Unidade IV - Inferência estatística

- 4.1. Introdução e histórico
- 4.2. Conceitos fundamentais
- 4.3. Distribuições amostrais e Teorema central do limite
- 4.4. Estimação de parâmetros
- 4.5. Testes de hipóteses
- 4.6. Quebras das pressuposições no processo de inferência
- 4.7. Testes de qui-quadrado

Testes para variância (σ^2) e proporção (π)

Algoritmo para construção de um teste de hipóteses

- 1. Definir as hipóteses estatísticas.
- 2. Fixar a taxa de erro aceitável.
- Escolher a estatística para testar a hipótese e verificar as pressuposições para o seu uso.
- Usar as observações da amostra para calcular o valor da estatística do teste.
- 5. Decidir sobre a hipótese testada e concluir.

Profa. Clause Piana

Testes para a variância populacional (σ^2)

- $\quad \Rightarrow \quad \text{Comparação da variância de uma população } (\sigma^2) \\ \text{com um valor padrão } (\sigma_0^2)$
- \Rightarrow Comparação de variâncias de duas populações $(\sigma_1^2$ e $\sigma_2^2)$ \rightarrow teste de homogeneidade de variâncias

Profa. Clause Piana

Teste para a variância de uma população

Aplicação: no controle da qualidade, pois o monitoramento da variabilidade é essencial para a garantia de qualidade.

Pressuposição

• normalidade da população de onde é extraída a amostra

Hipóteses estatísticas

Uma hipótese testada com freqüência é a de que a variância da população tem um valor especificado, ou seja, é igual a um valor padrão σ_0^2 . Nesse caso, as hipóteses a serem testadas são:

$$\begin{array}{c} H_0:\sigma^2=\sigma_0^2\\ H_A:\sigma^2\neq\sigma_0^2 &\longleftarrow \fbox{Bilateral}\\ \sigma^2>\sigma_0^2 &\longleftarrow \fbox{Unilateral direita} \\ \\ \sigma^2<\sigma_0^2 &\longleftarrow \fbox{Unilateral esquerda} \end{array}$$

Profa. Clause Piana

3

Estatística do teste

A estatística do teste é **Q** que tem distribuição quiquadrado com parâmetro v=n-1 e é assim definida:

$$Q = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(\nu)$$

$$Q = Z_1^2 + Z_2^2 + ... + Z_{\nu}^2$$

 $\frac{(n-1)S^2}{\sigma^2} = \frac{\sum (X_i - \overline{X})^2}{\sigma^2} = \frac{\sum (X_i - \overline{X}) + \mu - \mu^2}{\sigma^2} = \frac{\sum (X_i - \mu)^2}{\sigma^2} - \frac{n(\overline{X} - \mu)^2}{\sigma^2} = \sum \left(\frac{X_i - \mu}{\sigma}\right)^2 - \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2 = \frac{\sum (X_i - \mu)^2}{\sigma^2} = \frac{\sum (X_i - \mu)^2$

Piana 6

Estatística do teste

A estatística do teste é Q que tem distribuição quiquadrado com parâmetro v=n-1 e é assim definida:

$$Q = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(v)$$
Valor que deve ser calculado na amostra

onde:

 S^2 é o estimador da variância populacional σ^2 ; n é o tamanho da amostra;

v=n-1 é o número de graus de liberdade associado à variância

Profa. Clause Piana

Distribuição qui-quadrado (χ²)

A variável Q é definida como a soma dos quadrados de n-1 variáveis Z independentes entre si:

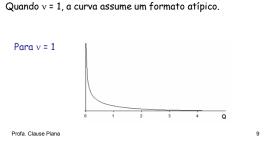
$$Q = Z_1^2 + Z_2^2 + ... + Z_v^2 \sim \chi^2 (v)$$

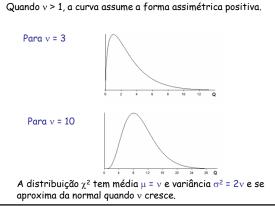
Sendo definida como uma soma de quadrados, os valores da variável Q nunca serão negativos.

