

Modelo de classificação simples: uma variável explanatória

Modelo de classificação dupla: duas variáveis explanatórias

Modelos de classificação dupla

Modelos de classificação dupla são aqueles que exprimem a relação entre uma variável resposta e dois fatores de tratamento.

Por que incluir mais um fator no experimento?

- aumentar a amplitude das conclusões
- estudar a influência de um fator sobre o outro (interação)

Os experimentos com dois ou mais fatores de tratamentos são denominados **fatoriais** e usualmente são assim representados:

Fatorial 2 X 2 → experimento com dois fatores, cada um com 2 níveis (mais simples)

Fatorial 2 X 3 → experimento com dois fatores, um com 2 e outro com 3 níveis

Fatorial 2 X 3 X 4 → experimento com três fatores, um com 2, outro com 3 e outro com 4 níveis

Exemplo resolvido

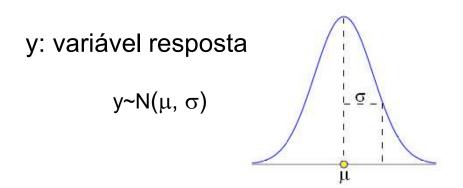
Experimento com dois fatores

Programas de computador modernos requerem capacidade de acesso rápido aos dados. Uma pesquisa foi conduzida para estudar o efeito do tamanho do arquivo de dados (Pequeno; Médio e Grande) e do tamanho do buffer (20 kb e 40 kb) sobre o tempo de acesso aos arquivos, medido através do tempo de leitura (em milissegundos).

Variável resposta (y): tempo de leitura (ms)

Fatores de tratamento: A - tamanho do arquivo e B - Tamanho de buffer

Tratamentos: $3 \times 2 = 6 \rightarrow \{P2, P4, M2, M4, G2, G4\}$

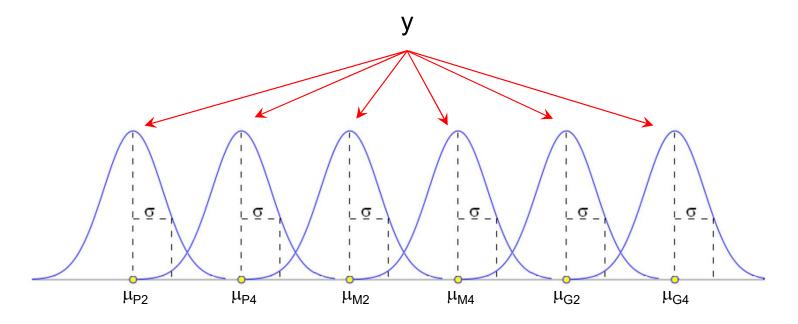

Unidade de pesquisa: computador Total de unidades (n): 24

Número de repetições por tratamento (r): 4

Tamanho do	Tamanho	do buffer		
arquivo	20	40		
Pequeno	2,05; 2,04; 2,21; 2,12	2,32; 2,31; 2,48; 2,42		
Médio	2,24; 2,21; 2,23; 2,09	2,52; 2,62; 2,57; 2,61		
Grande	2,08; 2,34; 2,33; 2,24	2,71; 2,73; 2,90; 2,72		

Buffer: área de memória intermediária que serve para acelerar o acesso a dados que estão sendo transferidos entre dispositivos - memória de disco e memória RAM - que operam com velocidades diferentes.

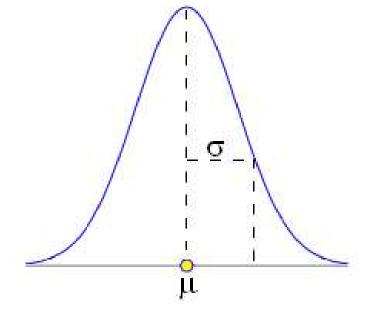
Populações estatísticas



Modelo de médias

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

$$\begin{cases} H_0^T: \mu_{P2} = \mu_{P4} = \mu_{M2} = \mu_{M4} = \mu_{G2} = \mu_{G4} = \mu\\ H_1^T: \mu_{ij} \neq \mu \ \ \text{(pelo menos uma média difere de μ)} \end{cases}$$


Tratamentos distintos geram populações de valores de y distintas?

