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1

1 Overview and Descriptive
Statistics

“I am not much given to regret, so I puzzled over this one a while. Should have
taken much more statistics in college, I think.”

—Max Levchin, Paypal Co-founder, Slide Founder

Quote of the week from the Web site of the 
American Statistical Association on November 23, 2010

“I keep saying that the sexy job in the next 10 years will be statisticians, and I’m
not kidding.”

—Hal Varian, Chief Economist at Google

August 6, 2009, The New York Times

INTRODUCTION

Statistical concepts and methods are not only useful but indeed often indis-

pensable in understanding the world around us. They provide ways of gaining

new insights into the behavior of many phenomena that you will encounter in

your chosen field of specialization in engineering or science.

The discipline of statistics teaches us how to make intelligent judgments

and informed decisions in the presence of uncertainty and variation. Without

uncertainty or variation, there would be little need for statistical methods or stat-

isticians. If every component of a particular type had exactly the same lifetime, if

all resistors produced by a certain manufacturer had the same resistance value, if

pH determinations for soil specimens from a particular locale gave identical

results, and so on, then a single observation would reveal all desired information.

An interesting manifestation of variation arises in the course of performing

emissions testing on motor vehicles. The expense and time requirements of the

Federal Test Procedure (FTP) preclude its widespread use in vehicle inspection pro-

grams. As a result, many agencies have developed less costly and quicker tests,

which it is hoped replicate FTP results. According to the journal article “Motor
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Vehicle Emissions Variability” (J. of the Air and Waste Mgmt. Assoc., 1996:

667–675), the acceptance of the FTP as a gold standard has led to the widespread

belief that repeated measurements on the same vehicle would yield identical (or

nearly identical) results. The authors of the article applied the FTP to seven vehicles

characterized as “high emitters.” Here are the results for one such vehicle:

HC (gm/mile) 13.8 18.3 32.2 32.5

CO (gm/mile) 118 149 232 236

The substantial variation in both the HC and CO measurements casts consider-

able doubt on conventional wisdom and makes it much more difficult to make

precise assessments about emissions levels.

How can statistical techniques be used to gather information and draw

conclusions? Suppose, for example, that a materials engineer has developed a

coating for retarding corrosion in metal pipe under specified circumstances. If

this coating is applied to different segments of pipe, variation in environmental

conditions and in the segments themselves will result in more substantial cor-

rosion on some segments than on others. Methods of statistical analysis could

be used on data from such an experiment to decide whether the average

amount of corrosion exceeds an upper specification limit of some sort or to pre-

dict how much corrosion will occur on a single piece of pipe.

Alternatively, suppose the engineer has developed the coating in the belief

that it will be superior to the currently used coating. A comparative experiment

could be carried out to investigate this issue by applying the current coating to

some segments of pipe and the new coating to other segments. This must be

done with care lest the wrong conclusion emerge. For example, perhaps the aver-

age amount of corrosion is identical for the two coatings. However, the new

coating may be applied to segments that have superior ability to resist corrosion

and under less stressful environmental conditions compared to the segments and

conditions for the current coating. The investigator would then likely observe a

difference between the two coatings attributable not to the coatings themselves,

but just to extraneous variation. Statistics offers not only methods for analyzing

the results of experiments once they have been carried out but also suggestions

for how experiments can be performed in an efficient manner to mitigate the

effects of variation and have a better chance of producing correct conclusions.

2 CHAPTER 1 Overview and Descriptive Statistics

1.1 Populations, Samples, and Processes

Engineers and scientists are constantly exposed to collections of facts, or data, both
in their professional capacities and in everyday activities. The discipline of statistics
provides methods for organizing and summarizing data and for drawing conclusions
based on information contained in the data.
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1.1 Populations, Samples, and Processes 3

An investigation will typically focus on a well-defined collection of objects
constituting a population of interest. In one study, the population might consist of
all gelatin capsules of a particular type produced during a specified period. Another
investigation might involve the population consisting of all individuals who received
a B.S. in engineering during the most recent academic year. When desired informa-
tion is available for all objects in the population, we have what is called a census.
Constraints on time, money, and other scarce resources usually make a census
impractical or infeasible. Instead, a subset of the population—a sample—is selected
in some prescribed manner. Thus we might obtain a sample of bearings from a par-
ticular production run as a basis for investigating whether bearings are conforming
to manufacturing specifications, or we might select a sample of last year’s engineer-
ing graduates to obtain feedback about the quality of the engineering curricula.

We are usually interested only in certain characteristics of the objects in a pop-
ulation: the number of flaws on the surface of each casing, the thickness of each cap-
sule wall, the gender of an engineering graduate, the age at which the individual
graduated, and so on. A characteristic may be categorical, such as gender or type of
malfunction, or it may be numerical in nature. In the former case, the value of the
characteristic is a category (e.g., female or insufficient solder), whereas in the latter
case, the value is a number (e.g., or ). A variable
is any characteristic whose value may change from one object to another in the
population. We shall initially denote variables by lowercase letters from the end of our
alphabet. Examples include

Data results from making observations either on a single variable or simultaneously
on two or more variables. A univariate data set consists of observations on a single
variable. For example, we might determine the type of transmission, automatic (A)
or manual (M), on each of ten automobiles recently purchased at a certain dealer-
ship, resulting in the categorical data set

The following sample of lifetimes (hours) of brand D batteries put to a certain use is
a numerical univariate data set:

We have bivariate data when observations are made on each of two variables. Our
data set might consist of a (height, weight) pair for each basketball player on a
team, with the first observation as (72, 168), the second as (75, 212), and so on. If
an engineer determines the value of both and 
for component failure, the resulting data set is bivariate with one variable numeri-
cal and the other categorical. Multivariate data arises when observations are made
on more than one variable (so bivariate is a special case of multivariate). For exam-
ple, a research physician might determine the systolic blood pressure, diastolic
blood pressure, and serum cholesterol level for each patient participating in a study.
Each observation would be a triple of numbers, such as (120, 80, 146). In many
multivariate data sets, some variables are numerical and others are categorical. Thus
the annual automobile issue of Consumer Reports gives values of such variables as
type of vehicle (small, sporty, compact, mid-size, large), city fuel efficiency (mpg),
highway fuel efficiency (mpg), drivetrain type (rear wheel, front wheel, four
wheel), and so on.

y 5 reasonx 5 component lifetime

5.6 5.1 6.2 6.0 5.8 6.5 5.8 5.5

M A A A M A A M A A

 z 5 braking distance of an automobile under specified conditions

 y 5 number of visits to a particular Web site during a specified period

 x 5 brand of calculator owned by a student

diameter 5 .502 cmage 5 23 years
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Example 1.1

4 CHAPTER 1 Overview and Descriptive Statistics

Branches of Statistics
An investigator who has collected data may wish simply to summarize and describe
important features of the data. This entails using methods from descriptive statistics.
Some of these methods are graphical in nature; the construction of histograms,
boxplots, and scatter plots are primary examples. Other descriptive methods
involve calculation of numerical summary measures, such as means, standard
deviations, and correlation coefficients. The wide availability of statistical computer
software packages has made these tasks much easier to carry out than they used to be.
Computers are much more efficient than human beings at calculation and the creation
of pictures (once they have received appropriate instructions from the user!). This
means that the investigator doesn’t have to expend much effort on “grunt work” and
will have more time to study the data and extract important messages. Throughout
this book, we will present output from various packages such as Minitab, SAS,
S-Plus, and R. The R software can be downloaded without charge from the site
http://www.r-project.org.

Charity is a big business in the United States. The Web site charitynavigator.com
gives information on roughly 5500 charitable organizations, and there are many
smaller charities that fly below the navigator’s radar screen. Some charities operate
very efficiently, with fundraising and administrative expenses that are only a small
percentage of total expenses, whereas others spend a high percentage of what they
take in on such activities. Here is data on fundraising expenses as a percentage of
total expenditures for a random sample of 60 charities:

6.1 12.6 34.7 1.6 18.8 2.2 3.0 2.2 5.6 3.8
2.2 3.1 1.3 1.1 14.1 4.0 21.0 6.1 1.3 20.4
7.5 3.9 10.1 8.1 19.5 5.2 12.0 15.8 10.4 5.2
6.4 10.8 83.1 3.6 6.2 6.3 16.3 12.7 1.3 0.8
8.8 5.1 3.7 26.3 6.0 48.0 8.2 11.7 7.2 3.9

15.3 16.6 8.8 12.0 4.7 14.7 6.4 17.0 2.5 16.2

Without any organization, it is difficult to get a sense of the data’s most prominent
features—what a typical (i.e. representative) value might be, whether values are
highly concentrated about a typical value or quite dispersed, whether there are any

Figure 1.1 A Minitab stem-and-leaf display (tenths digit truncated) and histogram for the
charity fundraising percentage data
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Example 1.2

1.1 Populations, Samples, and Processes 5

gaps in the data, what fraction of the values are less than 20%, and so on. Figure 1.1
shows what is called a stem-and-leaf display as well as a histogram. In Section 1.2
we will discuss construction and interpretation of these data summaries. For the
moment, we hope you see how they begin to describe how the percentages are dis-
tributed over the range of possible values from 0 to 100. Clearly a substantial major-
ity of the charities in the sample spend less than 20% on fundraising, and only a few
percentages might be viewed as beyond the bounds of sensible practice. ■

Having obtained a sample from a population, an investigator would frequently
like to use sample information to draw some type of conclusion (make an inference
of some sort) about the population. That is, the sample is a means to an end rather
than an end in itself. Techniques for generalizing from a sample to a population are
gathered within the branch of our discipline called inferential statistics.

Material strength investigations provide a rich area of application for statistical meth-
ods. The article “Effects of Aggregates and Microfillers on the Flexural Properties of
Concrete” (Magazine of Concrete Research, 1997: 81–98) reported on a study of
strength properties of high-performance concrete obtained by using superplasticizers
and certain binders. The compressive strength of such concrete had previously been
investigated, but not much was known about flexural strength (a measure of ability to
resist failure in bending). The accompanying data on flexural strength (in
MegaPascal, MPa, where ) appeared in the article
cited:

5.9 7.2 7.3 6.3 8.1 6.8 7.0 7.6 6.8 6.5 7.0 6.3 7.9 9.0
8.2 8.7 7.8 9.7 7.4 7.7 9.7 7.8 7.7 11.6 11.3 11.8 10.7

Suppose we want an estimate of the average value of flexural strength for all beams
that could be made in this way (if we conceptualize a population of all such beams,
we are trying to estimate the population mean). It can be shown that, with a high
degree of confidence, the population mean strength is between 7.48 MPa and
8.80 MPa; we call this a confidence interval or interval estimate. Alternatively, this
data could be used to predict the flexural strength of a single beam of this type. With
a high degree of confidence, the strength of a single such beam will exceed
7.35 MPa; the number 7.35 is called a lower prediction bound. ■

The main focus of this book is on presenting and illustrating methods of infer-
ential statistics that are useful in scientific work. The most important types of infer-
ential procedures—point estimation, hypothesis testing, and estimation by
confidence intervals—are introduced in Chapters 6–8 and then used in more com-
plicated settings in Chapters 9–16. The remainder of this chapter presents methods
from descriptive statistics that are most used in the development of inference.

Chapters 2–5 present material from the discipline of probability. This material
ultimately forms a bridge between the descriptive and inferential techniques.
Mastery of probability leads to a better understanding of how inferential procedures
are developed and used, how statistical conclusions can be translated into everyday
language and interpreted, and when and where pitfalls can occur in applying the
methods. Probability and statistics both deal with questions involving populations
and samples, but do so in an “inverse manner” to one another.

In a probability problem, properties of the population under study are
assumed known (e.g., in a numerical population, some specified distribution of the
population values may be assumed), and questions regarding a sample taken from
the population are posed and answered. In a statistics problem, characteristics of a

1 Pa (Pascal) 5 1.45 3 1024 psi
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6 CHAPTER 1 Overview and Descriptive Statistics

sample are available to the experimenter, and this information enables the experi-
menter to draw conclusions about the population. The relationship between the
two disciplines can be summarized by saying that probability reasons from the
population to the sample (deductive reasoning), whereas inferential statistics rea-
sons from the sample to the population (inductive reasoning). This is illustrated in
Figure 1.2.

Before we can understand what a particular sample can tell us about the pop-
ulation, we should first understand the uncertainty associated with taking a sample
from a given population. This is why we study probability before statistics.

As an example of the contrasting focus of probability and inferential statistics, con-
sider drivers’ use of manual lap belts in cars equipped with automatic shoulder belt
systems. (The article “Automobile Seat Belts: Usage Patterns in Automatic Belt
Systems,” Human Factors, 1998: 126–135, summarizes usage data.) In probability,
we might assume that 50% of all drivers of cars equipped in this way in a certain
metropolitan area regularly use their lap belt (an assumption about the population),
so we might ask, “How likely is it that a sample of 100 such drivers will include at
least 70 who regularly use their lap belt?” or “How many of the drivers in a sample
of size 100 can we expect to regularly use their lap belt?” On the other hand, in infer-
ential statistics, we have sample information available; for example, a sample of 100
drivers of such cars revealed that 65 regularly use their lap belt. We might then ask,
“Does this provide substantial evidence for concluding that more than 50% of all
such drivers in this area regularly use their lap belt?” In this latter scenario, we are
attempting to use sample information to answer a question about the structure of the
entire population from which the sample was selected. ■

In the foregoing lap belt example, the population is well defined and concrete:
all drivers of cars equipped in a certain way in a particular metropolitan area. In
Example 1.2, however, the strength measurements came from a sample of prototype
beams that had not been selected from an existing population. Instead, it is conven-
ient to think of the population as consisting of all possible strength measurements
that might be made under similar experimental conditions. Such a population is
referred to as a conceptual or hypothetical population. There are a number of prob-
lem situations in which we fit questions into the framework of inferential statistics
by conceptualizing a population.

The Scope of Modern Statistics
These days statistical methodology is employed by investigators in virtually all dis-
ciplines, including such areas as

• molecular biology (analysis of microarray data)

• ecology (describing quantitatively how individuals in various animal and plant
populations are spatially distributed)

Population

Probability

Inferential
statistics

Sample

Figure 1.2 The relationship between probability and inferential statistics
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1.1 Populations, Samples, and Processes 7

• materials engineering (studying properties of various treatments to retard corrosion)

• marketing (developing market surveys and strategies for marketing new products)

• public health (identifying sources of diseases and ways to treat them)

• civil engineering (assessing the effects of stress on structural elements and the
impacts of traffic flows on communities)

As you progress through the book, you’ll encounter a wide spectrum of different sce-
narios in the examples and exercises that illustrate the application of techniques from
probability and statistics. Many of these scenarios involve data or other material
extracted from articles in engineering and science journals. The methods presented
herein have become established and trusted tools in the arsenal of those who work with
data. Meanwhile, statisticians continue to develop new models for describing random-
ness, and uncertainty and new methodology for analyzing data. As evidence of the con-
tinuing creative efforts in the statistical community, here are titles and capsule
descriptions of some articles that have recently appeared in statistics journals (Journal
of the American Statistical Association is abbreviated JASA, and AAS is short for the
Annals of Applied Statistics, two of the many prominent journals in the discipline):

• “Modeling Spatiotemporal Forest Health Monitoring Data” (JASA, 2009:
899–911): Forest health monitoring systems were set up across Europe in the
1980s in response to concerns about air-pollution-related forest dieback, and
have continued operation with a more recent focus on threats from climate
change and increased ozone levels. The authors develop a quantitative descrip-
tion of tree crown defoliation, an indicator of tree health.

• “Active Learning Through Sequential Design, with Applications to the Detection
of Money Laundering” (JASA, 2009: 969–981): Money laundering involves con-
cealing the origin of funds obtained through illegal activities. The huge number
of transactions occurring daily at financial institutions makes detection of money
laundering difficult. The standard approach has been to extract various summary
quantities from the transaction history and conduct a time-consuming investiga-
tion of suspicious activities. The article proposes a more efficient statistical
method and illustrates its use in a case study.

• “Robust Internal Benchmarking and False Discovery Rates for Detecting Racial
Bias in Police Stops” (JASA, 2009: 661–668): Allegations of police actions that
are attributable at least in part to racial bias have become a contentious issue in
many communities. This article proposes a new method that is designed to
reduce the risk of flagging a substantial number of “false positives” (individuals
falsely identified as manifesting bias). The method was applied to data on
500,000 pedestrian stops in New York City in 2006; of the 3000 officers regu-
larly involved in pedestrian stops, 15 were identified as having stopped a sub-
stantially greater fraction of Black and Hispanic people than what would be
predicted were bias absent.

