UNIDADE III - Elementos de probabilidades

- 3.1. Probabilidade no espaço básico
 - 3.1.1. Introdução
 - 3.1.2. Conceitos fundamentais
 - 3.1.3. Conceitos de probabilidade
 - 3.1.4. Teoremas para o cálculo de probabilidades
 - 3.1.5. Probabilidade condicional e independência
- 3.2. Variáveis aleatórias
 - 3.2.1. Introdução e conceito
 - 3.2.2. Variáveis aleatórias discretas
 - 3.2.3. Variáveis aleatórias contínuas
- 3.3. Distribuições de probabilidade
 - 3.3.1. Distribuições de probabilidade de variáveis discretas
 - 3.3.2. Distribuições de probabilidade de variáveis contínuas

Variável aleatória

Definição: É uma função (ou regra) que transforma um espaço amostral qualquer em um espaço amostral numérico, que será sempre um subconjunto do conjunto dos números reais.

Variáveis aleatórias Contínuas

3.2.3 Variáveis aleatórias contínuas

Definição: São contínuas todas as variáveis cujo espaço amostral S_{χ} é contínuo ou não enumerável.

- \Rightarrow Se X é uma variável aleatória contínua, X pode assumir qualquer valor num intervalo [a; b] ou no intervalo (- ∞ ;+ ∞).
- \Rightarrow O espaço S_{x} será sempre definido como um intervalo do conjunto dos reais, sendo, portanto, um conjunto infinito.

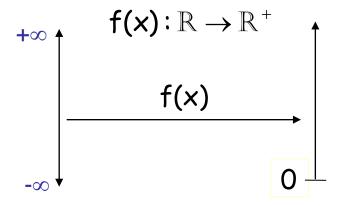
Exemplos:

- tempo que uma pessoa espera numa fila
- peso da produção de uma planta
- estatura de uma pessoa
- produção de leite de uma vaca
- quantidade de chuva que ocorre numa região

1. Função densidade de probabilidade

Definição: Seja X uma variável aleatória contínua e S_X o seu espaço amostral. Uma função **f** associada a variável X é denominada **função densidade de probabilidade (fdp)** se satisfizer duas condições:

1.
$$f(x) \ge 0$$
, $\forall x \in S_X$



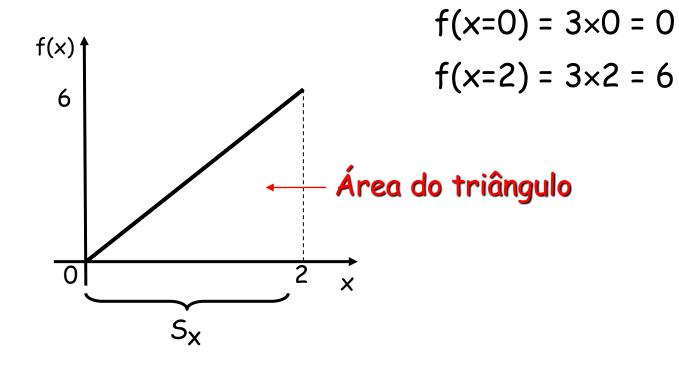
Domínio

Contradomínio

Espaço amostral de X: intervalo $(-\infty; +\infty)$.

Intervalo $[0, +\infty)$

$$f(x) = 3x$$



$$\int_{0}^{2} f(x)dx = \text{área sob a função no intervalo [0; 2]}$$

1. Função densidade de probabilidade

Definição: Seja X uma variável aleatória contínua e S_X o seu espaço amostral. Uma função $\mathbf f$ associada a variável X é denominada $\mathbf f$ unção densidade de probabilidade ($\mathbf f$ d $\mathbf p$) se satisfizer duas condições:

1.
$$f(x) \ge 0$$
, $\forall x \in S_X$

2.
$$\int_{S_X} f(x)dx = 1 = P(X \in S_X)$$

Esta área corresponde à probabilidade de um valor de X pertencer ao espaço amostral S_X

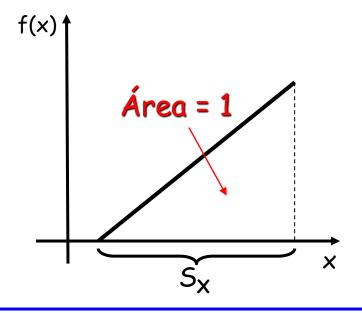
A integral da diferencial da função f(x) fornece a área sob a função no intervalo S_x

1. Função densidade de probabilidade

Definição: Seja X uma variável aleatória contínua e S_X o seu espaço amostral. Uma função f associada a variável X é denominada função densidade de probabilidade (fdp) se satisfizer duas condições:

1.
$$f(x) \ge 0$$
, $\forall x \in S_X$

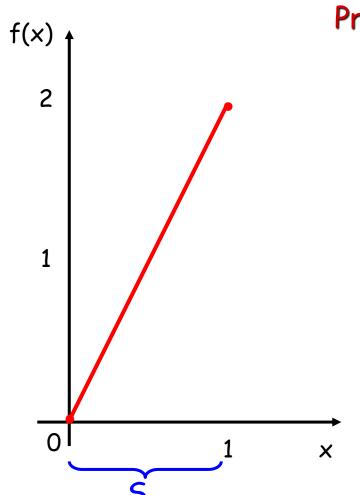
$$2. \int_{S_X} f(x) dx = 1$$



Fdp é toda a função que não assume valores negativos, ou seja, cujo gráfico esteja acima do eixo das abcissas, e cuja área compreendida entre a função e o eixo das abcissas seja igual a um.