Populações estatísticas

y: variável resposta

$$Y \sim N(\mu, \sigma)$$

$$\begin{cases} H_0^T: \mu_{P2} = \mu_{P4} = \mu_{M2} = \mu_{M4} = \mu_{G2} = \mu_{G4} = \mu \\ H_1^T: \mu_{ij} \neq \mu \quad \text{(pelo menos uma média difere de μ)} \end{cases}$$

Se a hipótese de nulidade não é rejeitada, os tratamentos distintos não geram populações de valores de y distintas. Temos apenas uma população com média μ .

Modelo de médias

Hipóteses estatísticas

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

$$\begin{cases} H_0^T: \mu_{P2} = \mu_{P4} = \mu_{M2} = \mu_{M4} = \mu_{G2} = \mu_{G4} = \mu \\ H_1^T: \mu_{ij} \neq \mu \text{ (pelo menos uma média difere de μ)} \end{cases}$$

Tabela da análise da variância

Fonte de variação	ν	SQ	S ²	F
Tratamento	ν _T = t - 1	$\sum_{ij} r \big(\overline{y}_{ij} - \overline{y} \big)^{\!2}$	$s_T^2 = \frac{SQ_T}{v_T}$	$f_T = \frac{s_T^2}{s^2}$
Resíduo	ν=(r-1) t	$\sum_{ijk} (y_{ijk} - \overline{y}_{ij})^2$	$s^2 = \frac{SQ_{Res}}{v}$	-
Total	n-1	$\sum_{ijk} (y_{ijk} - \overline{y})^2$		

Desvio Desvio Desvio total tratamento resíduo
$$(y_{ijk} - \overline{y}) = (\overline{y}_{ij} - \overline{y}) + (y_{ijk} - \overline{y}_{ij})$$

$$\begin{split} &\text{SQ}_{\text{Total}} = \sum_{ijk} \bigl(y_{ijk} - \overline{y} \bigr)^{\!2} \\ &\text{SQ}_{\text{Trat}} = \sum_{ij} r \bigl(\overline{y}_{ij} - \overline{y} \bigr)^{\!2} \\ &\text{SQ}_{\text{Res}} = \sum_{iik} \bigl(y_{ijk} - \overline{y}_{ij} \bigr)^{\!2} \end{split}$$

			$(y_{ijk} - \overline{y})$	$=(\overline{y}_{ij}-\overline{y})+($	$(y_{ijk} - \overline{y}_{ij})$	$(y_{ijk} - \overline{y})^2$	$(\overline{y}_{ij} - \overline{y})^2$	$(y_{ijk} - \overline{y}_{ij})^2$
Tratamento	Repetição	у	Total	Tratamento	Resíduo	Total	Tratamento	Resíduo
P2	1	2,05	-0,329	-0,274	-0,055	0,108241	0,075076	0,003025
P2	2	2,04	-0,339	-0,274	-0,065	0,114921	0,075076	0,004225
P2	3	2,21	-0,169	-0,274	0,105	0,028561	0,075076	0,011025
P2	4	2,12	-0,259	-0,274	0,015	0,067081	0,075076	0,000225
M2	1	2,24	-0,139	-0,186	0,047	0,019321	0,034596	0,002209
M2	2	2,21	-0,169	-0,186	0,017	0,028561	0,034596	0,000289
M2	3	2,23	-0,149	-0,186	0,037	0,022201	0,034596	0,001369
M2	4	2,09	-0,289	-0,186	-0,103	0,083521	0,034596	0,010609
G2	1	2,08	-0,299	-0,131	-0,168	0,089401	0,017161	0,028224
G2	2	2,34	-0,039	-0,131	0,092	0,001521	0,017161	0,008464
G2	3	2,33	-0,049	-0,131	0,082	0,002401	0,017161	0,006724
G2	4	2,24	-0,139	-0,131	-0,008	0,019321	0,017161	0,000064
P4	1	2,32	-0,059	0,004	-0,063	0,003481	0,000016	0,003969
P4	2	2,31	-0,069	0,004	-0,073	0,004761	0,000016	0,005329
P4	3	2,48	0,101	0,004	0,097	0,010201	0,000016	0,009409
P4	4	2,42	0,041	0,004	0,037	0,001681	0,000016	0,001369
M4	1	2,52	0,141	0,201	-0,060	0,019881	0,040401	0,003600
M4	2	2,62	0,241	0,201	0,040	0,058081	0,040401	0,001600
M4	3	2,57	0,191	0,201	-0,010	0,036481	0,040401	0,000100
M4	4	2,61	0,231	0,201	0,030	0,053361	0,040401	0,000900
G4	1	2,71	0,331	0,386	-0,055	0,109561	0,148996	0,003025
G4	2	2,73	0,351	0,386	-0,035	0,123201	0,148996	0,001225
G4	3	2,90	0,521	0,386	0,135	0,271441	0,148996	0,018225
G4	4	2,72	0,341	0,386	-0,045	0,116281	0,148996	0,002025
						1,39346	1,26498	0,12723
						SQ _{Total}	SQ _{Trat}	SQ _{Res}

