQCD, descripção baseada na teoria de Regge e Vector Dominance Model.

Em presença de uma escala dura (M_{VM}, Q^2, t) calculos em pQCD são possiveis: descripção baseada on DVCS*, Abordagem Modelo de Dipolo, bCGC, etc...

- $\Lambda_{QDC} = 200 300 \text{ MeV}$
- No limite de grandes momentos ou de liberdade assintótica, $Q^2 \gg \Lambda^2_{OCD}$, $\alpha_s (Q^2) \rightarrow 0$

ESPECTRO DE MASSAS Resonacias

FOTOPRODUÇÃO DE MESONS VETORIAS NO LHC [7] INTERAÇÃO FÓTON-HADRON.

 $V =
ho, \, \varphi, \, J/\psi, \, \Upsilon$

FLUXO DE FOTONS?

Espectro de fótons

$$\frac{dn}{d\omega} = \frac{\alpha}{\pi} \frac{dQ^2}{Q^2 \omega} \left[\left(1 - \frac{\omega}{\sqrt{s}} \right) \left(1 - \frac{Q_{min}^2}{Q^2} \right) F_E + \frac{\omega^2}{2s} F_M \right]$$

[8]

9

 $\delta_{\Upsilon} \rightarrow [\text{HERA 1, 2(8)}][\text{LHCb } x(x)][\text{CMS 0, 95(40)} 0, 76(14)]$

RECENTES RESULTADOS EXPERIMENTAIS

Dependência em t

A dependência em t da seção de choque elástica carrega informações sobre o tamanho transversal da região de interação.. elástica: $d\sigma/d |t| = N_{el}e^{-b_{el}|t|}$ $b_{el} \approx (b_p + b_V)$, onde $b_p = R_p^2/2$, $R_p \sim 0,65 \text{fm} \Rightarrow \frac{0.6 \text{fm}}{0.197 \text{GeV.fm}} \approx 3,3 \text{ GeV}^{-1} \Rightarrow b_p \sim 5 \text{ GeV}^{-2}$ $b_V \sim 1/(Q^2 + M_{VM}^2) \Rightarrow b_{el} \approx (R_p^2 + R_{VM}^2)/4$

Formalismo de Dipolo

DIFERENTES ABORDAGEMS PARA A APLITUDE DE ESPALHAMENTO

|11|

Idéia!!

SuperCHICv2: gerador de MC para MV...

 Fenomenologico: fit sobre dados experimentais usando parametros sem se preocupar pela física emvolvida..

bCGC: abordagem teorica envolvendo física...

 Comportamento dos dados experimentais tem o mesmo "formato" que as predições teoricas...

- Fitar as previções teoricas usando a mesma equação usada no superCHICv2...
- Introducir os novos parametros no MC e fazer predições para energias do Run-II do LHC e do FCC..
- É possivel medir alguma differença entre modelos?

FCC at 100km project circular ring with pp collider long-term project at \sqrt{s} 100 TeV

- usar o LHC como injetor...
- □ pp para $\sqrt{s} = 100$ TeV (também pPb & PbPb para $\sqrt{s} = 39 63$ TeV)
- □ Opção e^+e^- (antes que pp) para $\sqrt{s} = 90 - 350 \text{ GeV}$
- □ Opção e-h para $\sqrt{s} = 3,5$ TeV (também e-Pb para $\sqrt{s} \sim 1-3$ TeV)

13

 MC

SUPERCHICV2

- Também temos informação dos dois prótons emergentes...
 p(3), p(4).
- 100k eventos gerados.
 - 7, 13 e 100 TeV
- Cortes
 - Massa [0, 8]TeV
 - |y| < 15, 5
- NÃO USA FLUXO INTEGRADO em Q²... Luminosidade efetiva!

PROCESSOS EXCLUSIVOS

Para calcular as seções de choque para baixa multiplicidade em altas energias é importante conhecer os fatores de sobrevivência!!...

Esto é: interação adicional entre os partons expectadores podem prencher as lacunas de rapidez!...

 superCHICv2 inclue 4 diferentes modelos arxiv:1306.2149

 Probabilidade de sobrevivência não é igual a um!

			survival effect!			
processo	\sqrt{s} [TeV]	sem	1	2	3	4
$ ho^{f 0} ightarrow \pi^{-} \pi^{+}$ 100% [μb]	7	10,26(4)	9,02(4)	9,02(4)	<mark>9,0</mark> 3(4)	9,05(4)
	13	12,49(5)	11, 1 9(5)	11,1 8(5)	11,06(5)	11,0 6(5)
	100	22,4(1)	19,86(8)	19.88 (8)	<mark>19.8</mark> 7(9)	19,81 (8)
$J/\psi ightarrow \mu^- \mu^+$ 5,961% [nb]	7	3,91(2)	2,97(1)	2,97(1)	2,97(1)	2,96(1)
	13	5,87(2)	4,40(2)	4,40(2)	4, <mark>39</mark> (2)	4,40(2)
	100	22,32(9)	16 ,20(7)	<mark>16</mark> ,30(7)	16,20(8)	16 .25(7)
$\Upsilon_{1s} ightarrow \mu^- \mu^+$ 2,48% [pb]	7	3,08(4)	2,3 2(11)	2, <mark>32</mark> (11)	<mark>2,3</mark> 2(11)	<mark>2,3</mark> 2(11)
	13	4,94(2)	<mark>3,6</mark> 0(1)	3,60(1)	<mark>3,6</mark> 3(1)	3,62(1)
	100	21,47(8)	15 ,07(7)	<mark>15</mark> ,05(6)	15 ,01(7)	15 ,19(7)

• Os 4 modelos que consideran "survival effect" tem comportamento similar.