• “Records in Athletics Through Extreme Value Theory” (JASA, 2008:
1382–1391): The focus here is on the modeling of extremes related to world
records in athletics. The authors start by posing two questions: (1) What is the
ultimate world record within a specific event (e.g. the high jump for women)?
and (2) How “good” is the current world record, and how does the quality of
current world records compare across different events? A total of 28 events
(8 running, 3 throwing, and 3 jumping for both men and women) are considered.
For example, one conclusion is that only about 20 seconds can be shaved off the
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8 CHAPTER 1 Overview and Descriptive Statistics

men’s marathon record, but that the current women’s marathon record is almost
5 minutes longer than what can ultimately be achieved. The methodology also
has applications to such issues as ensuring airport runways are long enough and
that dikes in Holland are high enough.

• “Analysis of Episodic Data with Application to Recurrent Pulmonary
Exacerbations in Cystic Fibrosis Patients” (JASA, 2008: 498–510): The analysis
of recurrent medical events such as migraine headaches should take into account
not only when such events first occur but also how long they last—length of
episodes may contain important information about the severity of the disease or
malady, associated medical costs, and the quality of life. The article proposes a
technique that summarizes both episode frequency and length of episodes, and
allows effects of characteristics that cause episode occurrence to vary over time.
The technique is applied to data on cystic fibrosis patients (CF is a serious
genetic disorder affecting sweat and other glands).

• “Prediction of Remaining Life of Power Transformers Based on Left Truncated
and Right Censored Lifetime Data” (AAS, 2009: 857–879): There are roughly
150,000 high-voltage power transmission transformers in the United States.
Unexpected failures can cause substantial economic losses, so it is important to
have predictions for remaining lifetimes. Relevant data can be complicated because
lifetimes of some transformers extend over several decades during which records
were not necessarily complete. In particular, the authors of the article use data
from a certain energy company that began keeping careful records in 1980. But
some transformers had been installed before January 1, 1980, and were still in
service after that date (“left truncated” data), whereas other units were still in serv-
ice at the time of the investigation, so their complete lifetimes are not available
(“right censored” data). The article describes various procedures for obtaining an
interval of plausible values (a prediction interval) for a remaining lifetime and for
the cumulative number of failures over a specified time period.

• “The BARISTA: A Model for Bid Arrivals in Online Auctions” (AAS, 2007:
412–441): Online auctions such as those on eBay and uBid often have character-
istics that differentiate them from traditional auctions. One particularly important
difference is that the number of bidders at the outset of many traditional auctions
is fixed, whereas in online auctions this number and the number of resulting bids
are not predetermined. The article proposes a new BARISTA (for Bid ARivals In
STAges) model for describing the way in which bids arrive online. The model
allows for higher bidding intensity at the outset of the auction and also as the
auction comes to a close. Various properties of the model are investigated and
then validated using data from eBay.com on auctions for Palm M515 personal
assistants, Microsoft Xbox games, and Cartier watches.

• “Statistical Challenges in the Analysis of Cosmic Microwave Background
Radiation” (AAS, 2009: 61–95): The cosmic microwave background (CMB) is a
significant source of information about the early history of the universe. Its radi-
ation level is uniform, so extremely delicate instruments have been developed to
measure fluctuations. The authors provide a review of statistical issues with
CMB data analysis; they also give many examples of the application of statistical
procedures to data obtained from a recent NASA satellite mission, the Wilkinson
Microwave Anisotropy Probe.

Statistical information now appears with increasing frequency in the popular media,
and occasionally the spotlight is even turned on statisticians. For example, the
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1.1 Populations, Samples, and Processes 9

Nov. 23, 2009, New York Times reported in an article “Behind Cancer Guidelines,
Quest for Data” that the new science for cancer investigations and more sophisti-
cated methods for data analysis spurred the U.S. Preventive Services task force to
re-examine guidelines for how frequently middle-aged and older women should
have mammograms. The panel commissioned six independent groups to do statis-
tical modeling. The result was a new set of conclusions, including an assertion that
mammograms every two years are nearly as beneficial to patients as annual mam-
mograms, but confer only half the risk of harms. Donald Berry, a very prominent
biostatistician, was quoted as saying he was pleasantly surprised that the task force
took the new research to heart in making its recommendations. The task force’s
report has generated much controversy among cancer organizations, politicians,
and women themselves.

It is our hope that you will become increasingly convinced of the importance
and relevance of the discipline of statistics as you dig more deeply into the book and
the subject. Hopefully you’ll be turned on enough to want to continue your statisti-
cal education beyond your current course.

Enumerative Versus Analytic Studies
W. E. Deming, a very influential American statistician who was a moving force in
Japan’s quality revolution during the 1950s and 1960s, introduced the distinction
between enumerative studies and analytic studies. In the former, interest is focused
on a finite, identifiable, unchanging collection of individuals or objects that make
up a population. A sampling frame—that is, a listing of the individuals or objects
to be sampled—is either available to an investigator or else can be constructed. For
example, the frame might consist of all signatures on a petition to qualify a certain
initiative for the ballot in an upcoming election; a sample is usually selected to
ascertain whether the number of valid signatures exceeds a specified value. As
another example, the frame may contain serial numbers of all furnaces manufac-
tured by a particular company during a certain time period; a sample may be
selected to infer something about the average lifetime of these units. The use of
inferential methods to be developed in this book is reasonably noncontroversial in
such settings (though statisticians may still argue over which particular methods
should be used).

An analytic study is broadly defined as one that is not enumerative in
nature. Such studies are often carried out with the objective of improving a future
product by taking action on a process of some sort (e.g., recalibrating equipment
or adjusting the level of some input such as the amount of a catalyst). Data can
often be obtained only on an existing process, one that may differ in important
respects from the future process. There is thus no sampling frame listing the indi-
viduals or objects of interest. For example, a sample of five turbines with a new
design may be experimentally manufactured and tested to investigate efficiency.
These five could be viewed as a sample from the conceptual population of all pro-
totypes that could be manufactured under similar conditions, but not necessarily
as representative of the population of units manufactured once regular production
gets underway. Methods for using sample information to draw conclusions about
future production units may be problematic. Someone with expertise in the area
of turbine design and engineering (or whatever other subject area is relevant)
should be called upon to judge whether such extrapolation is sensible. A good
exposition of these issues is contained in the article “Assumptions for Statistical
Inference” by Gerald Hahn and William Meeker (The American Statistician,
1993: 1–11).
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Collecting Data
Statistics deals not only with the organization and analysis of data once it has been
collected but also with the development of techniques for collecting the data. If data
is not properly collected, an investigator may not be able to answer the questions
under consideration with a reasonable degree of confidence. One common problem is
that the target population—the one about which conclusions are to be drawn—may
be different from the population actually sampled. For example, advertisers would
like various kinds of information about the television-viewing habits of potential cus-
tomers. The most systematic information of this sort comes from placing monitoring
devices in a small number of homes across the United States. It has been conjectured
that placement of such devices in and of itself alters viewing behavior, so that char-
acteristics of the sample may be different from those of the target population.

When data collection entails selecting individuals or objects from a frame, the
simplest method for ensuring a representative selection is to take a simple random
sample. This is one for which any particular subset of the specified size (e.g., a sam-
ple of size 100) has the same chance of being selected. For example, if the frame
consists of 1,000,000 serial numbers, the numbers 1, 2, . . . , up to 1,000,000 could
be placed on identical slips of paper. After placing these slips in a box and thor-
oughly mixing, slips could be drawn one by one until the requisite sample size has
been obtained. Alternatively (and much to be preferred), a table of random numbers
or a computer’s random number generator could be employed.

Sometimes alternative sampling methods can be used to make the selection
process easier, to obtain extra information, or to increase the degree of confidence in
conclusions. One such method, stratified sampling, entails separating the population
units into nonoverlapping groups and taking a sample from each one. For example,
a manufacturer of DVD players might want information about customer satisfaction
for units produced during the previous year. If three different models were manu-
factured and sold, a separate sample could be selected from each of the three corre-
sponding strata. This would result in information on all three models and ensure that
no one model was over- or underrepresented in the entire sample.

Frequently a “convenience” sample is obtained by selecting individuals or
objects without systematic randomization. As an example, a collection of bricks may
be stacked in such a way that it is extremely difficult for those in the center to be
selected. If the bricks on the top and sides of the stack were somehow different from
the others, resulting sample data would not be representative of the population. Often
an investigator will assume that such a convenience sample approximates a random
sample, in which case a statistician’s repertoire of inferential methods can be used;
however, this is a judgment call. Most of the methods discussed herein are based on
a variation of simple random sampling described in Chapter 5.

Engineers and scientists often collect data by carrying out some sort of
designed experiment. This may involve deciding how to allocate several different
treatments (such as fertilizers or coatings for corrosion protection) to the various
experimental units (plots of land or pieces of pipe). Alternatively, an investigator
may systematically vary the levels or categories of certain factors (e.g., pressure or
type of insulating material) and observe the effect on some response variable (such
as yield from a production process).

An article in the New York Times (Jan. 27, 1987) reported that heart attack risk
could be reduced by taking aspirin. This conclusion was based on a designed experi-
ment involving both a control group of individuals that took a placebo having the
appearance of aspirin but known to be inert and a treatment group that took aspirin
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according to a specified regimen. Subjects were randomly assigned to the groups to
protect against any biases and so that probability-based methods could be used to
analyze the data. Of the 11,034 individuals in the control group, 189 subsequently
experienced heart attacks, whereas only 104 of the 11,037 in the aspirin group had
a heart attack. The incidence rate of heart attacks in the treatment group was only
about half that in the control group. One possible explanation for this result is chance
variation—that aspirin really doesn’t have the desired effect and the observed dif-
ference is just typical variation in the same way that tossing two identical coins
would usually produce different numbers of heads. However, in this case, inferential
methods suggest that chance variation by itself cannot adequately explain the mag-
nitude of the observed difference. ■

An engineer wishes to investigate the effects of both adhesive type and conductor
material on bond strength when mounting an integrated circuit (IC) on a certain sub-
strate. Two adhesive types and two conductor materials are under consideration. Two
observations are made for each adhesive-type/conductor-material combination,
resulting in the accompanying data:

Adhesive Type Conductor Material Observed Bond Strength Average

1 1 82, 77 79.5
1 2 75, 87 81.0
2 1 84, 80 82.0
2 2 78, 90 84.0

Conducting material

Average
strength

1 2

80

85
Adhesive type 2

Adhesive type 1

Figure 1.3 Average bond strengths in Example 1.5

The resulting average bond strengths are pictured in Figure 1.3. It appears that adhe-
sive type 2 improves bond strength as compared with type 1 by about the same
amount whichever one of the conducting materials is used, with the 2, 2 combina-
tion being best. Inferential methods can again be used to judge whether these effects
are real or simply due to chance variation.

Suppose additionally that there are two cure times under consideration and also two
types of IC post coating. There are then combinations of these four
factors, and our engineer may not have enough resources to make even a single obser-
vation for each of these combinations. In Chapter 11, we will see how the careful selec-
tion of a fraction of these possibilities will usually yield the desired information. ■

2 ? 2 ? 2 ? 2 5 16
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12 CHAPTER 1 Overview and Descriptive Statistics

EXERCISES Section 1.1 (1–9)

1. Many universities and colleges have instituted supplemental
instruction (SI) programs, in which a student facilitator meets
regularly with a small group of students enrolled in the
course to promote discussion of course material and enhance
subject mastery. Suppose that students in a large statistics
course (what else?) are randomly divided into a control group
that will not participate in SI and a treatment group that will
participate. At the end of the term, each student’s total score
in the course is determined.
a. Are the scores from the SI group a sample from an exist-

ing population? If so, what is it? If not, what is the rele-
vant conceptual population?

b. What do you think is the advantage of randomly dividing
the students into the two groups rather than letting each
student choose which group to join?

c. Why didn’t the investigators put all students in the treat-
ment group? Note: The article “Supplemental Instruction:
An Effective Component of Student Affairs Programming”
(J. of College Student Devel., 1997: 577–586) discusses
the analysis of data from several SI programs.

2. For each of the following hypothetical populations, give a
plausible sample of size 4:
a. All distances that might result when you throw a football
b. Page lengths of books published 5 years from now
c. All possible earthquake-strength measurements (Richter

scale) that might be recorded in California during the next
year

d. All possible yields (in grams) from a certain chemical
reaction carried out in a laboratory

3. Consider the population consisting of all computers of a cer-
tain brand and model, and focus on whether a computer
needs service while under warranty.
a. Pose several probability questions based on selecting a

sample of 100 such computers.
b. What inferential statistics question might be answered by

determining the number of such computers in a sample of
size 100 that need warranty service?

4. a. Give three different examples of concrete populations and
three different examples of hypothetical populations.

b. For one each of your concrete and your hypothetical pop-
ulations, give an example of a probability question and an
example of an inferential statistics question.

5. Give one possible sample of size 4 from each of the follow-
ing populations:
a. All daily newspapers published in the United States
b. All companies listed on the New York Stock Exchange
c. All students at your college or university
d. All grade point averages of students at your college or

university

6. The California State University (CSU) system consists of 23
campuses, from San Diego State in the south to Humboldt
State near the Oregon border. A CSU administrator wishes to
make an inference about the average distance between the
hometowns of students and their campuses. Describe and dis-
cuss several different sampling methods that might be
employed. Would this be an enumerative or an analytic
study? Explain your reasoning.

7. A certain city divides naturally into ten district neighbor-
hoods. How might a real estate appraiser select a sample of
single-family homes that could be used as a basis for devel-
oping an equation to predict appraised value from charac-
teristics such as age, size, number of bathrooms, distance
to the nearest school, and so on? Is the study enumerative
or analytic?

8. The amount of flow through a solenoid valve in an automo-
bile’s pollution-control system is an important characteristic.
An experiment was carried out to study how flow rate
depended on three factors: armature length, spring load, and
bobbin depth. Two different levels (low and high) of each fac-
tor were chosen, and a single observation on flow was made
for each combination of levels.
a. The resulting data set consisted of how many observations?
b. Is this an enumerative or analytic study? Explain your

reasoning.

9. In a famous experiment carried out in 1882, Michelson and
Newcomb obtained 66 observations on the time it took for
light to travel between two locations in Washington, D.C. A
few of the measurements (coded in a certain manner) were

and 31.
a. Why are these measurements not identical?
b. Is this an enumerative study? Why or why not?

31, 23, 32, 36, 22, 26, 27,

Descriptive statistics can be divided into two general subject areas. In this section, we
consider representing a data set using visual techniques. In Sections 1.3 and 1.4, we
will develop some numerical summary measures for data sets. Many visual techniques
may already be familiar to you: frequency tables, tally sheets, histograms, pie charts,

1.2 Pictorial and Tabular Methods in 
Descriptive Statistics
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1.2 Pictorial and Tabular Methods in Descriptive Statistics 13

bar graphs, scatter diagrams, and the like. Here we focus on a selected few of these
techniques that are most useful and relevant to probability and inferential statistics.

Notation
Some general notation will make it easier to apply our methods and formulas to a
wide variety of practical problems. The number of observations in a single sample,
that is, the sample size, will often be denoted by n, so that for the sample of
universities {Stanford, Iowa State, Wyoming, Rochester} and also for the sample of
pH measurements {6.3, 6.2, 5.9, 6.5}. If two samples are simultaneously under con-
sideration, either m and n or n1 and n2 can be used to denote the numbers of obser-
vations. Thus if {29.7, 31.6, 30.9} and {28.7, 29.5, 29.4, 30.3} are
thermal-efficiency measurements for two different types of diesel engines, then

and .
Given a data set consisting of n observations on some variable x, the individ-

ual observations will be denoted by . The subscript bears no relation
to the magnitude of a particular observation. Thus x1 will not in general be the small-
est observation in the set, nor will xn typically be the largest. In many applications,
x1 will be the first observation gathered by the experimenter, x2 the second, and so
on. The ith observation in the data set will be denoted by xi.