A função densidade de probabilidade da distribuição χ^2 é dada por

$$f(q) = -\frac{1}{2^{\frac{\nu}{2}}\Gamma(\underbrace{v}_{2})} e^{-\frac{q}{2}} q^{\frac{\nu}{2}-1} \text{, sendo } 0 \leq q < +\infty$$

Como o parâmetro da distribuição χ^2 é o número de graus de liberdade (v), a curva muda o seu formato à medida que varia o valor de v.



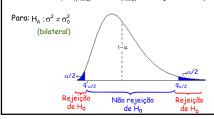


Critério de decisão - Teste bilateral

A região de rejeição de H_0 é definida em função do tipo de hipótese alternativa.

Fixado um nível de significância α , a hipótese nula é rejeitada se o valor da estatística do teste ultrapassar o valor crítico (superior ou inferior): $-\sec q > q_{(v,\alpha/2)} \text{ ou } q < q'_{(v,\alpha/2)}, \text{ rejeitamos } H_0;$

- se q < $q_{(v;\alpha/2)}$ e q > $q'_{(v;\alpha/2)}$, não rejeitamos H_0 .



Não rejeição

ção Não rejeição

(V) 1 2	0.005	F	squerda (
- 1					Direita (q)					
		0,01	0,025	0,05	0,1	0,1	0,05	0,025	0,01	0,00
2	0,00	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63	7,88
	0,01	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	10,6
3	0,07	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34	12,8
4	0,21	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	14,8
5	0,41	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	16,7
6	0,68	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	18,5
7	0,99	1,24	1,69	2,17	2,83	12,02	14,07	16,01	18,48	20,2
8	1,34	1,65	2,18	2,73	3,49	13,36	15,51	17,53	20,09	21,9
9	1,73	2,09	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,5
10	2,16	2,56	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,1
11	2,60	3,05	3,82	4,57	5,58	17,28	19,68	21,92	24,72	26,7
12	3,07	3,57	4,40	5,23	6,30	18,55	21,03	23,34	26,22	28,3
13	3,57	4,11	5,01	5,89	7,04	19,81	22,36	24,74	27,69	29,8
14	4,07	4,66	5,63	6,57	7,79	21,06	23,68	26,12	29,14	31,3
15	4,60	5,23	6,26	7,26	8,55	22,31	25,00	27,49	30,58	32,8
16	5,14	5,81	6,91	7,96	9,31	23,54	26,30	28,85	32,00	34,2
17	5,70	6,41	7,56	8,67	10,09	24,77	27,59	30,19	33,41	35,7
18	6,26	7,01	8,23	9,39	10,86	25,99	28,87	31,53	34,81	37,1
19	6,84	7,63	8,91	10,12	11,65	27,20	30,14	32,85	36,19	38,5
20	7,43	8,26	9,59	10,85	12,44	28,41	31,41	34,17	37,57	40,0
21	8,03	8,90	10,28	11,59	13,24	29,62	32,67	35,48	38,93	41,4
22	8,64	9,54	10,98	12,34	14,04	30,81	33,92	36,78	40,29	42,8
23	9,26	10,20	11,69	13,09	14,85	32,01	35,17	38,08	41,64	44,1
24	9,89	10,86	12,40	13,85	15,66	33,20	36,42	39,36	42,98	45,5
25	10,52	11,52	13,12	14,61	16,47	34,38	37,65	40,65	44,31	46,9
26	11,16	12,20	13,84	15,38	17,29	35,56	38,89	41,92	45,64	48,2
27	11,81	12,88	14,57	16,15	18,11	36,74	40,11	43,19	46,96	49,6
28	12,46	13,56	15,31	16,93	18,94	37,92	41,34	44,46	48,28	50,9
29	13,12	14,26	16,05	17,71	19,77	39,09	42,56	45,72	49,59	52,3
30	13,79	14,95	16,79	18,49	20,60	40,26	43,77	46,98	50,89	53,6
40	20.71	22.16	24.43	26.51	29.05	51.81	55.76	59.34	63.69	66.7
50	27.99	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15	79.4
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38	91.9
70	43.28	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.43	104.2
80	51.17	53.54	57.15	60.39	64.28	96.58	101.88	106.63	112.33	116.3
90	59.20	61.75	65.65	69.13	73.29	107.57	113.15	118.14	124.12	128.3
100	67,33	70.06	74.22	77.93	82.36	118.50	124.34	129.56	135.81	140.1

Esta tabela fornece os limites unilaterais da distribuição. Isto significa que os valores q' delimitam a área α à esquerda e os valores q delimitam a área α à direita.