Exemplo 1:

Seja a função f(x) = 2x, no intervalo $S_x = [0,1]$. Verifique se f(x) é uma função densidade de probabilidade.



Primeira condição: $f(x) \ge 0$, $\forall x \in S_X$

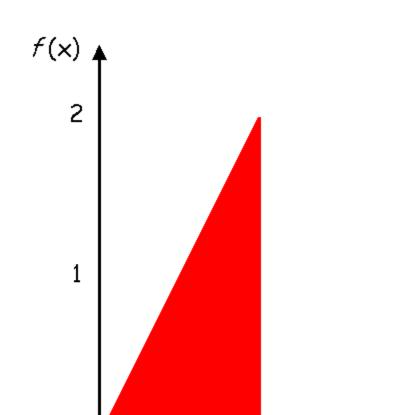
$$f(x) = 2x$$

 $f(x=0) = 2x0 = 0$
 $f(x=1) = 2x1 = 2$

Todos os valores da função f(x) são não negativos no intervalo de 0 a 1.

Segunda condição:
$$\int_{S_X} f(x)dx = 1$$

Segunda condição:
$$\int_{a}^{b} f(x)dx = 1$$

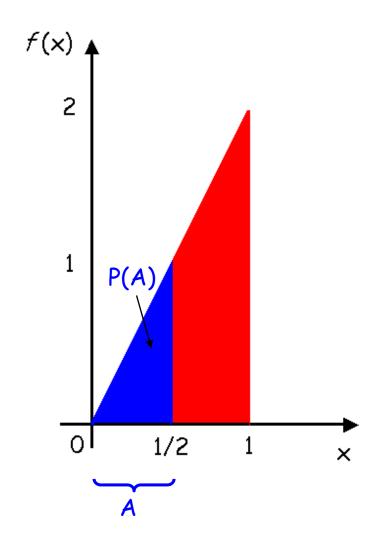


Área:
$$\frac{b \times h}{2} = \frac{1 \times 2}{2} = 1$$

A área sob a função f(x) no intervalo S_X , que equivale a $P(X \in S_X)$, é igual a 1.

A função f(x) = 2x, no intervalo $S_X = [0, 1]$ é uma função densidade de probabilidade!!

Seja A=[0, 1/2], qual é a probabilidade de ocorrer o evento A?



Probabilidade = área

Área:
$$\frac{b \times h}{2} = \frac{1/2 \times 1}{2} = \frac{1}{4}$$

$$P(0 \le X \le 1/2) = 1/4$$

Seja a função $f(x) = 6x-6x^2$, no intervalo $S_x = [0,1]$. Verifique se f(x) é uma função densidade de probabilidade.

Primeira condição: $f(x) \ge 0$, $\forall x \in S_X$

Determina-se o valor de X que corresponde ao ponto crítico, derivando a função e igualando a primeira derivada a zero.

$$f'(x) = 6 - 12x$$

$$0 = 6 - 12x$$

$$x = \frac{6}{12} = \frac{1}{2} \quad \leftarrow \text{valor que corresponde ao ponto crítico}$$

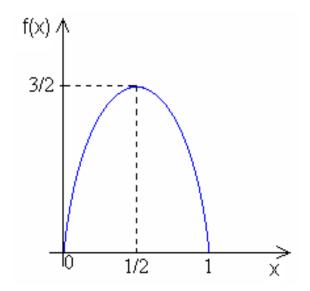
$$f'(x) = 6 - 12x$$

$$f''(x) = -12$$

$$\begin{cases} se \ f''(x) < 0 \ \to \text{ ponto de máximo} \\ se \ f''(x) > 0 \ \to \text{ ponto de mínimo} \end{cases}$$

A função $f(x) = 6x-6x^2$ tem ponto de máximo.

Traçar o gráfico:



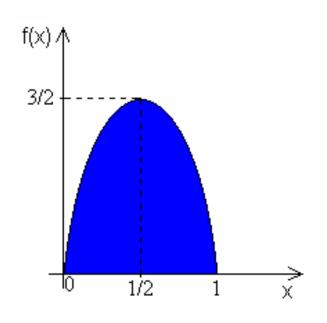
$$f(0) = 6 \times 0 - 6 \times 0^{2} = 0$$

$$f(1/2) = 6 \times 1/2 - 6 \times (1/2)^{2} = 3/2$$

$$f(1) = 6 \times 1 - 6 \times 1^{2} = 0$$

Todos os valores da função f(x) são não negativos no intervalo de 0 a 1.

Segunda condição:
$$\int_{S_X} f(x)dx = 1$$



Para obter a área sob a parábola é necessário integrar!

Integral definida

Se f é uma função de x, então a sua integral definida é uma integral restrita a valores em um intervalo específico, por exemplo, a $\le x \le b$. O resultado é um número que depende apenas de a e b, e não de x.

Teorema Fundamental do Cálculo

Se f(x) é uma função contínua no intervalo [a, b] e temos uma função F(x), tal que F'(x) = f(x), então F(x) é chamada **primitiva** ou **anti-derivada** de f(x). Nesse caso,

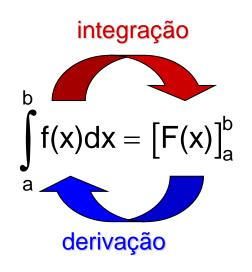
$$\int_{a}^{b} f(x)dx = [F(x)]_{x=a}^{x=b} = F(b) - F(a)$$

Entendendo a integral como processo inverso da derivada:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$
integranda

A primitiva F(x) é a função cuja derivada é a integranda f(x).

$$F'(x) = f(x)$$



Como encontrar a primitiva?