Stem-and-Leaf Displays
Consider a numerical data set for which each xi consists of at least two
digits. A quick way to obtain an informative visual representation of the data set is
to construct a stem-and-leaf display.

x1, x2, c, xn

x1, x2, x3, c, xn

n 5 4m 5 3

n 5 4

Constructing a Stem-and-Leaf Display

1. Select one or more leading digits for the stem values. The trailing digits
become the leaves.

2. List possible stem values in a vertical column.

3. Record the leaf for each observation beside the corresponding stem value.

4. Indicate the units for stems and leaves someplace in the display.

Example 1.6

If the data set consists of exam scores, each between 0 and 100, the score of 83
would have a stem of 8 and a leaf of 3. For a data set of automobile fuel efficien-
cies (mpg), all between 8.1 and 47.8, we could use the tens digit as the stem, so
32.6 would then have a leaf of 2.6. In general, a display based on between 5 and
20 stems is recommended.

The use of alcohol by college students is of great concern not only to those in the aca-
demic community but also, because of potential health and safety consequences, to
society at large. The article “Health and Behavioral Consequences of Binge Drinking
in College” (J. of the Amer. Med. Assoc., 1994: 1672–1677) reported on a comprehen-
sive study of heavy drinking on campuses across the United States. A binge episode
was defined as five or more drinks in a row for males and four or more for females.
Figure 1.4 shows a stem-and-leaf display of 140 values of of
undergraduate students who are binge drinkers. (These values were not given in the
cited article, but our display agrees with a picture of the data that did appear.)

x 5 the percentage
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0 4
1 1345678889
2 1223456666777889999 Stem: tens digit

3 0112233344555666677777888899999 Leaf: ones digit

4 111222223344445566666677788888999
5 00111222233455666667777888899
6 01111244455666778

Figure 1.4 Stem-and-leaf display for the percentage of binge drinkers at each of the 140 colleges

The first leaf on the stem 2 row is 1, which tells us that 21% of the students
at one of the colleges in the sample were binge drinkers. Without the identification
of stem digits and leaf digits on the display, we wouldn’t know whether the stem 2,
leaf 1 observation should be read as 21%, 2.1%, or .21%.

When creating a display by hand, ordering the leaves from smallest to largest
on each line can be time-consuming. This ordering usually contributes little if any
extra information. Suppose the observations had been listed in alphabetical order by
school name, as

Then placing these values on the display in this order would result in the stem 1 row
having 6 as its first leaf, and the beginning of the stem 3 row would be

The display suggests that a typical or representative value is in the stem 4 row,
perhaps in the mid-40% range. The observations are not highly concentrated about
this typical value, as would be the case if all values were between 20% and 49%. The
display rises to a single peak as we move downward, and then declines; there are no
gaps in the display. The shape of the display is not perfectly symmetric, but instead
appears to stretch out a bit more in the direction of low leaves than in the direction
of high leaves. Lastly, there are no observations that are unusually far from the bulk
of the data (no outliers), as would be the case if one of the 26% values had instead
been 86%. The most surprising feature of this data is that, at most colleges in the
sample, at least one-quarter of the students are binge drinkers. The problem of heavy
drinking on campuses is much more pervasive than many had suspected. ■

A stem-and-leaf display conveys information about the following aspects of
the data:

• identification of a typical or representative value

• extent of spread about the typical value

• presence of any gaps in the data

• extent of symmetry in the distribution of values

• number and location of peaks

• presence of any outlying values

Figure 1.5 presents stem-and-leaf displays for a random sample of lengths of golf
courses (yards) that have been designated by Golf Magazine as among the most chal-
lenging in the United States. Among the sample of 40 courses, the shortest is 6433
yards long, and the longest is 7280 yards. The lengths appear to be distributed in a

3 u  371 c

16% 33% 64% 37% 31% c
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1.2 Pictorial and Tabular Methods in Descriptive Statistics 15

roughly uniform fashion over the range of values in the sample. Notice that a stem
choice here of either a single digit (6 or 7) or three digits (643, . . . , 728) would yield
an uninformative display, the first because of too few stems and the latter because of
too many.

Statistical software packages do not generally produce displays with multiple-
digit stems. The Minitab display in Figure 1.5(b) results from truncating each obser-
vation by deleting the ones digit.

64 35 64 33 70 Stem: Thousands and hundreds digits
65 26 27 06 83 Leaf: Tens and ones digits

66 05 94 14
67 90 70 00 98 70 45 13
68 90 70 73 50
69 00 27 36 04
70 51 05 11 40 50 22
71 31 69 68 05 13 65
72 80 09

Stem-and-leaf of yardage N 40
Leaf Unit 10

4 64 3367
8 65 0228
11 66 019
18 67 0147799
(4) 68 5779
18 69 0023
14 70 012455
8 71 013666
2 72 08

(a) (b)

Figure 1.5 Stem-and-leaf displays of golf course lengths: (a) two-digit leaves; (b) display
from Minitab with truncated one-digit leaves ■

Dotplots
A dotplot is an attractive summary of numerical data when the data set is reasonably
small or there are relatively few distinct data values. Each observation is represented
by a dot above the corresponding location on a horizontal measurement scale. When
a value occurs more than once, there is a dot for each occurrence, and these dots are
stacked vertically. As with a stem-and-leaf display, a dotplot gives information about
location, spread, extremes, and gaps.

Here is data on state-by-state appropriations for higher education as a percentage of
state and local tax revenue for the fiscal year 2006–2007 (from the Statistical
Abstract of the United States); values are listed in order of state abbreviations (AL
first, WY last):

10.8 6.9 8.0 8.8 7.3 3.6 4.1 6.0 4.4 8.3
8.1 8.0 5.9 5.9 7.6 8.9 8.5 8.1 4.2 5.7
4.0 6.7 5.8 9.9 5.6 5.8 9.3 6.2 2.5 4.5

12.8 3.5 10.0 9.1 5.0 8.1 5.3 3.9 4.0 8.0
7.4 7.5 8.4 8.3 2.6 5.1 6.0 7.0 6.5 10.3

Figure 1.6 shows a dotplot of the data. The most striking feature is the substantial
state-to-state variability. The largest value (for New Mexico) and the two smallest
values (New Hampshire and Vermont) are somewhat separated from the bulk of the
data, though not perhaps by enough to be considered outliers.

2.8 4.2 5.6 7.0 8.4 9.8 11.2 12.6

Figure 1.6 A dotplot of the data from Example 1.8 ■

Example 1.8
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If the number of compressive strength observations in Example 1.2 had been
much larger than the actually obtained, it would be quite cumbersome to
construct a dotplot. Our next technique is well suited to such situations.

Histograms
Some numerical data is obtained by counting to determine the value of a variable (the
number of traffic citations a person received during the last year, the number of cus-
tomers arriving for service during a particular period), whereas other data is obtained by
taking measurements (weight of an individual, reaction time to a particular stimulus).
The prescription for drawing a histogram is generally different for these two cases.

n 5 27

A numerical variable is discrete if its set of possible values either is finite or
else can be listed in an infinite sequence (one in which there is a first number,
a second number, and so on). A numerical variable is continuous if its possi-
ble values consist of an entire interval on the number line.

A discrete variable x almost always results from counting, in which case pos-
sible values are 0, 1, 2, 3, . . . or some subset of these integers. Continuous variables
arise from making measurements. For example, if x is the pH of a chemical sub-
stance, then in theory x could be any number between 0 and 14: 7.0, 7.03, 7.032, and
so on. Of course, in practice there are limitations on the degree of accuracy of any
measuring instrument, so we may not be able to determine pH, reaction time, height,
and concentration to an arbitrarily large number of decimal places. However, from
the point of view of creating mathematical models for distributions of data, it is help-
ful to imagine an entire continuum of possible values.

Consider data consisting of observations on a discrete variable x. The frequency
of any particular x value is the number of times that value occurs in the data set. The
relative frequency of a value is the fraction or proportion of times the value occurs:

Suppose, for example, that our data set consists of 200 observations on 
of courses a college student is taking this term. If 70 of these x values are 3, then

Multiplying a relative frequency by 100 gives a percentage; in the college-course
example, 35% of the students in the sample are taking three courses. The relative fre-
quencies, or percentages, are usually of more interest than the frequencies them-
selves. In theory, the relative frequencies should sum to 1, but in practice the sum
may differ slightly from 1 because of rounding. A frequency distribution is a tab-
ulation of the frequencies and/or relative frequencies.

relative frequency of the x value 3:   
70

200
 5 .35

frequency of the x value 3:  70

x 5 the number

relative frequency of a value 5  
number of times the value occurs

number of observations in the data set

Constructing a Histogram for Discrete Data

First, determine the frequency and relative frequency of each x value. Then mark
possible x values on a horizontal scale. Above each value, draw a rectangle whose
height is the relative frequency (or alternatively, the frequency) of that value.
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Example 1.9

This construction ensures that the area of each rectangle is proportional to the rela-
tive frequency of the value. Thus if the relative frequencies of and are
.35 and .07, respectively, then the area of the rectangle above 1 is five times the area
of the rectangle above 5.

How unusual is a no-hitter or a one-hitter in a major league baseball game, and how
frequently does a team get more than 10, 15, or even 20 hits? Table 1.1 is a frequency
distribution for the number of hits per team per game for all nine-inning games that
were played between 1989 and 1993.

x 5 5x 5 1

Table 1.1 Frequency Distribution for Hits in Nine-Inning Games

Number Relative Number of Relative
Hits/Game of Games Frequency Hits/Game Games Frequency

0 20 .0010 14 569 .0294
1 72 .0037 15 393 .0203
2 209 .0108 16 253 .0131
3 527 .0272 17 171 .0088
4 1048 .0541 18 97 .0050
5 1457 .0752 19 53 .0027
6 1988 .1026 20 31 .0016
7 2256 .1164 21 19 .0010
8 2403 .1240 22 13 .0007
9 2256 .1164 23 5 .0003

10 1967 .1015 24 1 .0001
11 1509 .0779 25 0 .0000
12 1230 .0635 26 1 .0001
13 834 .0430 27 1 .0001

19,383 1.0005

The corresponding histogram in Figure 1.7 rises rather smoothly to a single peak and
then declines. The histogram extends a bit more on the right (toward large values)
than it does on the left—a slight “positive skew.”

10

.05

0

.10

0
Hits/game

20

Relative frequency

Figure 1.7 Histogram of number of hits per nine-inning game
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18 CHAPTER 1 Overview and Descriptive Statistics

Either from the tabulated information or from the histogram itself, we can determine
the following:

Similarly,

That is, roughly 64% of all these games resulted in between 5 and 10 (inclusive)
hits. ■

Constructing a histogram for continuous data (measurements) entails subdi-
viding the measurement axis into a suitable number of class intervals or classes,
such that each observation is contained in exactly one class. Suppose, for example,
that we have 50 observations on efficiency of an automobile (mpg), the
smallest of which is 27.8 and the largest of which is 31.4. Then we could use the
class boundaries 27.5, 28.0, 28.5, . . . , and 31.5 as shown here:

x 5 fuel

between 5 and 10 hits (inclusive)
5 .0752 1 .1026 1 c 1 .1015 5 .6361 proportion of games with

5 .0010 1 .0037 1 .0108 5 .0155
at most two hits

relative
1 frequency

for x 5 2

relative
1 frequency

for x 5 1

relative
5 frequency

for x 5 0
proportion of games with

27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5

One potential difficulty is that occasionally an observation lies on a class bound-
ary so therefore does not fall in exactly one interval, for example, 29.0. One way
to deal with this problem is to use boundaries like 27.55, 28.05, . . . , 31.55.
Adding a hundredths digit to the class boundaries prevents observations from
falling on the resulting boundaries. Another approach is to use the classes

. Then 29.0 falls in the class
rather than in the class . In other words, with this con-

vention, an observation on a boundary is placed in the interval to the right of the
boundary. This is how Minitab constructs a histogram.

28.52, 29.029.02, 29.5
27.52, 28.0, 28.02, 28.5, c, 31.02, 31.5

Example 1.10

Constructing a Histogram for Continuous Data: Equal Class Widths

Determine the frequency and relative frequency for each class. Mark the
class boundaries on a horizontal measurement axis. Above each class inter-
val, draw a rectangle whose height is the corresponding relative frequency
(or frequency).           

Power companies need information about customer usage to obtain accurate fore-
casts of demands. Investigators from Wisconsin Power and Light determined energy
consumption (BTUs) during a particular period for a sample of 90 gas-heated
homes. An adjusted consumption value was calculated as follows:

This resulted in the accompanying data (part of the stored data set
FURNACE.MTW available in Minitab), which we have ordered from smallest to
largest.

adjusted consumption 5  
consumption

(weather, in degree days)(house area)
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Figure 1.8 Histogram of the energy consumption data from Example 1.10

Class
Frequency 1 1 11 21 25 17 9 4 1
Relative .011 .011 .122 .233 .278 .189 .100 .044 .011

frequency

172,19152,17132,15112,1392,1172,952,732,512,3

2.97 4.00 5.20 5.56 5.94 5.98 6.35 6.62 6.72 6.78
6.80 6.85 6.94 7.15 7.16 7.23 7.29 7.62 7.62 7.69
7.73 7.87 7.93 8.00 8.26 8.29 8.37 8.47 8.54 8.58
8.61 8.67 8.69 8.81 9.07 9.27 9.37 9.43 9.52 9.58
9.60 9.76 9.82 9.83 9.83 9.84 9.96 10.04 10.21 10.28

10.28 10.30 10.35 10.36 10.40 10.49 10.50 10.64 10.95 11.09
11.12 11.21 11.29 11.43 11.62 11.70 11.70 12.16 12.19 12.28
12.31 12.62 12.69 12.71 12.91 12.92 13.11 13.38 13.42 13.43
13.47 13.60 13.96 14.24 14.35 15.12 15.24 16.06 16.90 18.26

We let Minitab select the class intervals. The most striking feature of the histogram
in Figure 1.8 is its resemblance to a bell-shaped (and therefore symmetric) curve,
with the point of symmetry roughly at 10.

From the histogram,

The relative frequency for the class is about .27, so we estimate that roughly
half of this, or .135, is between 9 and 10. Thus

The exact value of this proportion is .                                                ■

There are no hard-and-fast rules concerning either the number of classes or the
choice of classes themselves. Between 5 and 20 classes will be satisfactory for most
data sets. Generally, the larger the number of observations in a data set, the more
classes should be used. A reasonable rule of thumb is

number of classes < 1number of observations

47/90 5 .522

less than 10
proportion of observations

92,11

less than 9
observations
proportion of

< .37 1 .135 5 .505 (slightly more than 50%)

< .01 1 .01 1 .12 1 .23 5 .37  (exact value 5  
34

90
 5 .378)
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(a)

(b)

(c)

Figure 1.9 Selecting class intervals for “varying density” data: (a) many short equal-width
intervals; (b) a few wide equal-width intervals; (c) unequal-width intervals

Equal-width classes may not be a sensible choice if there are some regions of
the measurement scale that have a high concentration of data values and other parts
where data is quite sparse. Figure 1.9 shows a dotplot of such a data set; there is
high concentration in the middle, and relatively few observations stretched out to
either side. Using a small number of equal-width classes results in almost all obser-
vations falling in just one or two of the classes. If a large number of equal-width
classes are used, many classes will have zero frequency. A sound choice is to use a
few wider intervals near extreme observations and narrower intervals in the region
of high concentration.

Example 1.11

Constructing a Histogram for Continuous Data: Unequal Class Widths

After determining frequencies and relative frequencies, calculate the height of
each rectangle using the formula

The resulting rectangle heights are usually called densities, and the vertical
scale is the density scale. This prescription will also work when class widths
are equal.           

rectangle height 5  
relative frequency of the class

class width

Corrosion of reinforcing steel is a serious problem in concrete structures located in
environments affected by severe weather conditions. For this reason, researchers
have been investigating the use of reinforcing bars made of composite material. One
study was carried out to develop guidelines for bonding glass-fiber-reinforced plas-
tic rebars to concrete (“Design Recommendations for Bond of GFRP Rebars to
Concrete,” J. of Structural Engr., 1996: 247–254). Consider the following 48 obser-
vations on measured bond strength:

11.5 12.1 9.9 9.3 7.8 6.2 6.6 7.0 13.4 17.1 9.3 5.6
5.7 5.4 5.2 5.1 4.9 10.7 15.2 8.5 4.2 4.0 3.9 3.8
3.6 3.4 20.6 25.5 13.8 12.6 13.1 8.9 8.2 10.7 14.2 7.6
5.2 5.5 5.1 5.0 5.2 4.8 4.1 3.8 3.7 3.6 3.6 3.6

Class 
Frequency 9 15 5 9 8 2
Relative frequency .1875 .3125 .1042 .1875 .1667 .0417
Density .094 .156 .052 .047 .021 .004

202,30122,2082,1262,842,622,4

The resulting histogram appears in Figure 1.10. The right or upper tail stretches out
much farther than does the left or lower tail—a substantial departure from symmetry.
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Figure 1.10 A Minitab density histogram for the bond strength data of Example 1.11
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Example 1.12

■

When class widths are unequal, not using a density scale will give a picture
with distorted areas. For equal-class widths, the divisor is the same in each density
calculation, and the extra arithmetic simply results in a rescaling of the vertical axis
(i.e., the histogram using relative frequency and the one using density will have
exactly the same appearance). A density histogram does have one interesting prop-
erty. Multiplying both sides of the formula for density by the class width gives

That is, the area of each rectangle is the relative frequency of the corresponding
class. Furthermore, since the sum of relative frequencies should be 1, the total area
of all rectangles in a density histogram is l. It is always possible to draw a histogram
so that the area equals the relative frequency (this is true also for a histogram of dis-
crete data)—just use the density scale. This property will play an important role in
creating models for distributions in Chapter 4.