Quando o teste for bilateral, temos que dividir α por 2. Só assim, vamos obter o valor q crítico correto, ou seja , aquele que delimita a área $\alpha/2$.

Exemplo resolvido:

Uma máquina de empacotar café está regulada para encher os pacotes, com média de 500 g e desvio padrão de 10 g, sendo o peso dos pacotes normalmente distribuído.

colstination. Colhida uma amostra de n = 16, observou-se uma variância de 169 g². É possível afirmar com este resultado que a máquina está desregulada quanto à variabilidade, supondo uma significância de 5%?

Resolução:

Hipóteses estatísticas:
$$\begin{cases} H_0: \sigma^2 = 100 \\ H_A: \sigma^2 \neq 100 \end{cases} \qquad \sigma_0^2 = 100$$

Sendo s² = 169 e n = 16, temos:

$$q = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(16-1)\times 169}{100} = 25,35$$

Como α = 0,05 e v=15, os valores críticos são $q_{\alpha/2}$ =27,49 e $q'_{\alpha/2}$ =6,26.

O valor calculado está contido neste intervalo, portanto, não rejeitamos H₀. Concluímos, ao nível de 5% de significância, a variância populacional não difere de 100 g². Assim, não há evidência de que e a máquina esteja desregulada.

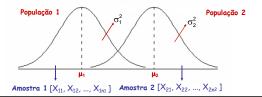
Comparação de variâncias de duas populações

• Teste de homogeneidade de variância (teste F)

Aplicação: Uma das aplicações deste teste é verificar se a pressuposição de homogeneidade de variância, requerida no teste t, é verdadeira.

Pressuposicões

- A variável em estudo tem distribuição normal
- As amostras retiradas das populações são independentes



Hipóteses estatísticas

Nesse caso, as hipóteses estatísticas são:

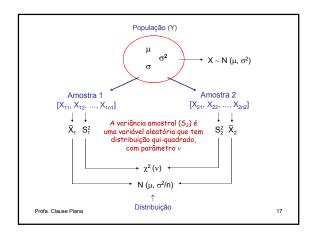
$$\begin{aligned} &H_0: \sigma_1^2 = \sigma_2^2 \\ &H_A: \sigma_1^2 \neq \sigma_2^2 &\longleftarrow \underline{\text{Bilateral}} \\ &\sigma_1^2 > \sigma_2^2 &\longleftarrow \underline{\text{Unilateral direita}} \\ &\sigma_1^2 < \sigma_2^2 &\longleftarrow \underline{\text{Unilateral esquerda}} \end{aligned}$$

Sob H_0 verdadeira, a estatística F tem distribuição F com parâmetros v_1 e v_2 , ou seja,

 $F = \frac{S_1^2}{S_2^2} \sim 1$

 $F = \frac{S_1^2}{S_2^2} \sim F(v_1, v_2)$

16



Distribuição qui-quadrado (χ²)

A variável Q é definida como a soma dos quadrados de n-1 variáveis Z independentes entre si:

$$Q = Z_1^2 + Z_2^2 + ... + Z_v^2 \sim \chi^2 (v)$$

Sendo definida como uma soma de quadrados, os valores da variável Q nunca serão negativos.

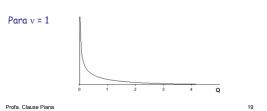
A função densidade de probabilidade da distribuição χ^2 é dada por

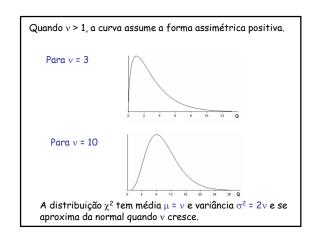
$$f(q) = -\frac{1}{2^{\frac{\nu}{2}}\Gamma(\underbrace{v}_2)} \underbrace{-\frac{q^2}{2}q^{\frac{\nu}{2}-1}}_{\text{parâmetro}}, \text{ sendo } 0 \leq q < +\infty$$

Profa. Clause Piana

18

Como o parâmetro da distribuição χ^2 é o número de graus de liberdade (v), a curva muda o seu formato à medida que varia o valor de v. Quando v=1, a curva assume um formato atípico.