Integranda Primitiva

$$f(x) = x^n$$
 $F(x) = \frac{x^{n+1}}{n+1}$

Algumas propriedades da integral

1. A área num ponto a é igual a zero, ou seja

$$\int_{a}^{a} f(x) dx = 0$$

2. Se b é um ponto entre a e c, então

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

3. O fator constante k pode ser retirado do sinal de integração, ou seja

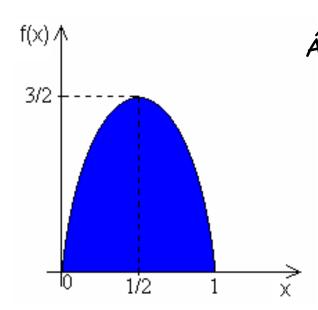
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

4. A integral definida da soma (ou da diferença) de funções é a soma (ou a diferença) das integrais definidas, ou seja

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

Segunda condição: $\int f(x)dx = 1$

$$\int_{S_X} f(x) dx = 1$$



A área sob a função f(x) no intervalo S_x , que equivale a $P(X \in S_X)$, é iqual a 1.

A função $f(x) = 6x-6x^2$, no intervalo $S_x = [0, 1]$, é uma função densidade de probabilidade!!

Importante!!!

No caso de variáveis contínuas, as representações a≤x≤b, a≤x<b, a<x≤b e a<x<b são todas equivalentes, pois a probabilidade num ponto, por definição, é nula.

Seja o evento $A=\{x; x=a\}$. Então,

$$P(A) = \int_{A} f(x)dx = \int_{a}^{a} f(x)dx = F(a) - F(a) = 0$$

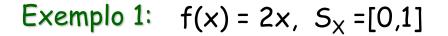
Definição: Seja X uma variável aleatória contínua e S_X o seu espaço amostral. A função de distribuição, denotada por F(x) ou $P(X \le x)$, é a função que associa a cada ponto $x \in S_X$ a probabilidade $P(X \le x)$. Desta forma, tem-se

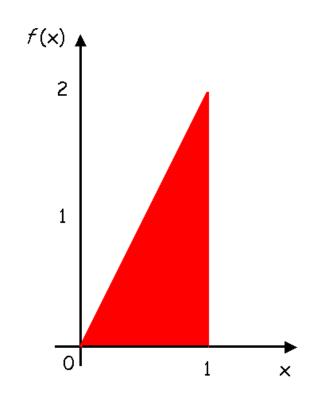
$$F(x) = P(X \le x) = \int_{a}^{x} f(t)dt, \text{ para } S_X = [a, b]$$

Sendo $S_X = [a, b]$, então

$$F(a) = P(X \le a) = 0$$

$$F(b) = P(X \le b) = 1$$





$$F(x) = \int_{0}^{x} f(t)dt$$

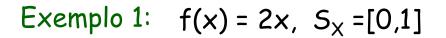
$$= \int_{0}^{x} 2tdt$$

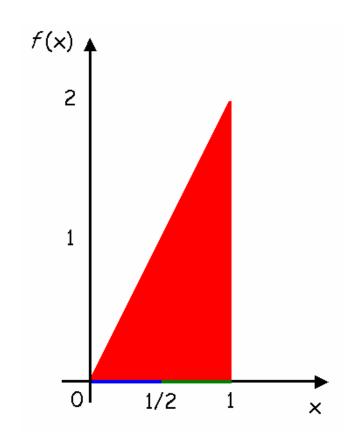
$$= 2\left[\frac{t^{2}}{2}\right]_{0}^{x}$$

$$= x^{2}$$

$$F(x) = x^2$$

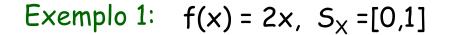
A função de probabilidade acumulada é a primitiva de f(x).

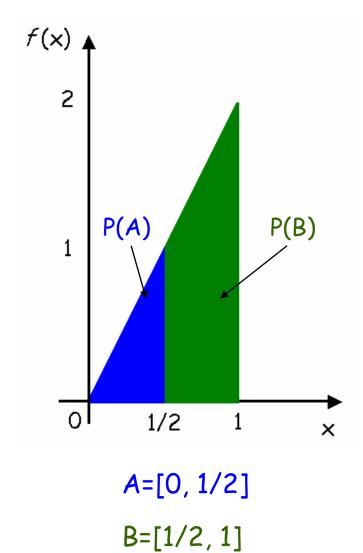




A=[0, 1/2]