Tabela de média

Tamanho do	Tamanho	Médias	
arquivo	2	4	marginais
Р	2,105	2,383	2,244
M	2,193	2,580	2,386
G	2,248	2,765	2,506
Médias marginais	2,182	2,576	2,379

$$\begin{split} &\text{SQ}_{\text{Total}} = \sum_{ijk} \! \left(\! y_{ijk} \! - \! \overline{y} \right)^{\! 2} \\ &\text{SQ}_{\text{Trat}} = \sum_{ijk} \! \left(\! \overline{y}_{ij} - \overline{y} \right)^{\! 2} = \sum_{ij} \! r \! \left(\! \overline{y}_{ij} - \overline{y} \right)^{\! 2} \\ &\text{SQ}_{\text{Res}} = \sum_{ijk} \! \left(\! y_{ijk} - \overline{y}_{ij} \right)^{\! 2} \end{split}$$

Tabela dos dados

y_{ijk}

Tabela	de	médias	observadas
Tabbia	uc	IIICulas	UDSCI Vadas

Tamanho	Tamanł	o do buffer		
do arquivo	20	40		
Pequeno	2,05; 2,04; 2,21; 2,1	2 2,32; 2,31; 2,48; 2,42		
Médio	2,24; 2,21; 2,23; 2,0	9 2,52; 2,62; 2,57; 2,61		
Grande	2,08; 2,34; 2,33; 2,2	4 2,71; 2,73; 2,90; 2,72		

Tamanho do arquivo	Tamanho 2	Médias marginais	
Р	2,105	2,383	2,244
M	2,193	2,580	2,386
G	2,248	2,765	2,506
Médias marginais	2,182	2,576	2,379

$$SQ_{Total} = \sum_{iik} \left(y_{ijk} - \overline{y}\right)^2 = (2,05 - 2,379)^2 + (2,04 - 2,379)^2 + ... + (2,72 - 2,379)^2 = 1,393$$

$$\begin{split} \text{SQ}_{\text{Trat}} &= \sum_{ij} r \big(\overline{y}_{ij} - \overline{y} \big)^{\!2} = r \sum_{ij} \big(\overline{y}_{ij} - \overline{y} \big)^{\!2} \\ &= 4 \times [(2,\!105 - 2,\!379)^2 + (2,\!383 - 2,\!379)^2 + ... + (2,\!765 - 2,\!379)^2] = 1,\!265 \end{split}$$

$$SQ_{Res} = SQ_{Total} - SQ_{Trat} = 1,393 - 1,265 = 0,128$$
 (por diferença)

Tabela da análise da variância

Fonte de variação	GL	SQ	S ²	F	fα
Tratamento	5	1,265	0,253	35,63	2,77
Resíduo	18	0,128	0,0071	-	-
Total	23	1,393	-	-	-

$$\begin{cases} H_0^T : \mu_{P2} = \mu_{P4} = \mu_{M2} = \mu_{M4} = \mu_{G2} = \mu_{G4} = \mu & \leftarrow \text{Rejeita-se } H_0 \\ H_1^T : \mu_{ij} \neq \mu & \end{cases}$$

Conclusão: Concluímos ao nível de 5% de significância, que existe efeito das combinações de níveis dos fatores tamanho do buffer e tamanho do arquivo sobre o tempo de acesso ao arquivo.