Distribuição F de Snedecor

A variável F pode ser definida como a razão entre duas variáveis independentes com distribuição χ^2

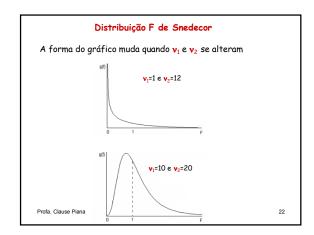
$$F = \frac{S_1^2}{S_2^2} F(v_1, v_2)$$
 distribuição χ^2

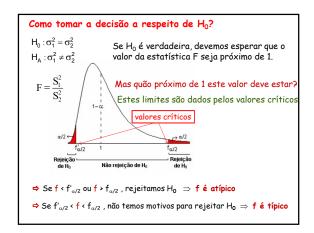
Sendo definida como a razão entre duas variáveis positivas, os valores da variável F nunca serão negativos.

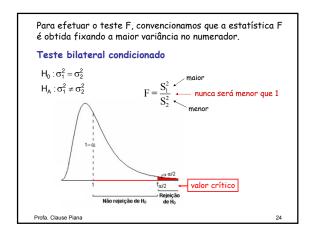
A função densidade de probabilidade da distribuição F $\acute{\mathrm{e}}$ dada por

$$g(f) = \frac{1}{B\left(\frac{v_1}{2}, \frac{v_2}{2}\right)} \left(\frac{v_1}{v_2}\right)^{\frac{v_1}{2}} \underbrace{\frac{\int_{\frac{v_1}{2}-1}{f^2-1}}{f^2-1}}_{Profa. Clause Piana}, sendo 0 \le f < +\infty$$

$$\left(1 + \underbrace{\frac{v_1}{v_2}}_{2}\right)^{\frac{v_1+v_2}{2}} \underbrace{parâmetros}_{21}$$







Critério de decisão

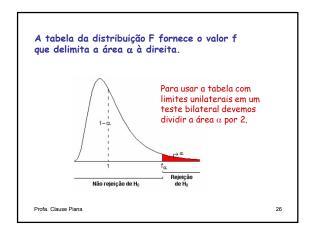
A regra de decisão a respeito de $H_{\rm 0}$ pode ser estabelecida com base num valor crítico.

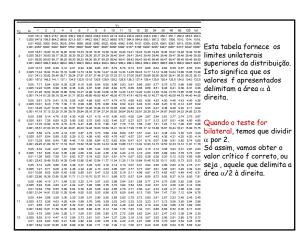
Valor crítico \rightarrow $f_{\alpha 2(v_1,v_2)}$: valor da estatística F que delimita a área $\alpha/2$, para os graus de liberdade v_1 e v_2 (Tabela: limites unilaterais)

O teste condicionado possibilita a utilização da tabela unilateral, mais disponíveis para consulta

Profa. Clause Piana

25





Outro critério de decisão Valor p: probabilidade de que seja obtido um valor de F maior que o valor observado na amostra, dado que H₀ é verdadeira Como tomar a decisão a respeito de H₀? ⇒ Se o valor p for maior ou igual a a: não rejeitamos a hipótese nula, pois f é típico ou está em uma região de alta probabilidade ⇒ Se o valor p for menor que a: rejeitamos a hipótese nula, pois f é atípico ou está em uma região de baixa probabilidade

Exemplo:

Durante o processo de fritura, um alimento absorve gordura. Um estudo foi conduzido com a finalidade de verificar se a quantidade absorvida depende do tipo de gordura. Para tanto foram utilizados dois tipos de gordura: vegetal e animal. Os dados obtidos foram:

Gordura animal	28	41	47	32	35	27
Gordura vegetal	25	43	28	21	13	

a) Faça o teste de homogeneidade de variâncias. b) Verifique se os dados confirmam a hipótese de que a absorção depende do tipo de gordura. Utilize α =0,05.