Histogram Shapes
Histograms come in a variety of shapes. A unimodal histogram is one that rises to
a single peak and then declines. A bimodal histogram has two different peaks.
Bimodality can occur when the data set consists of observations on two quite differ-
ent kinds of individuals or objects. For example, consider a large data set consisting
of driving times for automobiles traveling between San Luis Obispo, California, and
Monterey, California (exclusive of stopping time for sightseeing, eating, etc.). This
histogram would show two peaks: one for those cars that took the inland route
(roughly 2.5 hours) and another for those cars traveling up the coast (3.5–4 hours).
However, bimodality does not automatically follow in such situations. Only if the
two separate histograms are “far apart” relative to their spreads will bimodality occur
in the histogram of combined data. Thus a large data set consisting of heights of col-
lege students should not result in a bimodal histogram because the typical male
height of about 69 inches is not far enough above the typical female height of about
64–65 inches. A histogram with more than two peaks is said to be multimodal. Of
course, the number of peaks may well depend on the choice of class intervals, par-
ticularly with a small number of observations. The larger the number of classes, the
more likely it is that bimodality or multimodality will manifest itself.

Figure 1.11(a) shows a Minitab histogram of the weights (lb) of the 124 players
listed on the rosters of the San Francisco 49ers and the New England Patriots
(teams the author would like to see meet in the Super Bowl) as of Nov. 20, 2009.

    5 rectangle area
 relative frequency 5 (class width)(density) 5 (rectangle width)(rectangle height)
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22 CHAPTER 1 Overview and Descriptive Statistics

Figure 1.11(b) is a smoothed histogram (actually what is called a density estimate)
of the data from the R software package. Both the histogram and the smoothed his-
togram show three distinct peaks; the one on the right is for linemen, the middle
peak corresponds to linebacker weights, and the peak on the left is for all other
players (wide receivers, quarterbacks, etc.).
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Figure 1.11 NFL player weights (a) Histogram (b) Smoothed histogram 

(a) (d)(b) (c)

Figure 1.12 Smoothed histograms: (a) symmetric unimodal; (b) bimodal; (c) positively
skewed; and (d) negatively skewed

■

A histogram is symmetric if the left half is a mirror image of the right half. A
unimodal histogram is positively skewed if the right or upper tail is stretched out
compared with the left or lower tail and negatively skewed if the stretching is to the
left. Figure 1.12 shows “smoothed” histograms, obtained by superimposing a
smooth curve on the rectangles, that illustrate the various possibilities.
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Qualitative Data
Both a frequency distribution and a histogram can be constructed when the data set is
qualitative (categorical) in nature. In some cases, there will be a natural ordering of
classes—for example, freshmen, sophomores, juniors, seniors, graduate students—
whereas in other cases the order will be arbitrary—for example, Catholic, Jewish,
Protestant, and the like. With such categorical data, the intervals above which
rectangles are constructed should have equal width.

The Public Policy Institute of California carried out a telephone survey of 2501
California adult residents during April 2006 to ascertain how they felt about various
aspects of K-12 public education. One question asked was “Overall, how would you
rate the quality of public schools in your neighborhood today?” Table 1.2 displays
the frequencies and relative frequencies, and Figure 1.13 shows the corresponding
histogram (bar chart).

Table 1.2 Frequency Distribution for the School Rating Data

Rating Frequency Relative Frequency

A 478 .191
B 893 .357
C 680 .272
D 178 .071
F 100 .040

Don’t know 172 .069

2501 1.000 

R
el

at
iv

e 
Fr

eq
ue
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Rating

0.4

0.3

0.2

0.1

0.0
A B C D F Don’t know

Chart of Relative Frequency vs Rating

Figure 1.13 Histogram of the school rating data from Minitab

More than half the respondents gave an A or B rating, and only slightly more than
10% gave a D or F rating. The percentages for parents of public school children were
somewhat more favorable to schools: 24%, 40%, 24%, 6%, 4%, and 2%. ■

Multivariate Data
Multivariate data is generally rather difficult to describe visually. Several meth-
ods for doing so appear later in the book, notably scatter plots for bivariate
numerical data.
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EXERCISES Section 1.2 (10–32)

10. Consider the strength data for beams given in Example 1.2.
a. Construct a stem-and-leaf display of the data. What

appears to be a representative strength value? Do the
observations appear to be highly concentrated about the
representative value or rather spread out?

b. Does the display appear to be reasonably symmetric
about a representative value, or would you describe its
shape in some other way?

c. Do there appear to be any outlying strength values?
d. What proportion of strength observations in this sample

exceed 10 MPa?

11. Every score in the following batch of exam scores is in the
60s, 70s, 80s, or 90s. A stem-and-leaf display with only the
four stems 6, 7, 8, and 9 would not give a very detailed
description of the distribution of scores. In such situations,
it is desirable to use repeated stems. Here we could repeat
the stem 6 twice, using 6L for scores in the low 60s (leaves
0, 1, 2, 3, and 4) and 6H for scores in the high 60s (leaves
5, 6, 7, 8, and 9). Similarly, the other stems can be repeated
twice to obtain a display consisting of eight rows. Construct
such a display for the given scores. What feature of the data
is highlighted by this display?

74 89 80 93 64 67 72 70 66 85 89 81 81
71 74 82 85 63 72 81 81 95 84 81 80 70
69 66 60 83 85 98 84 68 90 82 69 72 87
88

12. The accompanying specific gravity values for various wood
types used in construction appeared in the article “Bolted
Connection Design Values Based on European Yield
Model” (J. of Structural Engr., 1993: 2169–2186):

.31 .35 .36 .36 .37 .38 .40 .40 .40

.41 .41 .42 .42 .42 .42 .42 .43 .44

.45 .46 .46 .47 .48 .48 .48 .51 .54

.54 .55 .58 .62 .66 .66 .67 .68 .75

Construct a stem-and-leaf display using repeated stems (see
the previous exercise), and comment on any interesting fea-
tures of the display.

13. A transformation of data values by means of some mathe-
matical function, such as or 1/x, can often yield a set of
numbers that has “nicer” statistical properties than the orig-
inal data. In particular, it may be possible to find a function
for which the histogram of transformed values is more
symmetric (or, even better, more like a bell-shaped curve)
than the original data. As an example, the article “Time
Lapse Cinematographic Analysis of Beryllium–Lung
Fibroblast Interactions” (Environ. Research, 1983: 34–43)
reported the results of experiments designed to study the
behavior of certain individual cells that had been exposed
to beryllium. An important characteristic of such an
individual cell is its interdivision time (IDT). IDTs were
determined for a large number of cells, both in exposed

1x

(treatment) and unexposed (control) conditions. The
authors of the article used a logarithmic transformation,
that is, . Consider
the following representative IDT data:

transformed value 5 log(original value)

IDT log10(IDT) IDT log10(IDT) IDT log10(IDT)

28.1 1.45 60.1 1.78 21.0 1.32
31.2 1.49 23.7 1.37 22.3 1.35
13.7 1.14 18.6 1.27 15.5 1.19
46.0 1.66 21.4 1.33 36.3 1.56
25.8 1.41 26.6 1.42 19.1 1.28
16.8 1.23 26.2 1.42 38.4 1.58
34.8 1.54 32.0 1.51 72.8 1.86
62.3 1.79 43.5 1.64 48.9 1.69
28.0 1.45 17.4 1.24 21.4 1.33
17.9 1.25 38.8 1.59 20.7 1.32
19.5 1.29 30.6 1.49 57.3 1.76
21.1 1.32 55.6 1.75 40.9 1.61
31.9 1.50 25.5 1.41
28.9 1.46 52.1 1.72 

Use class intervals to construct
a histogram of the original data. Use intervals

to do the same for the trans-
formed data. What is the effect of the transformation?

14. The accompanying data set consists of observations on
shower-flow rate (L/min) for a sample of houses in
Perth, Australia (“An Application of Bayes Methodology to
the Analysis of Diary Records in a Water Use Study,”
J. Amer. Stat. Assoc., 1987: 705–711):

4.6 12.3 7.1 7.0 4.0 9.2 6.7 6.9 11.5 5.1
11.2 10.5 14.3 8.0 8.8 6.4 5.1 5.6 9.6 7.5
7.5 6.2 5.8 2.3 3.4 10.4 9.8 6.6 3.7 6.4
8.3 6.5 7.6 9.3 9.2 7.3 5.0 6.3 13.8 6.2
5.4 4.8 7.5 6.0 6.9 10.8 7.5 6.6 5.0 3.3
7.6 3.9 11.9 2.2 15.0 7.2 6.1 15.3 18.9 7.2
5.4 5.5 4.3 9.0 12.7 11.3 7.4 5.0 3.5 8.2
8.4 7.3 10.3 11.9 6.0 5.6 9.5 9.3 10.4 9.7
5.1 6.7 10.2 6.2 8.4 7.0 4.8 5.6 10.5 14.6

10.8 15.5 7.5 6.4 3.4 5.5 6.6 5.9 15.0 9.6
7.8 7.0 6.9 4.1 3.6 11.9 3.7 5.7 6.8 11.3
9.3 9.6 10.4 9.3 6.9 9.8 9.1 10.6 4.5 6.2
8.3 3.2 4.9 5.0 6.0 8.2 6.3 3.8 6.0

a. Construct a stem-and-leaf display of the data.
b. What is a typical, or representative, flow rate?
c. Does the display appear to be highly concentrated or

spread out?
d. Does the distribution of values appear to be reasonably

symmetric? If not, how would you describe the departure
from symmetry?

n 5 129

1.12,1.2, 1.22,1.3, c

102,20, 202,30, c
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e. Would you describe any observation as being far from
the rest of the data (an outlier)?

15. Do running times of American movies differ somehow from
running times of French movies? The author investigated
this question by randomly selecting 25 recent movies of
each type, resulting in the following running times:

Am: 94 90 95 93 128 95 125 91 104 116 162 102 90
110 92 113 116 90 97 103 95 120 109 91 138

Fr: 123 116 90 158 122 119 125 90 96 94 137 102 105
106 95 125 122 103 96 111 81 113 128 93 92

Construct a comparative stem-and-leaf display by listing
stems in the middle of your paper and then placing the Am
leaves out to the left and the Fr leaves out to the right. Then
comment on interesting features of the display.

16. The article cited in Example 1.2 also gave the accompany-
ing strength observations for cylinders:

6.1 5.8 7.8 7.1 7.2 9.2 6.6 8.3 7.0 8.3
7.8 8.1 7.4 8.5 8.9 9.8 9.7 14.1 12.6 11.2

a. Construct a comparative stem-and-leaf display (see the
previous exercise) of the beam and cylinder data, and
then answer the questions in parts (b)–(d) of Exercise 10
for the observations on cylinders.

b. In what ways are the two sides of the display similar?
Are there any obvious differences between the beam
observations and the cylinder observations?

c. Construct a dotplot of the cylinder data.

17. Allowable mechanical properties for structural design of
metallic aerospace vehicles requires an approved method
for statistically analyzing empirical test data. The article
“Establishing Mechanical Property Allowables for
Metals” (J. of Testing and Evaluation, 1998: 293–299) used
the accompanying data on tensile ultimate strength (ksi) as
a basis for addressing the difficulties in developing such a
method.

122.2 124.2 124.3 125.6 126.3 126.5 126.5 127.2 127.3
127.5 127.9 128.6 128.8 129.0 129.2 129.4 129.6 130.2
130.4 130.8 131.3 131.4 131.4 131.5 131.6 131.6 131.8
131.8 132.3 132.4 132.4 132.5 132.5 132.5 132.5 132.6
132.7 132.9 133.0 133.1 133.1 133.1 133.1 133.2 133.2
133.2 133.3 133.3 133.5 133.5 133.5 133.8 133.9 134.0
134.0 134.0 134.0 134.1 134.2 134.3 134.4 134.4 134.6
134.7 134.7 134.7 134.8 134.8 134.8 134.9 134.9 135.2
135.2 135.2 135.3 135.3 135.4 135.5 135.5 135.6 135.6
135.7 135.8 135.8 135.8 135.8 135.8 135.9 135.9 135.9
135.9 136.0 136.0 136.1 136.2 136.2 136.3 136.4 136.4
136.6 136.8 136.9 136.9 137.0 137.1 137.2 137.6 137.6
137.8 137.8 137.8 137.9 137.9 138.2 138.2 138.3 138.3
138.4 138.4 138.4 138.5 138.5 138.6 138.7 138.7 139.0
139.1 139.5 139.6 139.8 139.8 140.0 140.0 140.7 140.7
140.9 140.9 141.2 141.4 141.5 141.6 142.9 143.4 143.5
143.6 143.8 143.8 143.9 144.1 144.5 144.5 147.7 147.7

a. Construct a stem-and-leaf display of the data by first
deleting (truncating) the tenths digit and then repeating
each stem value five times (once for leaves 1 and 2, a

second time for leaves 3 and 4, etc.). Why is it rela-
tively easy to identify a representative strength value?

b. Construct a histogram using equal-width classes with the
first class having a lower limit of 122 and an upper limit
of 124. Then comment on any interesting features of the
histogram.

18. In a study of author productivity (“Lotka’s Test,” Collection
Mgmt., 1982: 111–118), a large number of authors were
classified according to the number of articles they had pub-
lished during a certain period. The results were presented in
the accompanying frequency distribution:

Number 
of papers 1 2 3 4 5 6 7 8
Frequency 784 204 127 50 33 28 19 19

Number 
of papers 9 10 11 12 13 14 15 16 17
Frequency 6 7 6 7 4 4 5 3 3

a. Construct a histogram corresponding to this frequency
distribution. What is the most interesting feature of the
shape of the distribution?

b. What proportion of these authors published at least five
papers? At least ten papers? More than ten papers?

c. Suppose the five 15s, three 16s, and three 17s had been
lumped into a single category displayed as “ .”
Would you be able to draw a histogram? Explain.

d. Suppose that instead of the values 15, 16, and 17 being
listed separately, they had been combined into a 15–17
category with frequency 11. Would you be able to draw
a histogram? Explain.

19. The number of contaminating particles on a silicon wafer prior
to a certain rinsing process was determined for each wafer in
a sample of size 100, resulting in the following frequencies:

Number of particles 0 1 2 3 4 5 6 7
Frequency 1 2 3 12 11 15 18 10
Number of particles 8 9 10 11 12 13 14
Frequency 12 4 5 3 1 2 1

a. What proportion of the sampled wafers had at least one
particle? At least five particles?

b. What proportion of the sampled wafers had between five
and ten particles, inclusive? Strictly between five and ten
particles?

c. Draw a histogram using relative frequency on the vertical
axis. How would you describe the shape of the histogram?

20. The article “Determination of Most Representative
Subdivision” (J. of Energy Engr., 1993: 43–55) gave data on
various characteristics of subdivisions that could be used in
deciding whether to provide electrical power using over-
head lines or underground lines. Here are the values of the
variable of streets within a subdivision:

1280 5320 4390 2100 1240 3060 4770
1050 360 3330 3380 340 1000 960
1320 530 3350 540 3870 1250 2400
960 1120 2120 450 2250 2320 2400

x 5 total length

$15
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3150 5700 5220 500 1850 2460 5850
2700 2730 1670 100 5770 3150 1890
510 240 396 1419 2109

a. Construct a stem-and-leaf display using the thousands
digit as the stem and the hundreds digit as the leaf, and
comment on the various features of the display.

b. Construct a histogram using class boundaries 0, 1000,
2000, 3000, 4000, 5000, and 6000. What proportion of
subdivisions have total length less than 2000? Between
2000 and 4000? How would you describe the shape of
the histogram?