Prosseguimento da análise: decomposição da SQ_{Trat}

A variação de tratamento pode ser decomposta em três partes:

- efeito do fator A
- efeito do fator B
- efeito da interação A.B

Modelos estatísticos

Modelo de médias:

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

onde:

 μ_{ij} é a média esperada da combinação de níveis ij (parâmetro) e_{ijk} é o erro aleatório da repetição k da combinação de níveis ij

Modelo de efeitos:

$$y_{ijk} = \overline{\mu + \tau_i + \tau_j + \tau_{ij}} + e_{ijk},$$

onde:

μ é a média sem efeito ou efeito constante (parâmetro)

τ_i é o efeito do nível i do fator A (parâmetro)

τ_i é o efeito do nível j do fator B (parâmetro)

τ_{ii} é o efeito da interação dos níveis i e j (parâmetro)

e_{ijk} é o erro aleatório da repetição k da combinação de níveis ij

Efeito do nível i do fator A
$$\rightarrow \tau_i = \mu_i - \mu$$
 Estimador $\rightarrow \hat{\tau}_i = \overline{y}_i - \overline{y}$

$$\tau_P = \mu_P - \mu$$

Fator A: tamanho de arquivo $\tau_M = \mu_M - \mu$

$$\tau_G = \mu_G - \mu$$

Efeito do nível j do fator B
$$\rightarrow \tau_j = \mu_j - \mu$$
 Estimador $\rightarrow \hat{\tau}_i = \overline{y}_i - \overline{y}$

Fator B: tamanho de buffer
$$\tau_2 = \mu_2 - \mu$$

$$\tau_4 = \mu_4 - \mu$$

Efeito da interação dos níveis ij
$$\rightarrow$$
 $\tau_{ij} = \mu_{ij} - \mu_i - \mu_j + \mu$ Estimador \rightarrow $\hat{\tau}_{ij} = \overline{y}_{ij} - \overline{y}_i - \overline{y}_j + \overline{y}$ $\tau_{P2} = \mu_{P2} - \mu_P - \mu_2 + \mu$ $\tau_{P4} = \mu_{P4} - \mu_P - \mu_4 + \mu$ $\tau_{M2} = \mu_{M2} - \mu_M - \mu_2 + \mu$ $\tau_{M4} = \mu_{M4} - \mu_M - \mu_4 + \mu$

 $\tau_{G2} = \mu_{G2} - \mu_{G} - \mu_{2} + \mu_{3}$

 $\tau_{G4} = \mu_{G4} - \mu_{G} - \mu_{4} + \mu_{6}$

Hipóteses de interesse

Efeito da interação dos fatores A e B

$$\begin{cases} H_0^{AB}: \tau_{P2} = \tau_{P4} = \tau_{M2} = \tau_{M4} = \tau_{G2} = \tau_{G4} = 0 \\ H_1^{AB}: \tau_{ij} \neq 0 \text{ (pelo menos uma combinação tem efeito diferente de 0)} \end{cases}$$

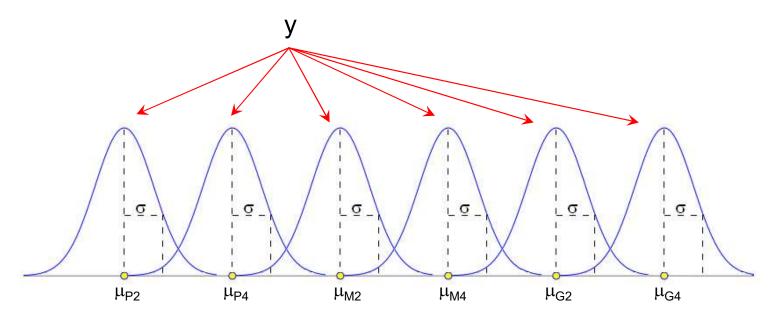
Efeito principal do fator A

$$\begin{cases} H_0^A: \mu_P = \mu_M = \mu_G = \mu \\ H_1^A: \mu_i \neq \mu \end{cases} \qquad \begin{cases} H_0^A: \tau_P = \tau_M = \tau_G = 0 \\ H_1^A: \tau_i \neq 0 \end{cases}$$