Profa. Clause Piana

29

Resolução: Variável em estudo: X = quantidade de gordura absorvida
1. Pressuposições: 1. A variável em estudo tem distribuição normal.
2. As amostras retiradas das populações são independentes.
2. Hipóteses estatísticas: $\begin{cases} H_0 : \sigma_1^2 = \sigma_2^2 \\ H_A : \sigma_1^2 \neq \sigma_2^2 \end{cases}$
3. Taxa de erro tipo I: α =0.05
4. Estatística do teste: $f = \frac{s_1^2}{s_2^2} = \frac{122.0}{60.4} = 2.02$
5. Decisão e conclusão:

 $v_1 = 4 \text{ e } v_2 = 5$ $\alpha/2 = 0.025$ $\int_{\alpha/2} f_{\alpha/2} = 7.39$ $f = 2.02 < f_{\alpha/2} = 7.39 \rightarrow \text{N\u00e30} \text{ or ejeitamos } H_0$

Concluímos, ao nível de 5% de significância, que as variâncias populacionais não diferem entre si.

Estatística do teste

 Comparação da variância de uma população (σ²) com um valor padrão (σ²)

$$Q = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(\nu)$$

 \Rightarrow Comparação de variâncias de duas populações $(\sigma_1^2$ e $\sigma_2^2)$ \rightarrow teste de homogeneidade de variâncias

$$F = \frac{S_1^2}{S_2^2} \sim F(v_1, v_2)$$

Exercícios propostos:

 Os valores abaixo se referem aos pesos ao nascer (em kg) de bovinos da raça Ibagé, em duas épocas distintas:

Agosto: 18 25 16 30 35 23 21 33 32 22 Setembro: 27 30 20 30 33 34 17 33 20 23 39 23 28

Efetue o teste de homogeneidade de variâncias, ao nível α = 0,05.

2. Um experimento foi conduzido para comparar duas cultivares de soja (A e B) quanto ao rendimento médio por hectare. Os resultados obtidos foram os seguintes:

Cultivar A:
$$n_1 = 8$$
 $\bar{x}_1 = 3.8 \text{ t/ha}$ $s_1^2 = 0.04 \text{ (t/ha)}^2$
Cultivar B: $n_2 = 10$ $\bar{x}_2 = 4.6 \text{ t/ha}$ $s_2^2 = 0.36 \text{ (t/ha)}^2$

Verifique, utilizando α = 0,05, se a pressuposição de homogeneidade de variâncias foi atendida.

Profa. Clause Piana

20

Testes para a proporção populacional (π)

- \Rightarrow Comparação da proporção de uma população (π) com um valor padrão (π_0)
- \Rightarrow Comparação de proporções de duas populações (π_1 e π_2)

Teste para a comparação da proporção de uma população (π) com um valor padrão (π_0)

Aplicação: verificar se uma proporção π de elementos da população que possuem uma determinada característica é igual a um determinado valor padrão (π_0).

Pressuposição:

• a amostra deve ser grande

Hipóteses estatísticas

Nesse caso, as hipóteses a serem testadas são:

$$\begin{array}{ccc} H_0: \pi = \pi_0 \\ \\ H_A: \pi \neq \pi_0 & \longleftarrow & \underline{\text{Bilateral}} \\ \\ \pi > \pi_0 & \longleftarrow & \underline{\text{Unilateral direita}} \\ \\ \pi < \pi_0 & \longleftarrow & \underline{\text{Unilateral esquerda}} \end{array}$$

Profa. Clause Piana

34

Parâmetro $\rightarrow \theta = \pi$ (proporção populacional)

Estimador $\rightarrow \hat{\theta} = P$ (proporção amostral)

População (X) π $X_i \longrightarrow P$ $Bernoulli \qquad P \sim Bin (n, \pi)$ $X \sim Ber (\pi)$ $X = x \qquad 0 \qquad 1 \qquad \Sigma$ $P(X = x) \qquad 1 - \pi \qquad 1$ $E(X) = \mu = \pi \qquad V(X) = \sigma^2 = \pi (1 - \pi)$

Parâmetro $\rightarrow \theta$ = π (proporção populacional)

Estimador $\rightarrow \hat{\theta} = P$ (proporção amostral)

$$P \sim Bin(n, \pi)$$

De acordo com o <mark>Teorema Central do Limite</mark> (TCL), quando a amostra é grande, a distribuição binomial se aproxima da normal; logo, a distribuição de P se aproxima da normal:

$$P \sim N(\mu_P, \ \sigma_P^2) \qquad \text{onde:} \ \ \mu_P = \pi$$

$$\sigma_P^2 = \frac{\pi(1-\pi)}{n}$$

Assim, utilizamos a variável Z para testar H_0 :