B=[1/2, 1]





$$F(x) = x^2$$

$$F(1/2) = P(X \le 1/2) = (1/2)^2 = 1/4$$

$$P(A) = F(1/2) = 1/4$$

$$P(B) = 1 - F(1/2)$$

= 1 - 1/4 = 3/4

Gráfico da função densidade de probabilidade

$$f(x) = 2x$$
, $S_X = [0,1]$

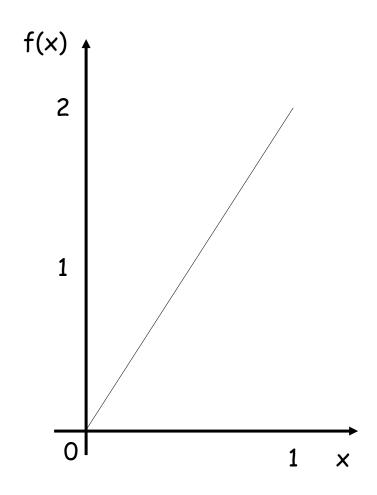
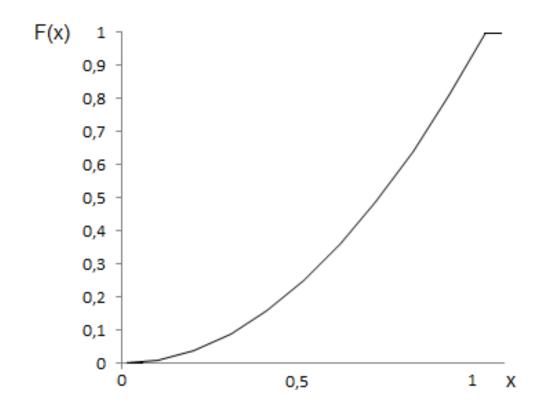
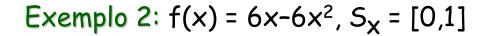


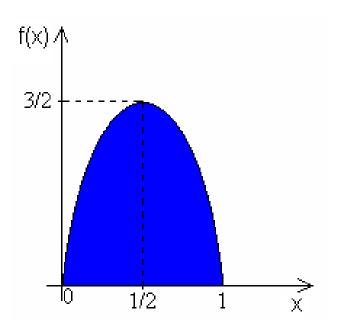
Gráfico da função de distribuição ou probabilidade acumulada

$$F(x) = x^2$$



A função F(x) expressa a probabilidade da variável X assumir um valor menor ou igual a $x \to P(X \le x)$





$$F(x) = 3x^2 - 2x^3$$

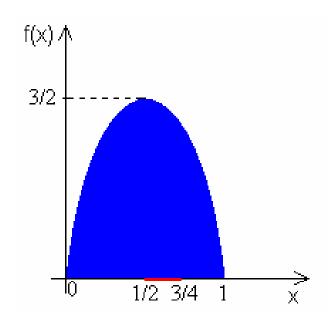
$$F(x) = \int_{0}^{x} f(t)dt$$

$$= \int_{0}^{x} (6t - 6t^{2})dt$$

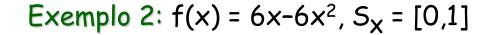
$$= \int_{0}^{x} 6tdt - \int_{0}^{x} 6t^{2}dt$$

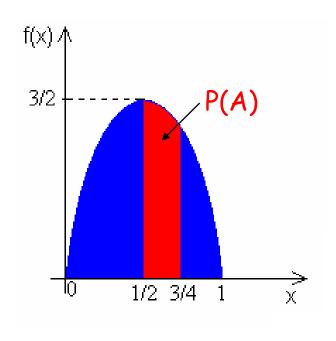
$$= 6\left[\frac{t^{2}}{2}\right]_{0}^{x} - 6\left[\frac{t^{3}}{3}\right]_{0}^{x}$$

$$= 3x^{2} - 2x^{3}$$



$$A=[1/2, 3/4]$$





$$A=[1/2, 3/4]$$

$$F(x) = 3x^{2} - 2x^{3}$$

$$F(1/2) = 3(1/2)^{2} - 2(1/2)^{3}$$

$$= 3/4 - 1/4 = 1/2$$

$$F(3/4) = 3(3/4)^{2} - 2(3/4)^{3}$$

$$= 27/16 - 27/32$$

$$= \frac{54 - 27}{32} = \frac{27}{32}$$

$$P(A) = F(3/4) - F(1/2)$$

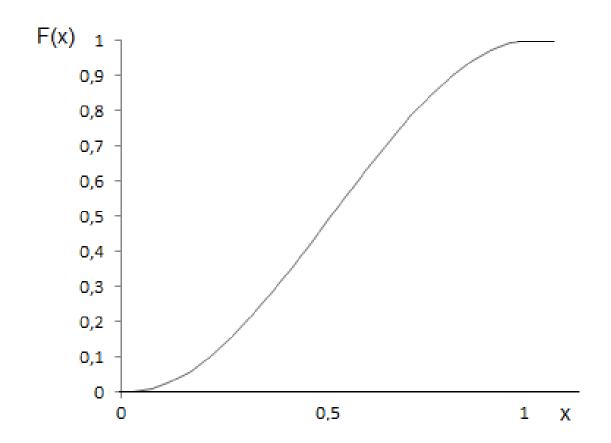
$$P(A) = F(3/4) - F(1/2)$$

$$= 27/32 - 1/2$$

$$= \frac{27 - 16}{32} = \frac{11}{32} = 0,344$$

Gráfico da função de probabilidade acumulada

$$F(x) = 3x^2 - 2x^3$$



A função F(x) expressa a probabilidade da variável X assumir um valor menor ou igual a $x \to P(X \le x)$

□ Momentos, assimetria e curtose

Momentos ordinários

Primeiro momento:

$$\mu_1' = E(X) = \int_{S_x} xf(x)dx$$

Segundo momento:

$$\mu_2' = E(X^2) = \int_{S_X} x^2 f(x) dx$$

Terceiro momento:

$$\mu_3' = E(X^3) = \int_{S_x} x^3 f(x) dx$$

Quarto momento:

$$\mu_4' = E(X^4) = \int_{S_x} x^4 f(x) dx$$

□ Momentos, assimetria e curtose

Momentos centrados na média

Segundo momento:

$$\mu_2 = E(X - \mu)^2 = \int_{S_X} (x - \mu)^2 f(x) dx \qquad \text{(Fórmula de definição)}$$

$$\mu_2 = E(X^2) - \mu^2 = \left(\int_{S_X} x^2 f(x) dx\right) - \mu^2 \qquad \text{(Fórmula prática)}$$