21. The article cited in Exercise 20 also gave the following val-
ues of the variables and

:

y 1 0 1 0 0 2 0 1 1 1 2 1 0 0 1 1 0 1 1
z 1 8 6 1 1 5 3 0 0 4 4 0 0 1 2 1 4 0 4
y 1 1 0 0 0 1 1 2 0 1 2 2 1 1 0 2 1 1 0
z 0 3 0 1 1 0 1 3 2 4 6 6 0 1 1 8 3 3 5

y 1 5 0 3 0 1 1 0 0
z 0 5 2 3 1 0 0 0 3

a. Construct a histogram for the y data. What proportion
of these subdivisions had no culs-de-sac? At least one
cul-de-sac?

b. Construct a histogram for the z data. What proportion of
these subdivisions had at most five intersections? Fewer
than five intersections?

22. How does the speed of a runner vary over the course of a
marathon (a distance of 42.195 km)? Consider determining
both the time to run the first 5 km and the time to run
between the 35-km and 40-km points, and then subtracting
the former time from the latter time. A positive value of this

z 5 number of intersections
y 5 number of culs-de-sac

difference corresponds to a runner slowing down toward the
end of the race. The accompanying histogram is based on
times of runners who participated in several different
Japanese marathons (“Factors Affecting Runners’ Marathon
Performance,” Chance, Fall, 1993: 24–30).

What are some interesting features of this histogram? What is
a typical difference value? Roughly what proportion of the run-
ners ran the late distance more quickly than the early distance?

23. Consider the following data on types of health complaint
(J joint swelling, F fatigue, B back pain, M
muscle weakness, C coughing, N nose running/
irritation, O other) made by tree planters. Obtain fre-
quencies and relative frequencies for the various categories,
and draw a histogram. (The data is consistent with percent-
ages given in the article “Physiological Effects of Work
Stress and Pesticide Exposure in Tree Planting by British
Columbia Silviculture Workers,” Ergonomics, 1993:
951–961.)

O O N J C F B B F O J O O M
O F F O O N O N J F J B O C
J O J J F N O B M O J M O B
O F J O O B N C O O O M B F
J O F N

24. The accompanying data set consists of observations on
shear strength (lb) of ultrasonic spot welds made on a cer-
tain type of alclad sheet. Construct a relative frequency his-
togram based on ten equal-width classes with boundaries
4000, 4200, . . . . [The histogram will agree with the one in
“Comparison of Properties of Joints Prepared by Ultrasonic
Welding and Other Means” (J. of Aircraft, 1983: 552–556).]
Comment on its features.
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1.2 Pictorial and Tabular Methods in Descriptive Statistics 27

11 14 20 23 31 36 39 44 47 50
59 61 65 67 68 71 74 76 78 79
81 84 85 89 91 93 96 99 101 104

105 105 112 118 123 136 139 141 148 158
161 168 184 206 248 263 289 322 388 513

a. Why can a frequency distribution not be based on the
class intervals 0–50, 50–100, 100–150, and so on?

b. Construct a frequency distribution and histogram of the
data using class boundaries 0, 50, 100, . . . , and then
comment on interesting characteristics.

c. Construct a frequency distribution and histogram of the
natural logarithms of the lifetime observations, and com-
ment on interesting characteristics.

d. What proportion of the lifetime observations in this sam-
ple are less than 100? What proportion of the observa-
tions are at least 200?

28. Human measurements provide a rich area of application for
statistical methods. The article “A Longitudinal Study of
the Development of Elementary School Children’s Private
Speech” (Merrill-Palmer Q., 1990: 443–463) reported on a
study of children talking to themselves (private speech). It
was thought that private speech would be related to IQ,
because IQ is supposed to measure mental maturity, and it
was known that private speech decreases as students
progress through the primary grades. The study included 33
students whose first-grade IQ scores are given here:

82 96 99 102 103 103 106 107 108 108 108 108
109 110 110 111 113 113 113 113 115 115 118 118
119 121 122 122 127 132 136 140 146

Describe the data and comment on any interesting features.

29. The article “Statistical Modeling of the Time Course of
Tantrum Anger” (Annals of Applied Stats, 2009: 1013–1034)
discussed how anger intensity in children’s tantrums could
be related to tantrum duration as well as behavioral indica-
tors such as shouting, stamping, and pushing or pulling. The
following frequency distribution was given (and also the cor-
responding histogram):

: 136 : 92 : 71
: 26 : 7 : 3

Draw the histogram and then comment on any interesting
features.

30. A Pareto diagram is a variation of a histogram for cate-
gorical data resulting from a quality control study. Each
category represents a different type of product nonconfor-
mity or production problem. The categories are ordered so
that the one with the largest frequency appears on the far
left, then the category with the second largest frequency,
and so on. Suppose the following information on noncon-
formities in circuit packs is obtained: failed component,
126; incorrect component, 210; insufficient solder, 67;
excess solder, 54; missing component, 131. Construct a
Pareto diagram.

31. The cumulative frequency and cumulative relative
frequency for a particular class interval are the sum of

302,40202,30112,20
42,1122,402,2

5434 4948 4521 4570 4990 5702 5241
5112 5015 4659 4806 4637 5670 4381
4820 5043 4886 4599 5288 5299 4848
5378 5260 5055 5828 5218 4859 4780
5027 5008 4609 4772 5133 5095 4618
4848 5089 5518 5333 5164 5342 5069
4755 4925 5001 4803 4951 5679 5256
5207 5621 4918 5138 4786 4500 5461
5049 4974 4592 4173 5296 4965 5170
4740 5173 4568 5653 5078 4900 4968
5248 5245 4723 5275 5419 5205 4452
5227 5555 5388 5498 4681 5076 4774
4931 4493 5309 5582 4308 4823 4417
5364 5640 5069 5188 5764 5273 5042
5189 4986

25. Temperature transducers of a certain type are shipped in
batches of 50. A sample of 60 batches was selected, and the
number of transducers in each batch not conforming to design
specifications was determined, resulting in the following data:

2 1 2 4 0 1 3 2 0 5 3 3 1 3 2 4 7 0 2 3
0 4 2 1 3 1 1 3 4 1 2 3 2 2 8 4 5 1 3 1
5 0 2 3 2 1 0 6 4 2 1 6 0 3 3 3 6 1 2 3

a. Determine frequencies and relative frequencies for the
observed values of of nonconforming trans-
ducers in a batch.

b. What proportion of batches in the sample have at most
five nonconforming transducers? What proportion have
fewer than five? What proportion have at least five non-
conforming units?

c. Draw a histogram of the data using relative frequency on
the vertical scale, and comment on its features.

26. Automated electron backscattered diffraction is now being
used in the study of fracture phenomena. The following
information on misorientation angle (degrees) was extracted
from the article “Observations on the Faceted Initiation Site
in the Dwell-Fatigue Tested Ti-6242 Alloy: Crystallographic
Orientation and Size Effects (Metallurgical and Materials
Trans., 2006: 1507–1518).

Class:
Rel freq: .177 .166 .175 .136
Class:
Rel freq: .194 .078 .044 .030

a. Is it true that more than 50% of the sampled angles are
smaller than 15°, as asserted in the paper?

b. What proportion of the sampled angles are at least 30°?
c. Roughly what proportion of angles are between 10°

and 25°?
d. Construct a histogram and comment on any interesting

features.

27. The paper “Study on the Life Distribution of Microdrills”
(J. of Engr. Manufacture, 2002: 301–305) reported the fol-
lowing observations, listed in increasing order, on drill life-
time (number of holes that a drill machines before it breaks)
when holes were drilled in a certain brass alloy.

602,90402,60302,40202,30

152,20102,1552,1002,5

x 5 number

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:



28 CHAPTER 1 Overview and Descriptive Statistics

frequencies and relative frequencies, respectively, for that
interval and all intervals lying below it. If, for example,
there are four intervals with frequencies 9, 16, 13, and 12,
then the cumulative frequencies are 9, 25, 38, and 50, and
the cumulative relative frequencies are .18, .50, .76, and
1.00. Compute the cumulative frequencies and cumulative
relative frequencies for the data of Exercise 24.

32. Fire load is the heat energy that could be released
per square meter of floor area by combustion of contents
and the structure itself. The article “Fire Loads in Office
Buildings” (J. of Structural Engr., 1997: 365–368) gave
the following cumulative percentages (read from a graph)
for fire loads in a sample of 388 rooms:

(MJ/m2)

Value 0 150 300 450 600
Cumulative % 0 19.3 37.6 62.7 77.5

Value 750 900 1050 1200 1350
Cumulative % 87.2 93.8 95.7 98.6 99.1

Value 1500 1650 1800 1950
Cumulative % 99.5 99.6 99.8 100.0

a. Construct a relative frequency histogram and comment
on interesting features.

b. What proportion of fire loads are less than 600? At least
1200?

c. What proportion of the loads are between 600 and 1200?

1.3 Measures of Location

Visual summaries of data are excellent tools for obtaining preliminary impres-
sions and insights. More formal data analysis often requires the calculation and
interpretation of numerical summary measures. That is, from the data we try to
extract several summarizing numbers—numbers that might serve to characterize
the data set and convey some of its salient features. Our primary concern will be
with numerical data; some comments regarding categorical data appear at the end
of the section.

Suppose, then, that our data set is of the form , where each xi is
a number. What features of such a set of numbers are of most interest and deserve
emphasis? One important characteristic of a set of numbers is its location, and in
particular its center. This section presents methods for describing the location of a
data set; in Section 1.4 we will turn to methods for measuring variability in a set of
numbers.

The Mean
For a given set of numbers , the most familiar and useful measure of
the center is the mean, or arithmetic average of the set. Because we will almost
always think of the xi’s as constituting a sample, we will often refer to the arithmetic
average as the sample mean and denote it by .x

x1, x2, c, xn

x1, x2, c, xn

DEFINITION The sample mean of observations is given by

The numerator of can be written more informally as , where the sum-
mation is over all sample observations.           

gxix

x 5  
x1 1 x2 1 c 1 xn

n
 5  

g
n

i51
xi

n

x1, x2, c, xnx

For reporting , we recommend using decimal accuracy of one digit more than the
accuracy of the xi’s. Thus if observations are stopping distances with ,

, and so on, we might have .x 5 127.3 ftx2 5 131
x1 5 125

x
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1.3 Measures of Location 29

Example 1.14 Caustic stress corrosion cracking of iron and steel has been studied because of fail-
ures around rivets in steel boilers and failures of steam rotors. Consider the accom-
panying observations on as a result of constant load stress
corrosion tests on smooth bar tensile specimens for a fixed length of time. (The data
is consistent with a histogram and summary quantities from the article “On the Role
of Phosphorus in the Caustic Stress Corrosion Cracking of Low Alloy Steels,”
Corrosion Science, 1989: 53–68.)

Figure 1.14 shows a stem-and-leaf display of the data; a crack length in the low 20s
appears to be “typical.”

x21 5 28.5x20 5 11.8x19 5 32.4x18 5 8.9x17 5 14.6x16 5 24.2x15 5 23.3

x14 5 45.0x13 5 27.1x12 5 14.0x11 5 25.3x10 5 10.3x9  5 18.5x8  5 25.8

x7  5 30.2x6  5 21.2x5  5 12.7x4  5 20.4x3  5 24.9x2  5 9.6x1  5 16.1

x 5 crack length (mm)

0H 96 89
1L 27 03 40 46 18
1H 61 85
2L 49 04 12 33 42 Stem: tens digit

2H 58 53 71 85 Leaf: one and tenths digit

3L 02 24
3H
4L
4H 50

Figure 1.14 A stem-and-leaf display of the crack-length data

With , the sample mean is

a value consistent with information conveyed by the stem-and-leaf display. ■

A physical interpretation of demonstrates how it measures the location (cen-
ter) of a sample. Think of drawing and scaling a horizontal measurement axis, and
then represent each sample observation by a 1-lb weight placed at the corresponding
point on the axis. The only point at which a fulcrum can be placed to balance the sys-
tem of weights is the point corresponding to the value of (see Figure 1.15).x

x

x 5  
444.8

21
 5 21.18

gxi 5 444.8

10 20 30 40

x = 21.18

Figure 1.15 The mean as the balance point for a system of weights

Just as represents the average value of the observations in a sample, the
average of all values in the population can be calculated. This average is called the
population mean and is denoted by the Greek letter . When there are N values in
the population (a finite population), then .
In Chapters 3 and 4, we will give a more general definition for that applies to
both finite and (conceptually) infinite populations. Just as is an interesting and
important measure of sample location, is an interesting and important (often
the most important) characteristic of a population. In the chapters on statistical

m

x
m

m 5 (sum of the N population values)/N
m

x
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Example 1.15

DEFINITION

30 CHAPTER 1 Overview and Descriptive Statistics

inference, we will present methods based on the sample mean for drawing conclu-
sions about a population mean. For example, we might use the sample mean

computed in Example 1.14 as a point estimate (a single number that is
our “best” guess) of crack length for all specimens treated as
described.

The mean suffers from one deficiency that makes it an inappropriate measure
of center under some circumstances: Its value can be greatly affected by the presence
of even a single outlier (unusually large or small observation). In Example 1.14, the
value is obviously an outlier. Without this observation,

; the outlier increases the mean by more than 1 If the
45.0 observation were replaced by the catastrophic value 295.0 a really
extreme outlier, then , which is larger than all but one of the
observations!

A sample of incomes often produces such outlying values (those lucky few
who earn astronomical amounts), and the use of average income as a measure of
location will often be misleading. Such examples suggest that we look for a meas-
ure that is less sensitive to outlying values than , and we will momentarily pro-
pose one. However, although does have this potential defect, it is still the most
widely used measure, largely because there are many populations for which an
extreme outlier in the sample would be highly unlikely. When sampling from
such a population (a normal or bell-shaped population being the most important
example), the sample mean will tend to be stable and quite representative of the
sample.

The Median
The word median is synonymous with “middle,” and the sample median is indeed
the middle value once the observations are ordered from smallest to largest. When
the observations are denoted by , we will use the symbol to represent the
sample median.

x|x1, c, xn

x
x

x 5 694.8/21 5 33.09
mm,mm
mm.x 5 399.8/20 5 19.99

x14 5 45.0

m 5 the true average
x 5 21.18

The sample median is obtained by first ordering the n observations from
smallest to largest (with any repeated values included so that every sample
observation appears in the ordered list). Then,

The single
middle
value if n
is odd
The average
of the two
middle
values if n
is even           

x| 5

People not familiar with classical music might tend to believe that a composer’s
instructions for playing a particular piece are so specific that the duration would
not depend at all on the performer(s). However, there is typically plenty of room
for interpretation, and orchestral conductors and musicians take full advantage of
this. The author went to the Web site ArkivMusic.com and selected a sample of

5 an 1 1

2
b th

  ordered value

5 average of an

2
b th

and an

2
1 1b th

 ordered values

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩
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1.3 Measures of Location 31

60 65 70
Duration

75 80

Figure 1.16 Dotplot of the data from Example 1.14

12 recordings of Beethoven’s Symphony #9 (the “Choral,” a stunningly beautiful
work), yielding the following durations (min) listed in increasing order:

62.3 62.8 63.6 65.2 65.7 66.4 67.4 68.4 68.8 70.8 75.7 79.0

Here is a dotplot of the data:

Since is even, the sample median is the average of the 
values from the ordered list:

Note that if the largest observation 79.0 had not been included in the sample, the
resulting sample median for the remaining observations would have been the
single middle value 66.4 (the ordered value, i.e. the 6th value in from
either end of the ordered list). The sample mean is , a
bit more than a full minute larger than the median. The mean is pulled out a bit rela-
tive to the median because the sample “stretches out” somewhat more on the upper
end than on the lower end. ■

The data in Example 1.15 illustrates an important property of in contrast to
: The sample median is very insensitive to outliers. If, for example, we increased

the two largest xis from 75.7 and 79.0 to 85.7 and 89.0, respectively, would be
unaffected. Thus, in the treatment of outlying data values, and are at opposite
ends of a spectrum. Both quantities describe where the data is centered, but they will
not in general be equal because they focus on different aspects of the sample.

Analogous to as the middle value in the sample is a middle value in the pop-
ulation, the population median, denoted by . As with and , we can think of
using the sample median to make an inference about . In Example 1.15, we might
use as an estimate of the median time for the population of all record-
ings. A median is often used to describe income or salary data (because it is not
greatly influenced by a few large salaries). If the median salary for a sample of engi-
neers were , we might use this as a basis for concluding that the median
salary for all engineers exceeds $60,000.