Padronizando a variável $\frac{P}{\sigma_P}$ \rightarrow $Z = \frac{P - \mu_P}{\sigma_P}$ \rightarrow $Z = \frac{P - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$

Demonstração:

$$X \sim Bin (n, \pi)$$

$$\begin{cases} E(X) = n\pi \\ V(X) = n\pi(1 - \pi) \end{cases}$$

$$\mu_P = E(P) = E\!\!\left(\frac{X}{n}\right) \!=\! \frac{1}{n} E\!\left(X\right) \!=\! \frac{1}{n} n\pi = \pi$$

$$\sigma_P^2 = V(P) = V\!\!\left(\frac{X}{n}\right) \!=\! \left(\frac{1}{n}\right)^2 \!V\!\left(X\right) \!=\! \frac{1}{n^2} n \pi (1-\pi) = \frac{\pi (1-\pi)}{n}$$

Estatística do teste

Pressuposição: A amostra é grande quando np > 5 e n(1-p) > 5.

$$H_0 : \pi = \pi_0$$

Sob Ho verdadeira, temos

$$Z = \frac{P - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}} \quad \text{Valor que deve ser calculado na amostra}$$

A decisão sobre H₀ é baseada nos valores críticos, encontrados na tabela da distribuição normal padrão:

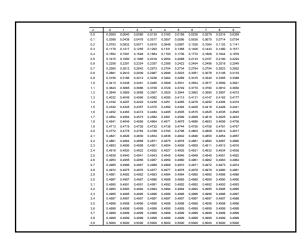
 $Z_{\alpha/2} \rightarrow para o teste bilateral$ $Z_{\alpha} \rightarrow para \ o \ teste \ unilateral$ Profa. Clause Piana

38

Fixando o nível de significância α , a hipótese nula será rejeitada se:

 $|z| > z_{\alpha/2}$, no teste bilateral; $|z| > z_{\alpha}$, no teste unilateral.

Profa. Clause Piana



Exemplo resolvido:

As condições de mortalidade de uma região são tais que a proporção de nascidos que sobrevivem até 70 anos é de 0,60. Teste esta hipótese ao nível de 5% de significância, considerando que em 1000 nascimentos amostrados aleatoriamente, verificou-se 530 sobreviventes até os 70 anos.

Resolução:

Amostra grande
$$\begin{cases} & np > 5 \text{ e n(1-p)} > 5 \\ & 530 > 5 \text{ e 470} > 5 \end{cases}$$

39

$$\label{eq:hipóteses estatísticas:} \begin{cases} H_0: \pi = 0 \\ H_A: \pi \neq 0 \\ \end{cases}$$

Sendo p = 0,53 e π_0 = 0,6, temos $^{+}$

$$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}} = \frac{0.53 - 0.60}{\sqrt{\frac{0.60(1 - 0.60)}{1000}}} = -4.52$$

Como α = 0,05, então, $z_{\alpha/2}$ = 1,96.

Sendo o |z| calculado maior que o valor crítico, rejeitamos a hipótese de nulidade. Concluímos, ao nível de 5% de significância, que a taxa de nascidos que sobrevivem até os 70 anos é menor do que 60%.

Teste para a comparação de duas proporções (π_1 e π_2)

A aproximação da distribuição normal também pode ser usada para testar hipóteses sobre diferenças entre proporções de duas populações.

Hipóteses estatísticas

Nesse caso, as hipóteses a serem testadas são:

$$\begin{aligned} H_0: & \pi_1 = \pi_2 \\ H_A: & \pi_1 \neq \pi_2 \end{aligned} & \leftarrow \underbrace{ \begin{array}{c} \text{Bilateral} \\ \\ \pi_1 > \pi_2 \end{array}} & \leftarrow \underbrace{ \begin{array}{c} \text{Unilateral direita} \\ \\ \end{array}} \\ & \pi_1 < \pi_2 \end{aligned} & \leftarrow \underbrace{ \begin{array}{c} \text{Unilateral esquerda} \end{array}}$$

Profa. Clause Piana

42

Parâmetro $\rightarrow \theta = \pi_1 - \pi_2$ (diferença entre as proporções populacionais Estimador $\rightarrow \hat{\theta} = P_1 - P_2$ (diferença entre as proporções amostrais)