Efeito principal do fator B

$$\begin{cases} H_0^B: \mu_2 = \mu_4 = \mu \\ H_1^B: \mu_j \neq \mu \end{cases} \begin{cases} H_0^B: \tau_2 = \tau_4 = 0 \\ H_1^B: \tau_j \neq 0 \end{cases}$$

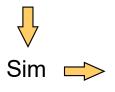
Populações estatísticas


y: variável resposta

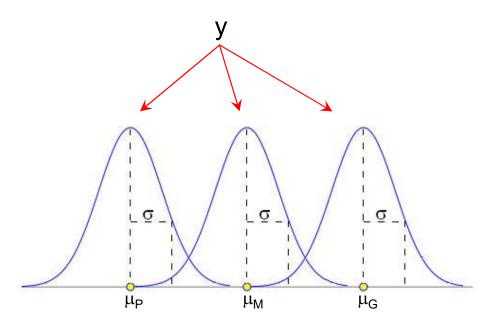
Tratamentos distintos geram populações de valores de y distintas?

Sim A.B: interação significativa?

$$\begin{cases} H_0^{AB} : \tau_{P2} = \tau_{P4} = \tau_{M2} = \tau_{M4} = \tau_{G2} = \tau_{G4} = 0 \\ H_1^{AB} : \tau_{ij} \neq 0 \end{cases}$$



Populações estatísticas


y: variável resposta

Tratamentos distintos geram populações de valores de y distintas?

$$\begin{cases} H_0^A: \mu_P = \mu_M = \mu_G = \mu \\ H_1^A: \mu_i \neq \mu \end{cases}$$

Sim A.B: interação não significativa A: efeito principal significativo

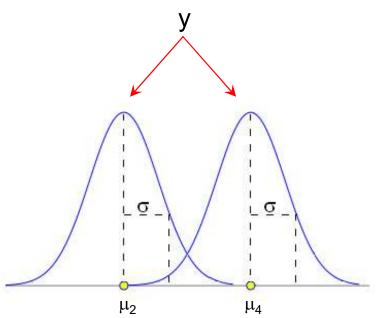
Considera-se o fator A

Estrutura cruzada: populações estatísticas

y: variável resposta

$$\begin{cases} H_0^B : \mu_2 = \mu_4 = \mu \\ H_1^B : \mu_2 \neq \mu_4 \end{cases}$$

Tratamentos distintos geram populações de valores de y distintas?

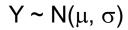


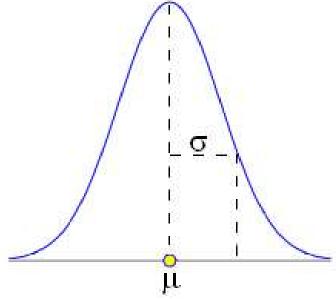
Sim A.B: interação não significativa

B: efeito principal significativo

Considera-se o fator B

Populações estatísticas


y: variável resposta


Tratamentos distintos geram populações de valores de y distintas?

Não

A.B: interação não significativa

A: efeito principal não significativo

B: efeito principal não significativo

Modelo de efeitos

$$y_{ijk} \, = \mu + \tau_i + \tau_j + \tau_{ij} + e_{ijk}$$

A variação de tratamento é decomposta em três partes:

- efeito principal do fator A
- efeito principal do fator B
- efeito da interação A.B