The population mean and median will not generally be identical. If the
population distribution is positively or negatively skewed, as pictured in Figure
1.17, then . When this is the case, in making inferences we must first decide
which of the two population characteristics is of greater interest and then proceed
accordingly.

m 2 m|

m|m

x| 5 $66,416

x| 5 66.90
m|x|

mxm|
x|

x|x
x|

x
x|

x 5 gxi 5 816.1/12 5 68.01
[n 1 1]/2 5 6th

n 5 11

x| 5  
66.4 1 67.4

2
 5 66.90

(n/2 1 1) 5 7th
n/2 5 6th andn 5 12

� � � �~ ~~� ��

(a) Negative skew (b) Symmetric (c) Positive skew

Figure 1.17 Three different shapes for a population distribution
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Example 1.16

32 CHAPTER 1 Overview and Descriptive Statistics

Other Measures of Location: Quartiles,
Percentiles, and Trimmed Means
The median (population or sample) divides the data set into two parts of equal
size. To obtain finer measures of location, we could divide the data into more
than two such parts. Roughly speaking, quartiles divide the data set into four
equal parts, with the observations above the third quartile constituting the upper
quarter of the data set, the second quartile being identical to the median, and the
first quartile separating the lower quarter from the upper three-quarters. Similarly,
a data set (sample or population) can be even more finely divided using
percentiles; the 99th percentile separates the highest 1% from the bottom 99%,
and so on. Unless the number of observations is a multiple of 100, care must be
exercised in obtaining percentiles. We will use percentiles in Chapter 4 in con-
nection with certain models for infinite populations and so postpone discussion
until that point.

The mean is quite sensitive to a single outlier, whereas the median is
impervious to many outliers. Since extreme behavior of either type might be
undesirable, we briefly consider alternative measures that are neither as sensitive
as nor as insensitive as . To motivate these alternatives, note that and are
at opposite extremes of the same “family” of measures. The mean is the average
of all the data, whereas the median results from eliminating all but the middle
one or two values and then averaging. To paraphrase, the mean involves trim-
ming 0% from each end of the sample, whereas for the median the maximum
possible amount is trimmed from each end. A trimmed mean is a compromise
between and . A 10% trimmed mean, for example, would be computed by
eliminating the smallest 10% and the largest 10% of the sample and then aver-
aging what remains.

The production of Bidri is a traditional craft of India. Bidri wares (bowls, vessels,
and so on) are cast from an alloy containing primarily zinc along with some copper.
Consider the following observations on copper content (%) for a sample of Bidri
artifacts in London’s Victoria and Albert Museum (“Enigmas of Bidri,” Surface
Engr., 2005: 333–339), listed in increasing order:

2.0 2.4 2.5 2.6 2.6 2.7 2.7 2.8 3.0 3.1 3.2 3.3 3.3
3.4 3.4 3.6 3.6 3.6 3.6 3.7 4.4 4.6 4.7 4.8 5.3 10.1

Figure 1.18 is a dotplot of the data. A prominent feature is the single outlier at the
upper end; the distribution is somewhat sparser in the region of larger values than is
the case for smaller values. The sample mean and median are 3.65 and 3.35, respec-
tively. A trimmed mean with a trimming percentage of results
from eliminating the two smallest and two largest observations; this gives

. Trimming here eliminates the larger outlier and so pulls the trimmed
mean toward the median.
xtr(7.7) 5 3.42

100(2/26) 5 7.7%

x|x

x|xx|x

x~

x–

xtr (7.7)
–

1 2 3 4 5 6 7 8 9 10 11

Figure 1.18 Dotplot of copper contents from Example 1.16 ■
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1.3 Measures of Location 33

A trimmed mean with a moderate trimming percentage—someplace
between 5% and 25%—will yield a measure of center that is neither as sensitive
to outliers as is the mean nor as insensitive as the median. If the desired
trimming percentage is and is not an integer, the trimmed mean
must be calculated by interpolation. For example, consider for a
10% trimming percentage and as in Example 1.16. Then would be
the appropriate weighted average of the 7.7% trimmed mean calculated there
and the 11.5% trimmed mean resulting from trimming three observations from
each end.

Categorical Data and Sample Proportions
When the data is categorical, a frequency distribution or relative frequency dis-
tribution provides an effective tabular summary of the data. The natural numer-
ical summary quantities in this situation are the individual frequencies and the
relative frequencies. For example, if a survey of individuals who own digital
cameras is undertaken to study brand preference, then each individual in the
sample would identify the brand of camera that he or she owned, from which we
could count the number owning Canon, Sony, Kodak, and so on. Consider sam-
pling a dichotomous population—one that consists of only two categories (such
as voted or did not vote in the last election, does or does not own a digital cam-
era, etc.). If we let x denote the number in the sample falling in category 1, then
the number in category 2 is . The relative frequency or sample proportion
in category 1 is x/n and the sample proportion in category 2 is . Let’s
denote a response that falls in category 1 by a 1 and a response that falls in cat-
egory 2 by a 0. A sample size of might then yield the responses 1, 1, 0,
1, 1, 1, 0, 0, 1, 1. The sample mean for this numerical sample is (since number
of )

More generally, focus attention on a particular category and code the sample
results so that a 1 is recorded for an observation in the category and a 0 for an
observation not in the category. Then the sample proportion of observations in the
category is the sample mean of the sequence of 1s and 0s. Thus a sample mean can
be used to summarize the results of a categorical sample. These remarks also apply
to situations in which categories are defined by grouping values in a numerical sam-
ple or population (e.g., we might be interested in knowing whether individuals have
owned their present automobile for at least 5 years, rather than studying the exact
length of ownership).

Analogous to the sample proportion x/n of individuals or objects falling in a
particular category, let p represent the proportion of those in the entire population
falling in the category. As with x/n, p is a quantity between 0 and 1, and while x/n
is a sample characteristic, p is a characteristic of the population. The relationship
between the two parallels the relationship between and and between and .
In particular, we will subsequently use x/n to make inferences about p. If, for
example, a sample of 100 car owners reveals that 22 owned their car at least 5
years, then we might use as a point estimate of the proportion of all
owners who have owned their car at least 5 years. With k categories , we
can use the k sample proportions to answer questions about the population pro-
portions .p1, c, pk

(k . 2)
22/100 5 .22

mxm|x|

x1 1 c1 xn

n
5

1 1 1 1 0 1 c1 1 1 1

10
5

7

10
5

x
n

5 sample proportion

1s 5 x 5 7

n 5 10

1 2 x/n
n 2 x

xtr(10)n 5 26
a 5 .10

na100a%
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34 CHAPTER 1 Overview and Descriptive Statistics

EXERCISES Section 1.3 (33–43)

33. The May 1, 2009 issue of The Montclarian reported the fol-
lowing home sale amounts for a sample of homes in Alameda,
CA that were sold the previous month (1000s of $):

590 815 575 608 350 1285 408 540 555 679

a. Calculate and interpret the sample mean and median.
b. Suppose the 6th observation had been 985 rather than

1285. How would the mean and median change?
c. Calculate a 20% trimmed mean by first trimming the two

smallest and two largest observations.
d. Calculate a 15% trimmed mean.

34. Exposure to microbial products, especially endotoxin, may
have an impact on vulnerability to allergic diseases. The
article “Dust Sampling Methods for Endotoxin—An
Essential, But Underestimated Issue” (Indoor Air, 2006:
20–27) considered various issues associated with determin-
ing endotoxin concentration. The following data on concen-
tration (EU/mg) in settled dust for one sample of urban
homes and another of farm homes was kindly supplied by
the authors of the cited article.

U: 6.0 5.0 11.0 33.0 4.0 5.0 80.0 18.0 35.0 17.0 23.0
F: 4.0 14.0 11.0 9.0 9.0 8.0 4.0 20.0 5.0 8.9 21.0

9.2 3.0 2.0 0.3

a. Determine the sample mean for each sample. How do
they compare?

b. Determine the sample median for each sample. How do
they compare? Why is the median for the urban sample
so different from the mean for that sample?

c. Calculate the trimmed mean for each sample by deleting
the smallest and largest observation. What are the corre-
sponding trimming percentages? How do the values of
these trimmed means compare to the corresponding
means and medians?

35. An experiment to study the lifetime (in hours) for a certain
type of component involved putting ten components into
operation and observing them for 100 hours. Eight of the
components failed during that period, and those lifetimes
were recorded. Denote the lifetimes of the two components
still functioning after 100 hours by . The resulting
sample observations were

48 79 35 92 86 57 17 29

Which of the measures of center discussed in this section
can be calculated, and what are the values of those meas-
ures? [Note: The data from this experiment is said to be
“censored on the right.”]

36. A sample of 26 offshore oil workers took part in a simulated
escape exercise, resulting in the accompanying data on time
(sec) to complete the escape (“Oxygen Consumption and
Ventilation During Escape from an Offshore Platform,”
Ergonomics, 1997: 281–292):

10011001

1001

389 356 359 363 375 424 325 394 402
373 373 370 364 366 364 325 339 393
392 369 374 359 356 403 334 397

a. Construct a stem-and-leaf display of the data. How does it
suggest that the sample mean and median will compare?

b. Calculate the values of the sample mean and median.
[Hint: .]

c. By how much could the largest time, currently 424, be
increased without affecting the value of the sample
median? By how much could this value be decreased
without affecting the value of the sample median?

d. What are the values of and when the observations are
reexpressed in minutes?

37. The article “Snow Cover and Temperature Relationships in
North America and Eurasia” (J. Climate and Applied
Meteorology, 1983: 460–469) used statistical techniques to
relate the amount of snow cover on each continent to aver-
age continental temperature. Data presented there included
the following ten observations on October snow cover for
Eurasia during the years 1970–1979 (in million km2):

6.5 12.0 14.9 10.0 10.7 7.9 21.9 12.5 14.5 9.2

What would you report as a representative, or typical, value
of October snow cover for this period, and what prompted
your choice?

38. Blood pressure values are often reported to the nearest
5 mmHg (100, 105, 110, etc.). Suppose the actual blood
pressure values for nine randomly selected individuals are

118.6 127.4 138.4 130.0 113.7 122.0 108.3
131.5 133.2

a. What is the median of the reported blood pressure values?
b. Suppose the blood pressure of the second individual is

127.6 rather than 127.4 (a small change in a single
value). How does this affect the median of the reported
values? What does this say about the sensitivity of the
median to rounding or grouping in the data?

39. The minimum injection pressure (psi) for injection molding
specimens of high amylose corn was determined for eight
different specimens (higher pressure corresponds to greater
processing difficulty), resulting in the following observa-
tions (from “Thermoplastic Starch Blends with a
Polyethylene-Co-Vinyl Alcohol: Processability and Physical
Properties,” Polymer Engr. and Science, 1994: 17–23):

15.0 13.0 18.0 14.5 12.0 11.0 8.9 8.0

a. Determine the values of the sample mean, sample
median, and 12.5% trimmed mean, and compare these
values.

b. By how much could the smallest sample observation,
currently 8.0, be increased without affecting the value of
the sample median?

x|x

gxi 5 9638
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c. Suppose we want the values of the sample mean and
median when the observations are expressed in kilograms
per square inch (ksi) rather than psi. Is it necessary to reex-
press each observation in ksi, or can the values calculated
in part (a) be used directly? [Hint:

40. Compute the sample median, 25% trimmed mean, 10%
trimmed mean, and sample mean for the lifetime data given
in Exercise 27, and compare these measures.

41. A sample of automobiles was selected, and each
was subjected to a 5-mph crash test. Denoting a car with no
visible damage by S (for success) and a car with such dam-
age by F, results were as follows:

S S F S S S F F S S

a. What is the value of the sample proportion of successes
x/n?

b. Replace each S with a 1 and each F with a 0. Then cal-
culate for this numerically coded sample. How does 
compare to x/n?

c. Suppose it is decided to include 15 more cars in the
experiment. How many of these would have to be S’s to
give for the entire sample of 25 cars?x/n 5 .80

xx

n 5 10

1 kg 5 2.2 lb.]

42. a. If a constant c is added to each xi in a sample, yielding
, how do the sample mean and median of the

yis relate to the mean and median of the xis? Verify your
conjectures.

b. If each xi is multiplied by a constant c, yielding ,
answer the question of part (a). Again, verify your
conjectures.

43. The propagation of fatigue cracks in various aircraft parts
has been the subject of extensive study in recent years. The
accompanying data consists of propagation lives (flight
hours/104) to reach a given crack size in fastener holes
intended for use in military aircraft (“Statistical Crack
Propagation in Fastener Holes Under Spectrum Loading,”
J. Aircraft, 1983: 1028–1032):

.736 .863 .865 .913 .915 .937 .983 1.007
1.011 1.064 1.109 1.132 1.140 1.153 1.253 1.394

a. Compute and compare the values of the sample mean
and median.

b. By how much could the largest sample observation be
decreased without affecting the value of the median?

yi 5 cxi

yi 5 xi 1 c

1.4 Measures of Variability

Reporting a measure of center gives only partial information about a data set or dis-
tribution. Different samples or populations may have identical measures of center
yet differ from one another in other important ways. Figure 1.19 shows dotplots of
three samples with the same mean and median, yet the extent of spread about the
center is different for all three samples. The first sample has the largest amount of
variability, the third has the smallest amount, and the second is intermediate to the
other two in this respect.

30 40

* * * * * * * * *

50 60 70

1:

2:

3:

Figure 1.19 Samples with identical measures of center but different amounts of variability

Measures of Variability for Sample Data
The simplest measure of variability in a sample is the range, which is the difference
between the largest and smallest sample values. The value of the range for sample 1
in Figure 1.19 is much larger than it is for sample 3, reflecting more variability in the
first sample than in the third. A defect of the range, though, is that it depends on only
the two most extreme observations and disregards the positions of the remaining
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The sample variance, denoted by s2, is given by

The sample standard deviation, denoted by s, is the (positive) square root of
the variance:

s 5 2s2

s2 5  
g (xi 2 x)2

n 2 1
 5  

Sxx

n 2 1

Note that s2 and s are both nonnegative. The unit for s is the same as the unit for each
of the xis. If, for example, the observations are fuel efficiencies in miles per gallon,
then we might have . A rough interpretation of the sample standard
deviation is that it is the size of a typical or representative deviation from the sam-
ple mean within the given sample. Thus if , then some xi’s in the sam-
ple are closer than 2.0 to , whereas others are farther away; 2.0 is a representative
(or “standard”) deviation from the mean fuel efficiency. If for a second sam-
ple of cars of another type, a typical deviation in this sample is roughly 1.5 times
what it is in the first sample, an indication of more variability in the second sample.

The Web site www.fueleconomy.gov contains a wealth of information about fuel
characteristics of various vehicles. In addition to EPA mileage ratings, there are

s 5 3.0
x

s 5 2.0 mpg

s 5 2.0 mpg

values. Samples 1 and 2 in Figure 1.19 have identical ranges, yet when we take
into account the observations between the two extremes, there is much less variabil-
ity or dispersion in the second sample than in the first.