◆ Terceiro momento:

$$\begin{split} \mu_3 &= E(X - \mu)^3 = \int\limits_{S_X} (x - \mu)^3 f(x) dx & \text{(F\'ormula de defini\'g\'ao)} \\ \mu_3 &= E(X^3) - 3\mu E(X^2) + 2\mu^3 \\ &= \left(\int\limits_{S_X} x^3 f(x) dx\right) - 3\mu \left(\int\limits_{S_X} x^2 f(x) dx\right) + 2\mu^3 & \text{(F\'ormula pr\'atica)} \end{split}$$

Quarto momento:

$$\mu_4 = E(X - \mu)^4 = \int_{S_X} (x - \mu)^4 f(x) dx$$
 (Fórmula de definição)

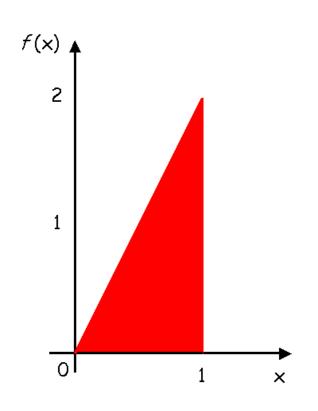
$$\mu_4 = E(X^4) - 4\mu E(X^3) + 6\mu^2 E(X^2) - 3\mu^4 \quad \text{(Fórmula prática)}$$

$$= \left[\int_{S_x} x^4 f(x) dx \right] - 4\mu \left[\int_{S_x} x^3 f(x) dx \right] + 6\mu^2 \left[\int_{S_x} x^2 f(x) dx \right] - 3\mu^4$$

Coeficiente de assimetria:
$$a_3 = \frac{\mu_3}{\mu_2 \sqrt{\mu_2}}$$

Coeficiente de curtose:
$$a_4 = \frac{\mu_4}{\mu_2^2}$$

Exemplo 1: f(x) = 2x, $S_X = [0,1]$



$$\begin{split} &\mu_4 = E(X^4) - 4\mu E(X^3) + 6\mu^2 E(X^2) - 3\mu^4 \\ &= \left[\int_0^1 x^4 2x dx\right] - 4\mu \left[\int_0^1 x^3 2x dx\right] + 6\mu^2 \left[\int_0^1 x^2 2x dx\right] - 3\mu^4 \\ &= \left[\int_0^1 2x^5 dx\right] - 4\mu \left[\int_0^1 2x^4 dx\right] + 6\mu^2 \left[\int_0^1 2x^3 dx\right] - 3\mu^4 \\ &= 2\left[\frac{x^6}{6}\right]_0^1 - 4\mu 2\left[\frac{x^5}{5}\right]_0^1 + 6\mu^2 2\left[\frac{x^4}{4}\right]_0^1 - 3\mu^4 \\ &= \frac{1}{3} - 4 \times \frac{2}{3} \times \frac{2}{5} + 6 \times \left(\frac{2}{3}\right)^2 \times \frac{1}{2} - 3 \times \left(\frac{2}{3}\right)^4 \\ &= \frac{1}{3} - \frac{16}{15} + \frac{4}{3} - \frac{16}{27} = \frac{45 - 144 + 180 - 64}{135} = 7,941 \end{split}$$

Exemplo 1: f(x) = 2x, $S_X = [0,1]$

Momentos ordinários

$$\mu_2' = E(X^2) = \int_{S_X} x^2 f(x) dx = \int_0^1 x^2 2x dx = \int_0^1 2x^3 dx = 2\left[\frac{x^4}{4}\right]_0^1 = \frac{1}{2}$$

$$\mu_3' = E(X^3) = \int_{S_x} x^3 f(x) dx = \int_0^1 x^3 2x dx = \int_0^1 2x^4 dx = 2\left[\frac{x^5}{5}\right]_0^1 = \frac{2}{5}$$

$$\mu_4' = E(X^4) = \int_{S_x} x^4 f(x) dx = \int_0^1 x^4 2x dx = \int_0^1 2x^5 dx = 2\left[\frac{x^6}{6}\right]_0^1 = \frac{1}{3}$$

Exemplo 1: f(x) = 2x, $S_X = [0,1]$

$$\mu_3 = E(X^3) - 3\mu E(X^2) + 2\mu^3$$

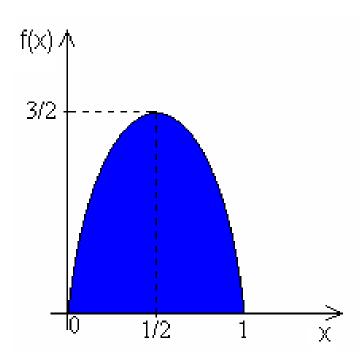
$$= \frac{2}{5} - 3 \times \frac{2}{3} \times \frac{1}{2} + 2 \times \left(\frac{2}{3}\right)^2 = -0,0074$$

$$\mu_4 = E(X^4) - 4\mu E(X^3) + 6\mu^2 E(X^2) - 3\mu^4$$

$$= \frac{1}{3} - 4 \times \frac{2}{3} \times \frac{2}{5} + 6 \times \left(\frac{2}{3}\right)^2 \times \frac{1}{2} - 3 \times \left(\frac{2}{3}\right)^4 = 7,941$$

$$a_3 = \frac{\mu_3}{\mu_2 \sqrt{\mu_2}} = \frac{-0.0074}{1/18\sqrt{1/18}} = \frac{-0.0074}{0.0131} = -0.565 \rightarrow Assimétrica negativa$$

$$a_4 = \frac{\mu_4}{\mu_2^2} = \frac{7.941}{(1/18)^2} = 40.8 \rightarrow Leptocúrtica$$