■ Diferença aprox. de ~20%

[16]

$J/\psi \rightarrow \mu^+ + \mu^-$ Distribuição de η , y e pt de J/ψ @ 7 TeV, 13 TeV e 100 TeV

500

[17]

$\Upsilon_{1s} \rightarrow \mu^+ + \mu^-$ Distribuição de η , y e pt de Υ_{1s} @ 7 TeV, 13 TeV e 100 TeV

[18]

Modelo

Efeitos de bCGC para J/ ψ e Υ no superCHICv2...

sem survival effect!

A EQUAÇÃO...!

[20]

$$\frac{d\sigma^{\gamma p \to Vp}}{dt} = N_V \left(\frac{w_{\gamma p}}{w_0}\right)^{\delta_V} \beta_V e^{-\beta_V |t|}$$

 $w_{\gamma p} =$ energia de centro-de-massa gamma-p $b = b_0 + 4\alpha_b \log \left(\frac{w_{\gamma p}}{w_{0_b}} \right)$

	$ ho^{0}$	J/ψ	Υ		
W ₀	75 GeV ²	1 Ge <i>V</i> ²	1 Ge V^2		
δ	0,19	0,64 <mark>0,49</mark>	1 ,6 0,70 0,76		
Ν	11,4 ub	3,970 nb 10, <mark>25 nb</mark>	0,12 pb 5,7 pb 3,85 pb		
bo	$11.1\mathrm{GeV}^{-2}$	$4,7 { m GeV}^{-2}$	$4,7 { m GeV}^{-2}$		
$lpha_{b}$	$0.125 { m GeV}^{-2}$	$0, 2 { m GeV^{-2}}$	$0, 2 \text{GeV}^{-2}$		
₩0 	84 GeV	90 GeV	90 GeV		

* superCHICv2, *HERA, *bCGC

Comportamento σ com $\sqrt{s}!$

Processo	\sqrt{s} (TeV)	HERA	Default	ЬCGC
	7.	-	3.90 nb	4.58 nb
$J/\psi \rightarrow \mu^{-}\mu^{+}$	13.	-	5.87 nb	6.43 nb
	100.	-	22.42 nb	18.65 nb
~ +	7.	23.91 pb	3.13 pb	3.02 pb
$\mu_{1s} \rightarrow \mu_{\mu'}$	13.	64.34 pb	4.95 pb	4.92 pb
2,40 /0	100.	1682.72 pb	21.50 pb < 🚌 🗸	23.91pb 😑 ,

うんじ

Abordagem experimental

- Aceptancia dos detectores
- Background..

- Também temos informação dos dois prótons emergentes...
 p(3), p(4).
- @ 7, 13 e 100 TeV

Cortes

■ Massa
$$\begin{cases} [2, 2 - 3, 8] \text{ GeV} & \forall \text{ J/psi, 100} k \\ [8, 5 - 10, 0] \text{ GeV} & \forall \text{ Upsilon 100} k \\ \end{bmatrix}$$

■ $|y| < 15, 5$

$$\begin{split} p_t \left(\mu^{\pm} \right) &> 3 \text{ GeV}, \left| \eta \left(\mu^{\pm} \right) \right| < 2,5 \text{ @ 7 TeV} \Longrightarrow (16.28 \text{ pb})_{\textit{Lpair}} \text{ e } (16.23 \text{ pb})_{\textit{superCHICv2}} \\ \text{http://arxiv.org/pdf/1409.1541v2.pdf} \end{split}$$

OUTRAS DISTRIBUIÇÕES CINEMATICAS

[25]

Distribuições para 13 TeV

[26]

Distribuições para 100 TeV

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - 釣�()~

[27]

- Foi utilizado o SuperCHIC2 sintonizado pelos dados LHCb, além disso, modificamos a dependência energética da seção de choque photon-hadron, a fim de ter em conta os efeitos não lineares na dinâmica QCD, como é descrito pelo modelo bCGC, e obter previsões mais realistas para as energias superiores as sondadas no Run-I.
 - □ O impacto da modelagem da dependência energética da secção de choque $\gamma p \rightarrow V p$ foram investigados.
- Distribuições para os dimuons gerados a partir do decaimento dos mésons vetoriais foram estudadas considerando cortes cinemáticas realistas e comparado com o background para produção exclusiva.
- Foi analizada a fotoprodução exclusiva $J/\psi \in \Upsilon(2S)$ em colisões pp nas energias do Run-II do LHC e apresenta-se previsões para o FCC pela primeira vez.

Implemantar interações p-Pb e Pb-Pb no superCHICv2

Obrigado!!

◆ロ ▶ ◆昼 ▶ ◆ 匡 ▶ ◆ 国 ■ のへの