Tabela da análise da variância

Fonte de variaçã	ĭο ν	SQ	S ²	F	-
Tratamento	ν _T = t - 1	$\sum_{ij} r (\overline{y}_{ij} - \overline{y})^2$	$s_T^2 = \frac{SQ_T}{v_T}$	$f_T = \frac{s_T^2}{s^2}$	Hipóteses estatísticas
Fator A	ν _A =n _a -1	$\sum_i n_b r (\overline{y}_i - \overline{y})^2$	$s_A^2 = \frac{SQ_A}{v_A}$	$f_A = \frac{s_A^2}{s^2}$	$\begin{cases} H_0^A : \mu_P = \mu_M = \mu_G = \mu \\ H_1^A : \mu_i \neq \mu \end{cases}$
Fator B	$v_B = n_b - 1$	$\sum_{j} n_{a} r (\overline{y}_{j} - \overline{y})^{2}$	$s_B^2 = \frac{SQ_B}{\nu_B}$	$f_B = \frac{s_B^2}{s^2}$	$\begin{cases} H_0^B: \mu_2 = \mu_4 = \mu \\ H_1^B: \mu_j \neq \mu \end{cases}$
A.B	$v_{AB} = v_a \times v_b$	$\sum_{ij} r (\overline{y}_{ij} - \overline{y}_i - \overline{y}_j + \overline{y})^2$	$s_{AB}^2 = \frac{SQ_{AB}}{v_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s^2}$	$\begin{cases} H_0^{AB} : \tau_{P2} = \tau_{P4} = \tau_{M2} = \tau_{M4} = \tau_{G2} = \tau_{G4} = 0 \\ H_1^{AB} : \tau_{ij} \neq 0 \end{cases}$
Resíduo	ν=(r-1) t	$\sum_{ijk} (y_{ijk} - \overline{y}_{ij})^2$	$s^2 = \frac{SQ_{Res}}{v}$	-	
Total	n-1	$\sum_{ijk} (y_{ijk} - \overline{y})^2$,-	í-	-

Tabela de médias

Tamanho do	Tamanho	do buffer	Médias		
arquivo	2	4	marginais		
Р	2,105	2,383	2,244	_	$n_a = 3$
М	2,193	2,580	2,386	— y _i	$n_a = 3$ $n_b = 2$
G	2,248	2,765	2,506		r = 4
Médias marginais	2,182	2,576	2,379		r = 4
		1	Î	_	
	į	y j	$\overline{\mathbf{y}}_{j}$		

Obtenção das somas de quadrados

 $SQ_{AB} = SQ_T - SQ_A - SQ_B$ (por diferença)

$$\begin{split} SQ_{A} &= \sum_{i} n_{b} r \left(\overline{y}_{i} - \overline{y}\right)^{2} \\ &= 8 \times (2,244 - 2,379)^{2} + 8 \times (2,244 - 2,379)^{2} + 8 \times (2,244 - 2,379)^{2} \\ SQ_{B} &= \sum_{j} n_{a} r \left(\overline{y}_{j} - \overline{y}\right)^{2} \\ &= 12 \times (2,182 - 2,379)^{2} + 12 \times (2,576 - 2,379)^{2} \\ &= 0,932 \end{split}$$

Tabela da análise da variância

Fonte de variação	GL	SQ	S ²	F	fα
Tratamento	5	1,265	0,2532	35,63	
Arquivo (A)	2	0,276	0,1382	19,46	
Buffer (B)	1	0,932	0,932	131,27	
Arquivo x Buffer (AB)	2	0,057	0,0285	4,01	
Resíduo	18	0,123	0,0071	-	
Total	23	1,393	-	-	-

$$\begin{split} SQ_{A} &= \sum_{i} n_{b} r \left(\overline{y}_{i} - \overline{y} \right)^{2} = 0.276 \\ SQ_{B} &= \sum_{j} n_{a} r \left(y_{j} - \overline{y} \right)^{2} = 0.932 \\ SQ_{AB} &= SQ_{T} - SQ_{A} - SQ_{B} = 1.265 - 0.276 - 0.932 = 0.057 \quad \text{(por diferença)} \end{split}$$

Tabela da análise da variância

Fonte de variação	GL	SQ	S ²	F	fα
Tratamento	5	1,265	0,2532	35,63	
Arquivo (A)	2	0,276	0,1382	19,46	
Buffer (B)	1	0,932	0,932	131,27	
Arquivo x Buffer (AB)	2	0,057	0,0285	4,01	3,55
Resíduo	18	0,123	0,0071	-	-
Total	23	1,393	-	-	-

Se a interação é significativa devemos desconsiderar os efeitos principais dos fatores A e B.

Efeito significativo da interação dos fatores A e B

$$\begin{cases} H_0^{AB}: \mu_{P2} = \mu_{P4} = \tau_{M2} = \tau_{M4} = \tau_{G2} = \tau_{G4} = 0 & \leftarrow \text{Rejeita-se } H_0 \\ H_1^{AB}: \tau_{ij} \neq 0 & \end{cases}$$

Conclusão: Concluímos ao nível de 5% de significância, que existe interação entre tamanho do arquivo e tamanho do buffer. Isso significa que a mudança nos níveis de tamanho do arquivo irá modificar a forma como os níveis de tamanho do buffer afetam a variável resposta (e vice-versa).