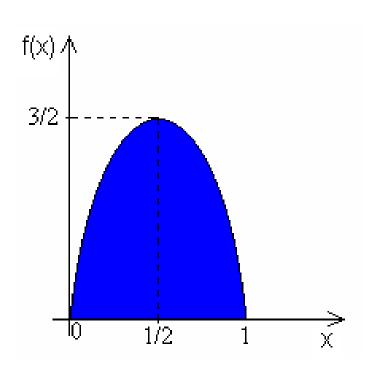


$$\begin{split} &\mu_3 = E(X^3) - 3\mu E(X^2) + 2\mu^3 \\ &= \left[\int_0^1 x^3 \left(6x - 6x^2\right) dx\right] - 3\mu \left[\int_0^1 x^2 \left(6x - 6x^2\right) dx\right] + 2\mu^3 \\ &= \left[\int_0^1 \left(6x^4 - 6x^5\right) dx\right] - 3\mu \left[\int_0^1 \left(6x^3 - 6x^4\right) dx\right] + 2\mu^3 \\ &= \left[\int_0^1 6x^4 dx - \int_0^1 6x^5 dx\right] - 3\mu \left[\int_0^1 6x^3 dx - \int_0^1 6x^4 dx\right] + 2\mu^3 \\ &= \left\{6\left[\frac{x^5}{5}\right]_0^1 - 6\left[\frac{x^6}{6}\right]_0^1\right\} - 3\mu \left\{6\left[\frac{x^4}{4}\right]_0^1 - 6\left[\frac{x^5}{5}\right]_0^1\right\} + 2\mu^3 \\ &= \left(\frac{6}{5} - 1\right) - 3 \times \frac{1}{2} \times \left(\frac{3}{2} - \frac{6}{5}\right) + 2 \times \left(\frac{1}{2}\right)^3 \\ &= \frac{1}{5} - \frac{3}{2} \times \frac{3}{10} + 2\left(\frac{1}{2}\right)^3 = \frac{1}{5} - \frac{9}{20} + \frac{1}{4} = \frac{4 - 9 + 5}{20} = 0 \end{split}$$

$$\begin{split} &\mu_4 = E(X^4) - 4\mu E(X^3) + 6\mu^2 E(X^2) - 3\mu^4 \\ &= \left[\int_0^1 x^4 \left(6x - 6x^2\right) dx\right] - 4\mu \left[\int_0^1 x^3 \left(6x - 6x^2\right) dx\right] + 6\mu^2 \left[\int_0^1 x^2 \left(6x - 6x^2\right) dx\right] - 3\mu^4 \\ &= \left[\int_0^1 \left(6x^5 - 6x^6\right) dx\right] - 4\mu \left[\int_0^1 \left(6x^4 - 6x^5\right) dx\right] + 6\mu^2 \left[\int_0^1 \left(6x^3 - 6x^4\right) dx\right] - 3\mu^4 \\ &= \left\{6\left[\frac{x^6}{6}\right]_0^1 - 6\left[\frac{x^7}{7}\right]_0^1\right\} - 4\mu \left\{6\left[\frac{x^5}{5}\right]_0^1 - 6\left[\frac{x^6}{6}\right]_0^1\right\} + 6\mu^2 \left\{6\left[\frac{x^4}{4}\right]_0^1 - 6\left[\frac{x^5}{5}\right]_0^1\right\} - 3\mu^4 \\ &= \left(1 - \frac{6}{7}\right) - 4 \times \frac{1}{2} \times \left(\frac{6}{5} - 1\right) + 6 \times \left(\frac{1}{2}\right)^2 \times \left(\frac{3}{2} - \frac{6}{5}\right) - 3 \times \left(\frac{1}{2}\right)^4 \\ &= \frac{1}{7} - \frac{4}{2} \times \frac{1}{5} + \frac{3}{2} \times \frac{3}{10} - \frac{3}{16} \\ &= \frac{1}{7} - \frac{4}{10} + \frac{9}{20} - \frac{3}{16} = \frac{80 - 224 + 252 - 105}{560} = \frac{3}{560} = 0,005357 \end{split}$$