A distribuição do estimador se aproxima da normal:

onde:
$$\mu_{P_1-P_2}$$
 =

$$\sigma_{P_1 - P_2}^2 = \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}$$

Assim, utilizamos a variável \mathbb{Z} para testar H_0 :

$$Padronizando \ P_1 - P_2 \rightarrow \quad Z = \frac{\left(P_1 - P_2\right) - \mu_{P_1 - P_2}}{\sqrt{\sigma_{P_1 - P_2}^2}}$$

$$Z = \frac{\left(P_1 - P_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{\frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}}}$$

Estatística do teste

Sob $H_0: \pi_1 = \pi_2$ verdadeira, temos

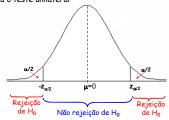
$$Z = \frac{P_1 - P_2}{\sqrt{\frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}}}$$

Como os valores de π_1 e π_2 não são conhecidos, devemos utilizar seus estimadores P_1 e P_2 . Assim, o valor de Z é:

$$Z = \frac{P_1 - P_2}{\sqrt{\frac{P_1(1-P_1)}{n_1} + \frac{P_2(1-P_2)}{n_2}}} \begin{tabular}{l} Valor que deve ser calculado na amostra \\ \hline \\ amostra \\ \hline \end{tabular}$$

A decisão sobre Ho é baseada nos valores críticos, encontrados na tabela da distribuição normal padrão:

 $z_{\alpha/2} \rightarrow para o teste bilateral$ $z_{\alpha} \rightarrow para o teste unilateral$



Fixando o nível de significância α , a hipótese nula será rejeitada se:

 $|z| > z_{\alpha/2}$, no teste bilateral; $|z| > z_{\alpha}$, no teste unilateral.

Exemplo resolvido:

Em uma pesquisa de opinião, 32 entre 80 homens declararam apreciar certa revista, acontecendo o mesmo com 26 entre 50 mulheres. Ao nível de 5% de significância os homens e as mulheres apreciam igualmente a revista?

Resolução: $\begin{cases} H_0: \pi_1 = \pi_2 \\ H_A: \pi_1 \neq \pi_2 \end{cases}$ Amostra grande -

np₁>5 e n(1-p₁)>5

32 > 5 e 48 > 5 np₂>5 e n(1-p₂)>5 26 > 5 e 24 > 5

Sendo p_1 = 32/80 = 0,40 e p_2 = 26/50 = 0,52, temos:

$$z = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} = \frac{0.40 - 0.52}{\sqrt{\frac{0.40 \times 0.60}{80} + \frac{0.52 \times 0.48}{50}}} = -1.3$$

Como α = 0,05, então, $z_{\alpha/2}$ = 1,96.

Sendo o |z| calculado menor que o valor crítico, não rejeitamos a hipótese de igualdade entre as preferências de homens e mulheres. Concluímos, ao nível de 5% de significância, que não há diferença significativa entre as preferências de homens e mulheres quanto à revista.

Estatística do teste

 \Rightarrow Comparação de uma proporção (π) com um padrão (π_0)

$$Z = \frac{P - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}} \sim N (0, 1)$$

 \Rightarrow Comparação de proporções de duas populações (π_1 e π_2)

$$Z = \frac{P_1 - P_2}{\sqrt{\frac{P_1(1 - P_1)}{n_1} + \frac{P_2(1 - P_2)}{n_2}}} \sim N (0, 1)$$

Bibliografia

BUSSAB, W.O.; MORETTIN, P.A. Estatística Básica. São Paulo: Saraiva. 2006. 526p.

FERREIRA, D.F. Estatística Básica. Lavras: Editora UFLA, 2005,

MLODINOW, L. O andar do bêbado. Como o acaso determina nossas vidas. Rio de Janeiro: Editora Zahar, 2009, 264p.

SILVEIRA JÚNIOR, P., MACHADO, A.A., ZONTA, E.P., SILVA, J.B. da Curso de Estatística v.1, Pelotas: Universidade Federal de Pelotas, 1989. 135p.

Sistema Galileu de Educação Estatística. Disponível em: http://www.galileu.esalq.usp.br/topico.html