Se a interação não é significativa, devemos:

- Testar o efeito principal do fator A

$$\begin{cases} H_0^A: \mu_1=\mu_2=...=\mu_{n_a}=\mu\\ H_1^A: \mu_i\neq\mu \end{cases}$$

- Testar o efeito principal do fator B

$$\begin{cases} H_0^B: \mu_1 = \mu_2 = ... = \mu_{n_b} = \mu \\ H_1^B: \mu_j \neq \mu \end{cases}$$

Se a interação é significativa, devemos desconsiderar os efeitos principais e:

- Testar o efeito simples de A dentro de cada nível de B

$$\begin{cases} H_0^{A|B_j}: \mu_{1|B_j} = \mu_{2|B_j} = ... = \mu_{n_a|B_j} = 0 \\ H_1^{A|B_j}: \mu_{i|B_j} \neq 0 \end{cases}$$

- Testar o efeito simples de B dentro de cada nível de A

$$\begin{cases} H_0^{B|A_i}: \mu_{B|A_i} = \mu_{2|A_i} = \ldots = \mu_{n_b|A_i} = 0 \\ H_1^{B|A_i}: \mu_{j|A_i} \neq 0 \end{cases}$$

No exemplo:

- Testar o efeito simples de Tamanho de arquivo dentro de cada nível de Tamanho de buffer

$$\begin{cases} H_0^{\text{A}|2} : \mu_{\text{P}|2} = \mu_{\text{M}|2} = \mu_{\text{G}|2} = \mu_2 \\ H_1^{\text{A}|2} : \mu_{\text{i}|2} \neq \mu_2 \\ \end{cases}$$

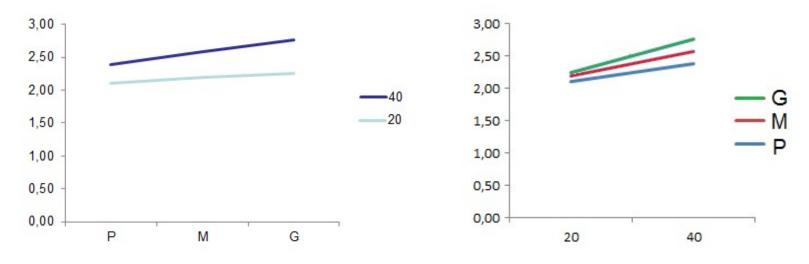
$$\begin{cases} H_0^{\text{A}|4} : \mu_{\text{P}|4} = \mu_{\text{M}|4} = \mu_{\text{G}|4} = \mu_4 \\ H_1^{\text{A}|4} : \mu_{\text{i}|4} \neq \mu_4 \end{cases}$$

- Testar o efeito simples de Tamanho de buffer dentro de cada nível de Tamanho de arquivo

$$\begin{cases} H_0^{B|P} : \mu_{2|P} = \mu_{4|P} = \mu_P \\ H_1^{B|P} : \mu_{j|P} \neq \mu_P \end{cases}$$

$$\begin{cases} H_0^{B|M} : \mu_{2|M} = \mu_{4|M} = \mu_M \\ H_1^{B|M} : \mu_{j|M} \neq \mu_M \end{cases}$$

$$\begin{cases} H_0^{B|G} : \mu_{2|G} = \mu_{4|G} = \mu_G \\ H_1^{B|G} : \mu_{j|G} \neq \mu_G \end{cases}$$


Tabela de médias

Tamanho do arquivo	Tamanho do buffer		Médias
	2	4	marginais
Р	2,105	2,383	2,244
M	2,193	2,580	2,386
G	2,248	2,765	2,506
Médias marginais	2,182	2,576	2,379

Gráficos da interação

Gráficos com linhas paralelas indicam fortemente a ausência de interação entre os fatores.

Gráficos com linhas que se cruzam indicam fortemente a presença de interação entre os fatores.

Gráficos de médias: podem indicar a presença ou não de interação