Momentos ordinários

$$\begin{split} \mu_2' &= E\left(X^2\right) = \int_{S_X} x^2 f(x) dx = \int_0^1 x^2 (6x - 6x^2) dx = \int_0^1 (6x^3 - 6x^4) dx \\ &= 6 \left[\frac{x^4}{4}\right]_0^1 - 6 \left[\frac{x^5}{5}\right]_0^1 = \frac{3}{2} - \frac{6}{5} = \frac{3}{10} \\ \mu_3' &= E\left(X^3\right) = \int_{S_X} x^3 f(x) dx = \int_0^1 x^3 (6x - 6x^2) dx = \int_0^1 (6x^4 - 6x^5) dx \\ &= 6 \left[\frac{x^5}{5}\right]_0^1 - 6 \left[\frac{x^6}{6}\right]_0^1 = \frac{6}{5} - 1 = \frac{2}{10} \\ \mu_4' &= E\left(X^4\right) = \int_{S_X} x^4 f(x) dx = \int_0^1 x^4 (6x - 6x^2) dx = \int_0^1 (6x^5 - 6x^6) dx \\ &= 6 \left[\frac{x^6}{6}\right]_0^1 - 6 \left[\frac{x^7}{7}\right]_0^1 = 1 - \frac{6}{7} = \frac{1}{7} \end{split}$$



$$\mu_3 = E(X^3) - 3\mu E(X^2) + 2\mu^3$$
$$= \frac{2}{10} - 3 \times \frac{1}{2} \times \frac{3}{10} + 2 \times \left(\frac{1}{2}\right)^2 = 0$$

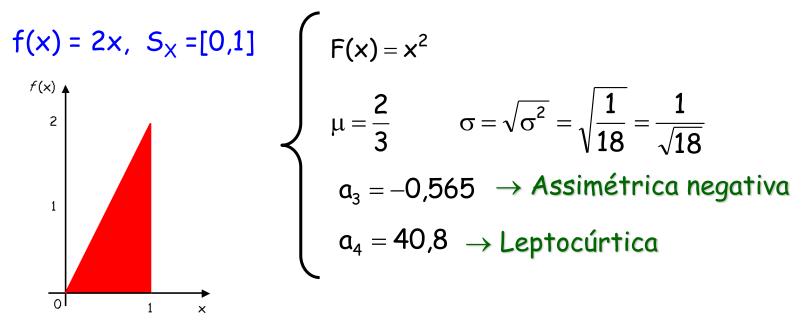
$$\begin{split} \mu_4 &= E(X^4) - 4\mu E(X^3) + 6\mu^2 E(X^2) - 3\mu^4 \\ &= \frac{1}{7} - 4 \times \frac{1}{2} \times \frac{2}{10} + 6 \times \left(\frac{1}{2}\right)^2 \times \frac{3}{10} - 3 \times \left(\frac{1}{2}\right)^4 \\ &= 0,005357 \end{split}$$

$$a_3 = \frac{\mu_3}{\mu_2 \sqrt{\mu_2}} = \frac{0}{1/20\sqrt{1/20}} = 0 \rightarrow \text{Simétrica}$$

$$a_4 = \frac{\mu_4}{\mu_2^2} = \frac{0,005357}{(1/20)^2} = 2,14 \rightarrow \text{Platicúrtica}$$

Descrição das variáveis aleatórias

$$f(x) = 2x, S_X = [0,1]$$



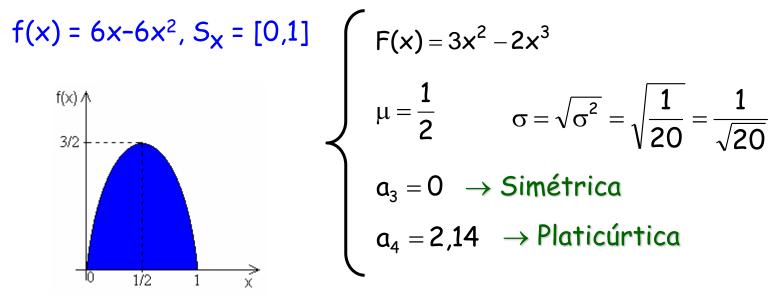
$$F(x) = x^2$$

$$\mu = \frac{2}{3} \qquad \qquad \sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{18}} = \frac{1}{\sqrt{18}}$$

$$a_3 = -0.565 \rightarrow Assimétrica negativa$$

$$a_4 = 40.8 \rightarrow Leptocúrtica$$

$$f(x) = 6x-6x^2$$
, $S_X = [0,1]$



$$F(x) = 3x^2 - 2x^3$$

$$\mu = \frac{1}{2}$$
 $\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{20}} = \frac{1}{\sqrt{20}}$

$$a_3 = 0 \rightarrow Simétrica$$

Variável aleatória discreta

Variável aleatória continua

Espaço amostral enumerável (finito ou infinito)

X = número de bolas pretas

$$S_{x}=\{0, 1, 2\}$$

 $p(x) \rightarrow função de probabilidade$

Condições: 1. $p(x) \ge 0$, $\forall x \in S_x$

$$2. \sum_{x \in S_X} p(x) = 1$$

O valor da função p(x) expressa a probabilidade de ocorrência de cada valor de X

$$p(x) = \frac{C_3^x C_2^{2-x}}{C_5^2}$$
, para $S_X = \{0, 1, 2\}$ $f(x) = \frac{3x}{2} - \frac{3x^2}{4}$, para $S_X = [0; 2000]$

Espaço amostral contínuo ou não enumerável (intervalo infinito)

X = volume de chuva em uma região (mm)

$$S_{x}=[0; 2000]$$

 $f(x) \rightarrow função densidade de probabilidade$

Condições: 1. $f(x) \ge 0$, $\forall x \in S_X$ $2. \int_{C} f(x) dx = 1$

A área sob f(x) num intervalo [a, b] expressa a probabilidade de ocorrer um valor da variável X entre os limites a e b.

$$f(x) = \frac{3x}{2} - \frac{3x^2}{4}$$
, para $S_x = [0; 2000]$

Variável aleatória discreta

Variável aleatória contínua

Espaço amostral enumerável (finito ou infinito)

