Estudo de parâmetros em CAEs com inclusão de charm

Márcio Müller

Grupo de Altas e Médias Energias

Universidade Federal de Pelotas - 2015

- 1. Partículas Charmosas em CAEs
- 2. Distribuição Lateral de Partículas
- 3. Reconstruções Offline
- 4. Energia e LDF.
- 5. Risetime
- 6. Conclusões
- 7. FD Shift

I. PARTÍCULAS CHARMOSAS EM CAES

- Charm e bottom hádrons altamente energéticos podem ser produzidos na mais alta atmosfera quando um raio cósmico primário ou o "leading" hádron em um CAE colide com o ar.
- Por causa de sua vida média curta, $\approx 10^{-12} s$ ($\approx 300 \mu m$), hádrons pesados decaem antes de interagirem.
- À $E \gtrsim 10^7 \, GeV$ hádrons pesados alcançam sua energia crítica e sua probabilidade de decaimento decai rapidamente. Comprimentos de decaimento crescem à valores consideráveis.
- $E \approx 10^8 \ GeV$ $\lambda \approx 10 \ km$,
- As colisões de hádrons pesados com núcleos do ar são bastante elásticas.
 - um méson *D* após uma colisão de $10^9 GeV$ poderia manter ao redor de 55% na energia inicial, enquanto que um méson *B* terá tipicamente 80% da energia incidente após a colisão.

 Tais partículas pesadas poderiam transportar uma significativa soma de energia em camadas atmoféricas profundas e provavelmente ter efeitos observáveis no desenvolvimento do chuveiro.

Márcio Müller

 A produção de múons e outras partículas poderiam mudar significativamente o perfil longitudinal visto nos Dectores de Fluorescência e/ou a distribuição temporal e sinal observado no Detector de Superfície.

 Possíveis mudanças na distribuição temporal e no sinal visto pelos tanques Cherenkov e suas implicações na reconstrução de energia do raio cósmico primário serão discutidas neste trabalho.

II. DISTRIBUIÇÃO LATERAL DE PARTÍCULAS

- A produção e propagação de charm em CAEs são processos aleatórios, com efeito que pode ou não pode acontecer dependendo das simulações de Monte Carlo.
- Para este trabalho nós iremos usar o aplicativo CORSIKA [2] (Cosmic Ray Simulations for Kaskade). Nós iremos utilizar um código modificado do CORSIKA, com inclusão de produção de charm e bottoms na primeira interação do raio cósmico primário [3] and [4].
- Iremos considerar apenas a hadronização de charms via Intrinsic Quark Model (IQM).

- Nesta seção iremos investigar como estes processos aleatórios podem modificar a Distribuição Lateral da Componente Muônica no chão.
- Iremos comparar os nossos resultados com chuveiros simulados pelo código padrão do CORSIKA sem produção de charm.
- Usaremos chuveiros com $3 \times 10^{19} eV$ de energia primária, partícula primária próton ângulo zenitais verticais e $\theta = 60^{\circ}$.

A. Resultados

Razão da distribuição lateral de densidade de número de múons. Razão CORSIKA STD \times CORSIKA via IQM. 60°. Média de \approx 100 chuveiros.

Razão da distribuição lateral de densidade de número de múons. Razão CORSIKA STD \times CORSIKA via IQM. Vertical. Média de \approx 100 chuveiros.

III. RECONSTRUÇÕES OFFLINE

- A resposta dos tanques Cherenkov será simulada pelo aplicativo Offline, escrito pela Colaboração Pierre Auger.
- A natureza espaçada do detector, a resposta das partículas que o atravessam, e o sistema eletrônico serão simulados.
- Em chuveiros muito inclinados teremos que quase a totalidade do sinal dos tanques será formado por múons, já que a componente eletromagnética é amplamente absorvida.

- Chuveiros com diferentes estágios de desenvolvimento.
- A estrutura temporal do sinal do FADC tem 768 bins temporais com 25 *ns* cada janela temporal.
- Serão usados 50 chuveiros, $3 \times 10^{19} eV$, primário próton, diferentes ângulos zenitais
- 200 eventos reconstruídos pelo Offline.
- Comparação de chuveiros usando nosso código CORSIKA modificado (produção de charm via IQM), e standard (STD) CORSIKA, sem produção de charm.
- Estrutura temporal do sinal, sinal total, Função Distribuição Lateral e Energia reconstruída serão analisadas na seção seguinte.
- Não há corte de qualidade usado para a seleção dos eventos.

- O nível de Malargüe está a $890 g/cm^2$ de profundidade atmoférica (1400 m).
- Este é grosseiramente o valor do X_{max} para chuveiros verticais.
- A seguir, temos respectivamente os resultados para chuveiros verticais, 60° de ângulo zenital e 60° selecionados para chuveiros com $F_E \ge 0.8$.