Our primary measures of variability involve the deviations from the mean,
. That is, the deviations from the mean are obtained by

subtracting from each of the n sample observations. A deviation will be positive if
the observation is larger than the mean (to the right of the mean on the measurement
axis) and negative if the observation is smaller than the mean. If all the deviations
are small in magnitude, then all xis are close to the mean and there is little variabil-
ity. Alternatively, if some of the deviations are large in magnitude, then some xis lie
far from , suggesting a greater amount of variability. A simple way to combine the
deviations into a single quantity is to average them. Unfortunately, this is a bad idea:

so that the average deviation is always zero. The verification uses several standard
rules of summation and the fact that :

How can we prevent negative and positive deviations from counteracting one another
when they are combined? One possibility is to work with the absolute values of the
deviations and calculate the average absolute deviation . Because the
absolute value operation leads to a number of theoretical difficulties, consider
instead the squared deviations . Rather than use
the average squared deviation , for several reasons we divide the sum
of squared deviations by rather than n.n 2 1

g (xi 2 x)2/n
(x1 2 x)2, (x2 2 x)2, c, (xn 2 x)2

g u xi 2 x u /n

g(xi 2 x) 5 gxi 2 gx 5 gxi 2 nx 5 gxi 2 na 
1
n
 gxib 5 0

gx 5 x 1 x 1 c 1 x 5 nx

sum of deviations 5 g
n

i51
(xi 2 x) 5 0

x

x
x1 2 x, x2 2 x, c, xn 2 x

n 2 2
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Car xi

1 27.3 35.522
2 27.9 28.730
3 32.9 0.130
4 35.2 1.94 3.764
5 44.9 11.64 135.490
6 39.9 6.64 44.090
7 30.0 10.628
8 29.7 12.674
9 28.5 22.658

10 32.0 1.588
11 37.6 4.34 18.836

x 5 33.26g sxi 2 xd2 5 314.106g sxi 2 xd 5 .04gxi 5 365.9

21.26
24.76
23.56
23.26

20.36
25.36
25.96

sxi 2 xd2xi 2 x

many vehicles for which users have reported their own values of fuel efficiency
(mpg). Consider the following sample of efficiencies for the 2009 Ford
Focus equipped with an automatic transmission (for this model, EPA reports an over-
all rating of 27 mpg–24 mpg for city driving and 33 mpg for highway driving):

n 5 11

Effects of rounding account for the sum of deviations not being exactly zero. The
numerator of s2 is , from which

The size of a representative deviation from the sample mean 33.26 is roughly 5.6 mpg.
Note: Of the nine people who also reported driving behavior, only three did more
than 80% of their driving in highway mode; we bet you can guess which cars they
drove. We haven’t a clue why all 11 reported values exceed the EPA figure—maybe
only drivers with really good fuel efficiencies communicate their results. ■

Motivation for s2

To explain the rationale for the divisor in s2, note first that whereas s2 meas-
ures sample variability, there is a measure of variability in the population called the
population variance. We will use (the square of the lowercase Greek letter sigma)
to denote the population variance and to denote the population standard deviation
(the square root of ). When the population is finite and consists of N values,

which is the average of all squared deviations from the population mean (for the pop-
ulation, the divisor is N and not ). More general definitions of appear in
Chapters 3 and 4.

Just as will be used to make inferences about the population mean , we
should define the sample variance so that it can be used to make inferences about .
Now note that involves squared deviations about the population mean . If we actu-
ally knew the value of , then we could define the sample variance as the average
squared deviation of the sample xis about . However, the value of is almost never
known, so the sum of squared deviations about must be used. But the xis tend to be
closer to their average than to the population average , so to compensate for thismx

x
mm

m

ms2
s2

mx

s2N 2 1

s2 5 g
N

i51
(xi 2 m)2/N

s2
s

s2

n 2 1

s2 5  
Sxx

n 2 1
 5  

314.106

11 2 1
 5 31.41,  s 5 5.60

Sxx 5 314.106
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the divisor is used rather than n. In other words, if we used a divisor n in the
sample variance, then the resulting quantity would tend to underestimate (produce
estimated values that are too small on the average), whereas dividing by the slightly
smaller corrects this underestimating.

It is customary to refer to s2 as being based on degrees of freedom (df).
This terminology reflects the fact that although s2 is based on the n quantities

, these sum to 0, so specifying the values of any 
of the quantities determines the remaining value. For example, if and

, , and , then automatically , so
only three of the four values of are freely determined (3 df).

A Computing Formula for s2

It is best to obtain s2 from statistical software or else use a calculator that allows you
to enter data into memory and then view s2 with a single keystroke. If your calcula-
tor does not have this capability, there is an alternative formula for Sxx that avoids
calculating the deviations. The formula involves both , summing and then
squaring, and , squaring and then summing.gxi

2
AgxiB2

xi 2 x
x3 2 x 5 2x4 2 x 5 24x2 2 x 5 26x1 2 x 5 8

n 5 4
n 2 1x1 2 x, x2 2 x, c, xn 2 x

n 2 1
n 2 1

s2
n 2 1

An alternative expression for the numerator of s2 is

Sxx 5 g (xi 2 x)2 5 gxi
2 2  

AgxiB2
n

Proof Because . Then,

Traumatic knee dislocation often requires surgery to repair ruptured ligaments. One
measure of recovery is range of motion (measured as the angle formed when, start-
ing with the leg straight, the knee is bent as far as possible). The given data on post-
surgical range of motion appeared in the article “Reconstruction of the Anterior and
Posterior Cruciate Ligaments After Knee Dislocation” (Amer. J. Sports Med., 1999:
189–197):

The sum of these 13 sample observations is , and the sum of their
squares is

Thus the numerator of the sample variance is

from which and .                                      ■

Both the defining formula and the computational formula for s2 can be sensitive to
rounding, so as much decimal accuracy as possible should be used in intermediate
calculations.

Several other properties of s2 can enhance understanding and facilitate com-
putation.

s 5 11.47s2 5 1579.0769/12 5 131.59

Sxx 5 gxi
2 2 [(gxi)

2]/n 5 222,581 2 (1695)2/13 5 1579.0769

gxi
2 5 (154)2 1 (142)2 1 c 1 (122)2 5 222,581

gxi 5 1695

154 142 137 133 122 126 135 135 108 120 127 134 122

5 gxi
2 2 2x # nx 1 n(x)2 5 gxi

2 2 n(x)2

g (xi 2 x )2 5 g (xi
2 2 2x # xi 1 x2) 5 gxi

2 2 2x gxi 1 g (x)2

x 5 gxi 
/n, nx2 5 AgxiB2/n

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:
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PROPOSITION Let be a sample and c be any nonzero constant.

1. If , then , and

2. If , then 

where is the sample variance of the x’s and is the sample variance of the y’s.sy
2sx

2

sy
2 5 c2sx

2, sy 5 u c usxy1 5 cx1, c, yn 5 cxn

sy
2 5 sx

2y1 5 x1 1 c, y2 5 x2 1 c, c , yn 5 xn 1 c

x1, x2, c, xn

In words, Result 1 says that if a constant c is added to (or subtracted from) each data
value, the variance is unchanged. This is intuitive, since adding or subtracting c
shifts the location of the data set but leaves distances between data values un-
changed. According to Result 2, multiplication of each xi by c results in s2 being mul-
tiplied by a factor of c2. These properties can be proved by noting in Result 1 that

and in Result 2 that .

Boxplots
Stem-and-leaf displays and histograms convey rather general impressions about a
data set, whereas a single summary such as the mean or standard deviation focuses
on just one aspect of the data. In recent years, a pictorial summary called a boxplot
has been used successfully to describe several of a data set’s most prominent fea-
tures. These features include (1) center, (2) spread, (3) the extent and nature of any
departure from symmetry, and (4) identification of “outliers,” observations that lie
unusually far from the main body of the data. Because even a single outlier can dras-
tically affect the values of and s, a boxplot is based on measures that are “resist-
ant” to the presence of a few outliers—the median and a measure of variability called
the fourth spread.

x

y 5 cxy 5 x 1 c

DEFINITION Order the n observations from smallest to largest and separate the smallest half
from the largest half; the median is included in both halves if n is odd. Then
the lower fourth is the median of the smallest half and the upper fourth is
the median of the largest half. A measure of spread that is resistant to outliers
is the fourth spread fs, given by

fs 5 upper fourth 2 lower fourth

x|

Roughly speaking, the fourth spread is unaffected by the positions of those observations
in the smallest 25% or the largest 25% of the data. Hence it is resistant to outliers.

The simplest boxplot is based on the following five-number summary:

First, draw a horizontal measurement scale. Then place a rectangle above this axis;
the left edge of the rectangle is at the lower fourth, and the right edge is at the upper
fourth . Place a vertical line segment or some other symbol
inside the rectangle at the location of the median; the position of the median symbol
relative to the two edges conveys information about skewness in the middle 50% of
the data. Finally, draw “whiskers” out from either end of the rectangle to the small-
est and largest observations. A boxplot with a vertical orientation can also be drawn
by making obvious modifications in the construction process.

(so box width 5 fs)

smallest xi lower fourth median upper fourth largest xi
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40 50 60 70 80 90 100 110 120 130
Depth

Figure 1.20 A boxplot of the corrosion data

Ultrasound was used to gather the accompanying corrosion data on the thickness of
the floor plate of an aboveground tank used to store crude oil (“Statistical Analysis
of UT Corrosion Data from Floor Plates of a Crude Oil Aboveground Storage Tank,”
Materials Eval., 1994: 846–849); each observation is the largest pit depth in the
plate, expressed in milli-in.

40 52 55 60 70 75 85 85 90 90 92 94 94 95 98 100 115 125 125

The five-number summary is as follows:

Figure 1.20 shows the resulting boxplot. The right edge of the box is much closer to
the median than is the left edge, indicating a very substantial skew in the middle half
of the data. The box width (fs) is also reasonably large relative to the range of the
data (distance between the tips of the whiskers).

largest xi 5 125
smallest xi 5 40 lower fourth 5 72.5 x| 5 90 upper fourth 5 96.5

Figure 1.21 shows Minitab output from a request to describe the corrosion data. Q1
and Q3 are the lower and upper quartiles; these are similar to the fourths but are cal-
culated in a slightly different manner. SE Mean is ; this will be an important
quantity in our subsequent work concerning inferences about .m

s/1n

Variable N Mean Median TrMean StDev SE Mean
depth 19 86.32 90.00 86.76 23.32 5.35

Variable Minimum Maximum Q1 Q3
depth 40.00 125.00 70.00 98.00

Figure 1.21 Minitab description of the pit-depth data ■

Boxplots That Show Outliers
A boxplot can be embellished to indicate explicitly the presence of outliers. Many
inferential procedures are based on the assumption that the population distribution is
normal (a certain type of bell curve). Even a single extreme outlier in the sample
warns the investigator that such procedures may be unreliable, and the presence of
several mild outliers conveys the same message.

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

DEFINITION Any observation farther than 1.5fs from the closest fourth is an outlier. An outlier
is extreme if it is more than 3fs from the nearest fourth, and it is mild otherwise.

Let’s now modify our previous construction of a boxplot by drawing a whisker
out from each end of the box to the smallest and largest observations that are not
outliers. Each mild outlier is represented by a closed circle and each extreme outlier
by an open circle. Some statistical computer packages do not distinguish between
mild and extreme outliers.
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The Clean Water Act and subsequent amendments require that all waters in the United
States meet specific pollution reduction goals to ensure that water is “fishable and
swimmable.” The article “Spurious Correlation in the USEPA Rating Curve Method
for Estimating Pollutant Loads” (J. of Environ. Engr., 2008: 610–618) investigated var-
ious techniques for estimating pollutant loads in watersheds; the authors “discuss the
imperative need to use sound statistical methods” for this purpose. Among the data
considered is the following sample of TN (total nitrogen) loads (kg N/day) from a par-
ticular Chesapeake Bay location, displayed here in increasing order.

9.69 13.16 17.09 18.12 23.70 24.07 24.29 26.43
30.75 31.54 35.07 36.99 40.32 42.51 45.64 48.22
49.98 50.06 55.02 57.00 58.41 61.31 64.25 65.24
66.14 67.68 81.40 90.80 92.17 92.42 100.82 101.94

103.61 106.28 106.80 108.69 114.61 120.86 124.54 143.27
143.75 149.64 167.79 182.50 192.55 193.53 271.57 292.61
312.45 352.09 371.47 444.68 460.86 563.92 690.11 826.54

1529.35

Relevant summary quantities are

Subtracting 1.5fs from the lower 4th gives a negative number, and none of the obser-
vations are negative, so there are no outliers on the lower end of the data. However,

Thus the four largest observations—563.92, 690.11, 826.54, and 1529.35—are
extreme outliers, and 352.09, 371.47, 444.68, and 460.86 are mild outliers.

The whiskers in the boxplot in Figure 1.22 extend out to the smallest observa-
tion, 9.69, on the low end and 312.45, the largest observation that is not an outlier,
on the upper end. There is some positive skewness in the middle half of the data (the
median line is somewhat closer to the left edge of the box than to the right edge) and
a great deal of positive skewness overall.

upper 4th 1 1.5fs 5 351.015  upper 4th 1 3fs 5 534.24

fs 5 122.15  1.5fs 5 183.225  3fs 5 366.45

x| 5 92.17  lower 4th 5 45.64  upper 4th 5 167.79

0 200 400 600 800 1000 1200 1400 1600
load

Daily nitrogen load 

Figure 1.22 A boxplot of the nitrogen load data showing mild and extreme outliers ■

Example 1.20

Comparative Boxplots
A comparative or side-by-side boxplot is a very effective way of revealing similari-
ties and differences between two or more data sets consisting of observations on the
same variable—fuel efficiency observations for four different types of automobiles,
crop yields for three different varieties, and so on.
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In recent years, some evidence suggests that high indoor radon concentration may be
linked to the development of childhood cancers, but many health professionals remain
unconvinced. A recent article (“Indoor Radon and Childhood Cancer,” The Lancet,
1991: 1537–1538) presented the accompanying data on radon concentration (Bq/m3) in
two different samples of houses. The first sample consisted of houses in which a child
diagnosed with cancer had been residing. Houses in the second sample had no recorded
cases of childhood cancer. Figure 1.23 presents a stem-and-leaf display of the data.

recnacoN.2recnaC.1

9683795 0 95768397678993
86071815066815233150 1 12271713114

12302731 2 99494191
8349 3 839

5 4
7 5 55

6
7 Stem: Tens digit

HI: 210 8 5 Leaf: Ones digit

Figure 1.23 Stem-and-leaf display for Example 1.21

Numerical summary quantities are as follows:

s fs

Cancer 22.8 16.0 31.7 11.0
No cancer 19.2 12.0 17.0 18.0

x|x

The values of both the mean and median suggest that the cancer sample is centered
somewhat to the right of the no-cancer sample on the measurement scale. The mean,
however, exaggerates the magnitude of this shift, largely because of the observation
210 in the cancer sample. The values of s suggest more variability in the cancer sam-
ple than in the no-cancer sample, but this impression is contradicted by the fourth
spreads. Again, the observation 210, an extreme outlier, is the culprit. Figure 1.24
shows a comparative boxplot from the S-Plus computer package. The no-cancer box

0

50

100

150

200

Radon
concentration

No cancer Cancer

Figure 1.24 A boxplot of the data in Example 1.21, from S-Plus
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is stretched out compared with the cancer box , and the positions
of the median lines in the two boxes show much more skewness in the middle half of
the no-cancer sample than the cancer sample. Outliers are represented by horizontal
line segments, and there is no distinction between mild and extreme outliers. ■ 

(fs 5 18 vs. fs 5 11)

EXERCISES Section 1.4 (44–61)

44. The article “Oxygen Consumption During Fire
Suppression: Error of Heart Rate Estimation” (Ergonomics,
1991: 1469–1474) reported the following data on oxygen
consumption (mL/kg/min) for a sample of ten firefighters
performing a fire-suppression simulation:

29.5 49.3 30.6 28.2 28.0 26.3 33.9 29.4 23.5 31.6
Compute the following:

a. The sample range
b. The sample variance s2 from the definition (i.e., by first

computing deviations, then squaring them, etc.)
c. The sample standard deviation
d. s2 using the shortcut method

45. The article “A Thin-Film Oxygen Uptake Test for the
Evaluation of Automotive Crankcase Lubricants”
(Lubric. Engr., 1984: 75–83) reported the following data
on oxidation-induction time (min) for various commer-
cial oils:

87 103 130 160 180 195 132 145 211 105 145
153 152 138 87 99 93 119 129

a. Calculate the sample variance and standard deviation.
b. If the observations were reexpressed in hours, what

would be the resulting values of the sample variance and
sample standard deviation? Answer without actually per-
forming the reexpression.

46. The accompanying observations on stabilized viscosity (cP)
for specimens of a certain grade of asphalt with 18% rubber
added are from the article “Viscosity Characteristics of
Rubber-Modified Asphalts” (J. of Materials in Civil Engr.,
1996: 153–156):

2781 2900 3013 2856 2888

a. What are the values of the sample mean and sample
median?

b. Calculate the sample variance using the computational
formula. [Hint: First subtract a convenient number from
each observation.]