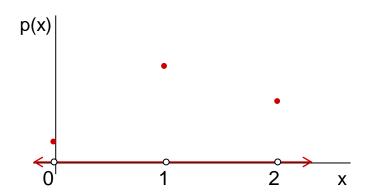
X = número de bolas pretas

$$S_{x}=\{0, 1, 2\}$$

Condições: 1. $p(x) \ge 0$, $\forall x \in S_x$

$$2. \sum_{x \in S_x} p(x) = 1$$

O valor da função p(x) expressa a probabilidade de ocorrência de cada valor de X



Espaço amostral contínuo ou não enumerável (intervalo infinito)

X = volume de chuva em uma região (mm)

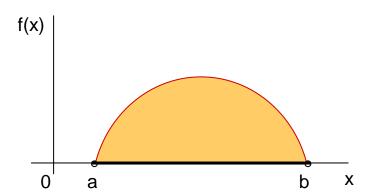
$$S_x = [0; 2000]$$

 $f(x) \rightarrow função densidade de probabilidade$

Condições: 1.
$$f(x) \ge 0$$
, $\forall x \in S_X$

$$2. \int_{S_X} f(x) dx = 1$$

A área sob f(x) num intervalo [a, b] expressa a probabilidade de ocorrer um valor da variável X entre os limites a e b.



Variável aleatória discreta

Variável aleatória contínua

Espaço amostral enumerável (finito ou infinito)

X = número de bolas pretas

$$S_{x}=\{0, 1, 2\}$$

Condições: 1. $p(x) \ge 0$, $\forall x \in S_X$

$$2. \sum_{x \in S_X} p(x) = 1$$

O valor da função p(x) expressa a probabilidade de ocorrência de cada valor de X

Espaço amostral contínuo ou não enumerável (intervalo infinito)

X = volume de chuva em uma região (mm)

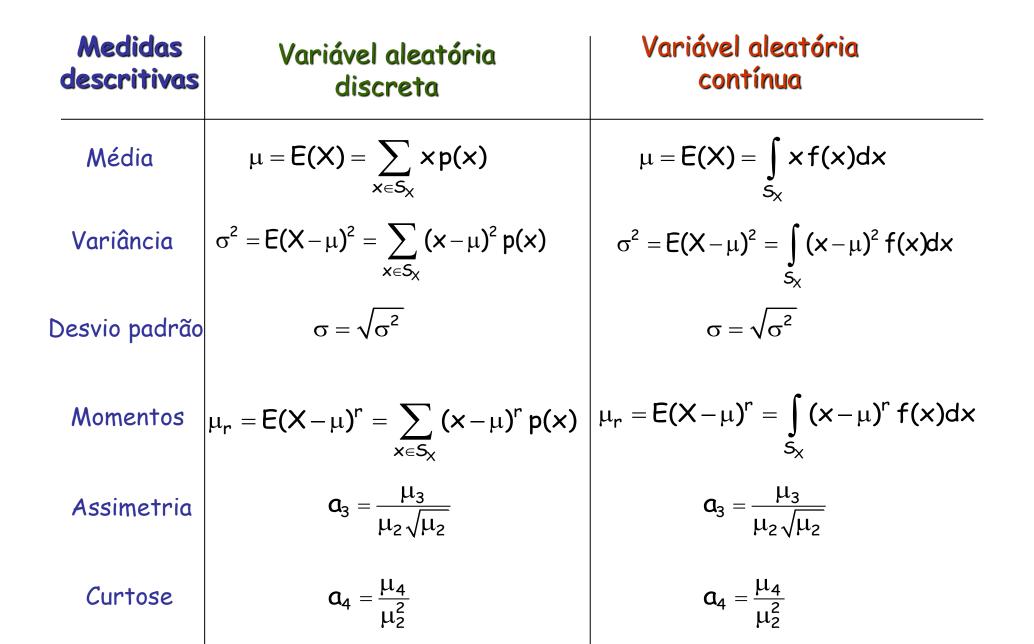
$$S_{x}=[0; 2000]$$

 $f(x) \rightarrow função densidade de probabilidade$

Condições: 1.
$$f(x) \ge 0$$
, $\forall x \in S_X$
2. $\int_{S_X} f(x) dx = 1$

A área sob f(x) num intervalo [a, b] expressa a probabilidade de ocorrer um valor da variável X entre os limites a e b.

A função F(x) expressa a probabilidade da variável X assumir um valor menor ou igual a $x \to P(X \le x)$



Bibliografia

BUSSAB, W.O.; MORETTIN, P.A. **Estatística Básica**. São Paulo: Saraiva. 2006. 526p.

FERREIRA, D.F. Estatística Básica. Lavras: Editora UFLA, 2005, 664p.

FREUND, J.E., SIMON, G.A. Estatística Aplicada. Economia, Administração e Contabilidade. 9.ed., Porto Alegre: Bookman, 2000. 404p.

MEYER, P. L. **Probabilidade: aplicações à estatística**. Rio de Janeiro: LTC, 1976.

MLODINOW, L. O andar do bêbado. Como o acaso determina nossas vidas. Rio de Janeiro: Editora Zahar, 2009, 264p.

SILVEIRA JÚNIOR, P., MACHADO, A.A., ZONTA, E.P., SILVA, J.B. da **Curso de Estatística**. v.2, Pelotas: Universidade Federal de Pelotas, 1992. 234p.

Sistema Galileu de Educação Estatística. Disponível em: http://www.galileu.esalq.usp.br/topico.html