IV. ENERGIA E LDF

1. Chuveiro Vertical

• Sinal muônico médio dos slots. 2000 estações "triggeradas". CORSIKA IQM \times CORSIKA STD.

• Sinal médio de múons e razão entre o sinal de múons para CORSIKA

• Distribuição de energias reconstruídas. 200 eventos reconstruídos. CORSIKA IQM \times CORSIKA STD.

Menor energia reconstruída - $\approx 10\%$

2. Ângulo zenital de 60 graus

• Sinal muônico médio dos slots. 2000 estações "triggeradas". CORSIKA IQM \times CORSIKA STD.

• Sinal médio de múons e razão entre o sinal de múons para CORSIKA

• Distribuição de energias reconstruídas. 200 eventos reconstruídos. CORSIKA IQM \times CORSIKA STD.

Maior energia reconstruída - $\approx 10\%$

3. 60 graus - Chuveiros separados para $F_E \ge 0.8$

• Sinal muônico médio dos slots. 2000 estações "triggeradas". CORSIKA IQM \times CORSIKA STD.

• Sinal médio de múons e razão entre o sinal de múons para CORSIKA

• Distribuição de energias reconstruídas. 200 eventos reconstruídos. CORSIKA IQM \times CORSIKA STD.

Maior energia reconstruída - $\approx 12\%$

V. RISETIME

- Risetime Tempo de subida do sinal dos tanques Cherenkov.
- Usado como parâmetro para separar componentes muônicas e eletromagnéticas.

- As diferentes componentes (eletromag. e muônica) chegam em tempos diferentes aos tanques.
- t10 50 Tempo em que a integral do sinal alcance 10% e 50% do sinal.

A. Resultados

Márcio Müller

Estudo de parâmetros em CAEs com inclusão de charm

• Comparação de risetimes entre as componentes puras.

• Comp. eletromag. e muônica para $\theta = 60^{\circ}$ - CORSIKA padrão, CORSIKA via IQM e CORSIKA via IQM ($F_E \ge 0.8$).

VI. CONCLUSÕES

- Temos um excesso na densidade de múons de 20 a 40% para chuveiros simulados pelo CORSIKA Heavy via IQM.
- A distribuição de energia dos charms produzidos via IQM [4] alcançam energias que podem chegar a $3 \times 10^{19} eV$ ($F_E \approx 1$).
- Os charms mais energéticos geram mais múons ao nível do detector.
- Chuveiros inclinados tem mais múons vindo do decaimento de charm e alcançam o chão mais espalhados.
- Para chuveiros verticais o excesso de múons está mais concentrado no centro do chuveiro, < 300 m.
- Observando o formato temporal do sinal, temos uma diferença relevante para chuveiros verticais.
- Para chuveiros verticais temos energias menores na reconstrução dos chuveiros 10%.

- Para chuveiros com $\theta = 60^{\circ}$, temos energias maiores na reconstrução dos chuveiros 10%.
- Para $\theta = 60^{\circ}$, $F_E \ge 0.8$, temos maiores energias reconstruídas 12%
- Neste caso a razão do sinal $(S_{\mu}(heavy_{IQM})/S_{\mu}(STD))$ alcança 15%.
- Nenhuma mudança relevante é observada na frente do chuveiro nos tanques Cherenkov. A menos para alguns chuveiros particulares com partículas pesadas com altas frações de energia do primário.
- Na distribuição de risetime para as componentes puras é observado um leve aumento para os risetimes comparando entre CORSIKA padrão e CORSIKA via IQM.
- Charms altamente energéticos em CAEs podem ser a fonte para explicar eventos anômalos observados no Observatório Pierre Auger.

VII. FD SHIFT

- Tomada de dados entre os dias 3 a 21 de setembro 18 dias
- Das 20:40 hs às 06:30 hs aproximadamente
- Todo dia posterior a tomada de dados é feita uma reconstrução rápida dos dados observados.

- [1] C. A. García, et al, *Production and propagation of heavy hadrons in air-shower simulators*, Astroparticle Physics, 46, 29-33, 2013.
- [2] Heck, D., Knapp, J., Capdevielle, J. N., Schatz, G., and Thouw, T., Report FZKA 6019 (1998), Forschungszentrum Karlsruhe, Germany.
- [3] A. Bueno and A. Gascón, Corsika implementation of heavy quark production and propagation in Extensive Air Showers, Computer Physics Communications, 185, 638-650, 2014.
- [4] M. Muller and V. P. Gonçalves, *Longitudinal profiles of Extensive Air Showers with inclusion of charm and bottom particles*, in submission.
- [5] M. Muller and V. P. Gonçalves, Prompt muons and neutrinos in simulations of Extensive Air Showers, in submission.
- [6] A. Gascón and A. Bueno, *Charm production and identification in EAS*, Gap Note (Internal notes of Pierre Auger Collaboration), 2011-019, 2011.