47. Calculate and interpret the values of the sample median, sam-
ple mean, and sample standard deviation for the following
observations on fracture strength (MPa, read from a graph in
“Heat-Resistant Active Brazing of Silicon Nitride: Mechanical
Evaluation of Braze Joints,” Welding J., August, 1997):

87 93 96 98 105 114 128 131 142 168

48. Exercise 34 presented the following data on endotoxin con-
centration in settled dust both for a sample of urban homes
and for a sample of farm homes:

U: 6.0 5.0 11.0 33.0 4.0 5.0 80.0 18.0 35.0 17.0 23.0
F: 4.0 14.0 11.0 9.0 9.0 8.0 4.0 20.0 5.0 8.9 21.0

9.2 3.0 2.0 0.3

a. Determine the value of the sample standard deviation for
each sample, interpret these values, and then contrast
variability in the two samples. [Hint: for
the urban sample and for the farm sample, and

for the urban sample and 1617.94 for the
farm sample.]

b. Compute the fourth spread for each sample and compare.
Do the fourth spreads convey the same message about
variability that the standard deviations do? Explain.

c. The authors of the cited article also provided endotoxin
concentrations in dust bag dust:

U: 34.0 49.0 13.0 33.0 24.0 24.0 35.0 104.0 34.0 40.0 38.0 1.0
F: 2.0 64.0 6.0 17.0 35.0 11.0 17.0 13.0 5.0 27.0 23.0 

28.0 10.0 13.0 0.2

Construct a comparative boxplot (as did the cited paper) and
compare and contrast the four samples.

49. A study of the relationship between age and various visual
functions (such as acuity and depth perception) reported the
following observations on the area of scleral lamina (mm2)
from human optic nerve heads (“Morphometry of Nerve
Fiber Bundle Pores in the Optic Nerve Head of the Human,”
Experimental Eye Research, 1988: 559–568):

2.75 2.62 2.74 3.85 2.34 2.74 3.93 4.21 3.88
4.33 3.46 4.52 2.43 3.65 2.78 3.56 3.01

a. Calculate and .
b. Use the values calculated in part (a) to compute the sam-

ple variance s2 and then the sample standard deviation s.

50. In 1997 a woman sued a computer keyboard manufacturer,
charging that her repetitive stress injuries were caused by
the keyboard (Genessy v. Digital Equipment Corp.). The
injury awarded about $3.5 million for pain and suffering,
but the court then set aside that award as being unreasonable
compensation. In making this determination, the court iden-
tified a “normative” group of 27 similar cases and specified
a reasonable award as one within two standard deviations of
the mean of the awards in the 27 cases. The 27 awards were

gxi
2gxi

gxi
2 5 10,079

5 128.4
gxi 5 237.0
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44 CHAPTER 1 Overview and Descriptive Statistics

(in $1000s) 37, 60, 75, 115, 135, 140, 149, 150, 238, 290,
340, 410, 600, 750, 750, 750, 1050, 1100, 1139, 1150, 1200,
1200, 1250, 1576, 1700, 1825, and 2000, from which

, . What is the maximum
possible amount that could be awarded under the two-
standard-deviation rule?

51. A sample of 20 glass bottles of a particular type was selected,
and the internal pressure strength of each bottle was deter-
mined. Consider the following partial sample information:

Three smallest observations 125.8 188.1 193.7
Three largest observations 221.3 230.5 250.2

a. Are there any outliers in the sample? Any extreme outliers?
b. Construct a boxplot that shows outliers, and comment on

any interesting features.

52. The first four deviations from the mean in a sample of
reaction times were .3, .9, 1.0, and 1.3. What is the

fifth deviation from the mean? Give a sample for which
these are the five deviations from the mean.

53. A mutual fund is a professionally managed investment
scheme that pools money from many investors and
invests in a variety of securities. Growth funds focus pri-
marily on increasing the value of investments, whereas
blended funds seek a balance between current income
and growth. Here is data on the expense ratio (expenses
as a % of assets, from www.morningstar.com) for sam-
ples of 20 large-cap balanced funds and 20 large-cap
growth funds (“large-cap” refers to the sizes of compa-
nies in which the funds invest; the population sizes are
825 and 762, respectively):

Bl 1.03 1.23 1.10 1.64 1.30
1.27 1.25 0.78 1.05 0.64
0.94 2.86 1.05 0.75 0.09
0.79 1.61 1.26 0.93 0.84

Gr 0.52 1.06 1.26 2.17 1.55
0.99 1.10 1.07 1.81 2.05
0.91 0.79 1.39 0.62 1.52
1.02 1.10 1.78 1.01 1.15

a. Calculate and compare the values of , , and s for the
two types of funds.

b. Construct a comparative boxplot for the two types of
funds, and comment on interesting features.

54. Grip is applied to produce normal surface forces that com-
press the object being gripped. Examples include two
people shaking hands, or a nurse squeezing a patient’s fore-
arm to stop bleeding. The article “Investigation of Grip
Force, Normal Force, Contact Area, Hand Size, and Handle
Size for Cylindrical Handles” (Human Factors, 2008:
734–744) included the following data on grip strength (N)
for a sample of 42 individuals:

x|x

n 5 5

upper fourth 5 216.8
lower fourth 5 196.0median 5 202.2

gxi
2 5 24,657,511gxi 5 20,179

16 18 18 26 33 41 54 56 66 68 87 91 95
98 106 109 111 118 127 127 135 145 147 149 151 168

172 183 189 190 200 210 220 229 230 233 238 244 259
294 329 403

a. Construct a stem-and-leaf display based on repeating each
stem value twice, and comment on interesting features.

b. Determine the values of the fourths and the fourthspread.
c. Construct a boxplot based on the five-number summary,

and comment on its features.
d. How large or small does an observation have to be to

qualify as an outlier? An extreme outlier? Are there any
outliers?

e. By how much could the observation 403, currently the
largest, be decreased without affecting fs?

55. Here is a stem-and-leaf display of the escape time data
introduced in Exercise 36 of this chapter.

32 55
33 49
34
35 6699
36 34469
37 03345
38 9
39 2347
40 23
41
42 4

a. Determine the value of the fourth spread.
b. Are there any outliers in the sample? Any extreme outliers?
c. Construct a boxplot and comment on its features.
d. By how much could the largest observation, currently

424, be decreased without affecting the value of the
fourth spread?

56. The following data on distilled alcohol content (%) for a
sample of 35 port wines was extracted from the article “A
Method for the Estimation of Alcohol in Fortified Wines
Using Hydrometer Baumé and Refractometer Brix” (Amer.
J. Enol. Vitic., 2006: 486–490). Each value is an average of
two duplicate measurements.

16.35 18.85 16.20 17.75 19.58 17.73 22.75 23.78 23.25
19.08 19.62 19.20 20.05 17.85 19.17 19.48 20.00 19.97
17.48 17.15 19.07 19.90 18.68 18.82 19.03 19.45 19.37
19.20 18.00 19.60 19.33 21.22 19.50 15.30 22.25

Use methods from this chapter, including a boxplot that
shows outliers, to describe and summarize the data.

57. The value of Young’s modulus (GPa) was determined for cast
plates consisting of certain intermetallic substrates, resulting in
the following sample observations (“Strength and Modulus of
a Molybdenum-Coated Ti-25Al-10Nb-3U-1Mo Intermetallic,”
J. of Materials Engr. and Performance, 1997: 46–50):

116.4 115.9 114.6 115.2 115.8
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1.4 Measures of Variability 45

a. Calculate and the deviations from the mean.
b. Use the deviations calculated in part (a) to obtain the

sample variance and the sample standard deviation.
c. Calculate s2 by using the computational formula for the

numerator Sxx.
d. Subtract 100 from each observation to obtain a sample of

transformed values. Now calculate the sample variance
of these transformed values, and compare it to s2 for the
original data.

58. A company utilizes two different machines to manufacture
parts of a certain type. During a single shift, a sample of

parts produced by each machine is obtained, and the
value of a particular critical dimension for each part is deter-
mined. The comparative boxplot at the bottom of this page
is constructed from the resulting data. Compare and contrast
the two samples.

59. Blood cocaine concentration (mg/L) was determined both
for a sample of individuals who had died from cocaine-
induced excited delirium (ED) and for a sample of those
who had died from a cocaine overdose without excited
delirium; survival time for people in both groups was at
most 6 hours. The accompanying data was read from a
comparative boxplot in the article “Fatal Excited Delirium
Following Cocaine Use” (J. of Forensic Sciences, 1997:
25–31).

ED 0 0 0 0 .1 .1 .1 .1 .2 .2 .3 .3
.3 .4 .5 .7 .8 1.0 1.5 2.7 2.8
3.5 4.0 8.9 9.2 11.7 21.0

Non-ED 0 0 0 0 0 .1 .1 .1 .1 .2 .2 .2
.3 .3 .3 .4 .5 .5 .6 .8 .9 1.0
1.2 1.4 1.5 1.7 2.0 3.2 3.5 4.1
4.3 4.8 5.0 5.6 5.9 6.0 6.4 7.9
8.3 8.7 9.1 9.6 9.9 11.0 11.5
12.2 12.7 14.0 16.6 17.8

a. Determine the medians, fourths, and fourth spreads for
the two samples.

n 5 20

x b. Are there any outliers in either sample? Any extreme
outliers?

c. Construct a comparative boxplot, and use it as a basis
for comparing and contrasting the ED and non-ED
samples.

60. Observations on burst strength (lb/in2) were obtained both
for test nozzle closure welds and for production cannister
nozzle welds (“Proper Procedures Are the Key to Welding
Radioactive Waste Cannisters,” Welding J., Aug. 1997:
61–67).

Test 7200 6100 7300 7300 8000 7400
7300 7300 8000 6700 8300

Cannister 5250 5625 5900 5900 5700 6050
5800 6000 5875 6100 5850 6600

Construct a comparative boxplot and comment on inter-
esting features (the cited article did not include such a
picture, but the authors commented that they had looked
at one).

61. The accompanying comparative boxplot of gasoline vapor
coefficients for vehicles in Detroit appeared in the article
“Receptor Modeling Approach to VOC Emission Inventory
Validation” (J. of Envir. Engr., 1995: 483–490). Discuss any
interesting features.

85
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95 105 115
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Machine

Comparative boxplot for Exercise 58
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Comparative boxplot for Exercise 61

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Licensed to:



46 CHAPTER 1 Overview and Descriptive Statistics

SUPPLEMENTARY EXERCISES (62–83)

62. Consider the following information on ultimate tensile
strength (lb/in) for a sample of hard zirconium cop-
per wire specimens (from “Characterization Methods for
Fine Copper Wire,” Wire J. Intl., Aug., 1997: 74–80):

Determine the values of the two middle sample observations
(and don’t do it by successive guessing!).

63. A sample of 77 individuals working at a particular office
was selected and the noise level (dBA) experienced by each
individual was determined, yielding the following data
(“Acceptable Noise Levels for Construction Site Offices,”
Building Serv. Engr. Research and Technology, 2009:
87–94).

55.3 55.3 55.3 55.9 55.9 55.9 55.9 56.1 56.1 56.1 56.1
56.1 56.1 56.8 56.8 57.0 57.0 57.0 57.8 57.8 57.8 57.9
57.9 57.9 58.8 58.8 58.8 59.8 59.8 59.8 62.2 62.2 63.8
63.8 63.8 63.9 63.9 63.9 64.7 64.7 64.7 65.1 65.1 65.1
65.3 65.3 65.3 65.3 67.4 67.4 67.4 67.4 68.7 68.7 68.7
68.7 69.0 70.4 70.4 71.2 71.2 71.2 73.0 73.0 73.1 73.1
74.6 74.6 74.6 74.6 79.3 79.3 79.3 79.3 83.0 83.0 83.0

Use various techniques discussed in this chapter to organ-
ize, summarize, and describe the data.

64. Fretting is a wear process that results from tangential oscil-
latory movements of small amplitude in machine parts. The
article “Grease Effect on Fretting Wear of Mild Steel”
(Industrial Lubrication and Tribology, 2008: 67–78)
included the following data on volume wear for
base oils having four different viscosities.

Viscosity Wear

20.4 58.8 30.8 27.3 29.9 17.7 76.5
30.2 44.5 47.1 48.7 41.6 32.8 18.3
89.4 73.3 57.1 66.0 93.8 133.2 81.1

252.6 30.6 24.2 16.6 38.9 28.7 23.6 

a. The sample coefficient of variation assesses the
extent of variability relative to the mean (specifically, the
standard deviation as a percentage of the mean).
Calculate the coefficient of variation for the sample at
each viscosity. Then compare the results and comment.

b. Construct a comparative boxplot of the data and com-
ment on interesting features.

65. Let and denote the sample mean and variance for the
sample and let and denote these quanti-
ties when an additional observation is added to the
sample.

xn11

sn11
2xn11x1, c, xn

sn
2xn

100s/ x

(1024mm3)

largest xi 5 77,048
smallest  xi 5  76,683s 5 180x 5 76,831

n 5 4
a. Show how can be computed from and .

b. Show that 

so that can be computed from , , and .
c. Suppose that a sample of 15 strands of drapery yarn has

resulted in a sample mean thread elongation of 12.58 mm
and a sample standard deviation of .512 mm. A 16th

strand results in an elongation value of 11.8. What are
the values of the sample mean and sample standard devi-
ation for all 16 elongation observations?

66. A deficiency of the trace element selenium in the diet can
negatively impact growth, immunity, muscle and neuromus-
cular function, and fertility. The introduction of selenium sup-
plements to dairy cows is justified when pastures have low
selenium levels. Authors of the paper “Effects of Short-Term
Supplementation with Selenised Yeast on Milk Production
and Composition of Lactating Cows” (Australian J. of Dairy
Tech., 2004: 199–203) supplied the following data on milk
selenium concentration (mg/L) for a sample of cows given a
selenium supplement and a control sample given no supple-
ment, both initially and after a 9-day period.

Obs Init Se Init Cont Final Se Final Cont
1 11.4 9.1 138.3 9.3
2 9.6 8.7 104.0 8.8
3 10.1 9.7 96.4 8.8
4 8.5 10.8 89.0 10.1
5 10.3 10.9 88.0 9.6
6 10.6 10.6 103.8 8.6
7 11.8 10.1 147.3 10.4
8 9.8 12.3 97.1 12.4
9 10.9 8.8 172.6 9.3

10 10.3 10.4 146.3 9.5
11 10.2 10.9 99.0 8.4
12 11.4 10.4 122.3 8.7
13 9.2 11.6 103.0 12.5
14 10.6 10.9 117.8 9.1
15 10.8 121.5
16 8.2 93.0

a. Do the initial Se concentrations for the supplement and
control samples appear to be similar? Use various tech-
niques from this chapter to summarize the data and
answer the question posed.

b. Again use methods from this chapter to summarize the data
and then describe how the final Se concentration values in
the treatment group differ from those in the control group.

67. Aortic stenosis refers to a narrowing of the aortic valve in the
heart. The paper “Correlation Analysis of Stenotic Aortic
Valve Flow Patterns Using Phase Contrast MRI” (Annals of
Biomed. Engr., 2005: 878–887) gave the following data on

sn
2xnxn11sn11

2

nsn11
2 5 (n 2 1)sn

2 1  
n

n 1 1
 (xn11 2 xn)

2

xn11xnxn11
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Supplementary Exercises 47

aortic root diameter (cm) and gender for a sample of patients
having various degrees of aortic stenosis:

M: 3.7 3.4 3.7 4.0 3.9 3.8 3.4 3.6 3.1 4.0 3.4 3.8 3.5
F: 3.8 2.6 3.2 3.0 4.3 3.5 3.1 3.1 3.2 3.0

a. Compare and contrast the diameter observations for the
two genders.

b. Calculate a 10% trimmed mean for each of the two sam-
ples, and compare to other measures of center (for the
male sample, the interpolation method mentioned in
Section 1.3 must be used).

68. a. For what value of c is the quantity mini-
mized? [Hint: Take the derivative with respect to c, set
equal to 0, and solve.]

b. Using the result of part (a), which of the two quantities
and will be smaller than the

other (assuming that )?

69. a. Let a and b be constants and let for
. What are the relationships between 

and and between and ?
b. A sample of temperatures for initiating a certain chemi-

cal reaction yielded a sample average (°C) of 87.3 and a
sample standard deviation of 1.04. What are the sample
average and standard deviation measured in °F? [Hint: 

.]

70. Elevated energy consumption during exercise continues after
the workout ends. Because calories burned after exercise con-
tribute to weight loss and have other consequences, it is impor-
tant to understand this process. The paper “Effect of Weight
Training Exercise and Treadmill Exercise on Post-Exercise
Oxygen Consumption” (Medicine and Science in Sports and
Exercise, 1998: 518–522) reported the accompanying data
from a study in which oxygen consumption (liters) was meas-
ured continuously for 30 minutes for each of 15 subjects both
after a weight training exercise and after a treadmill exercise.

Subject 1 2 3 4 5 6 7

Weight (x) 14.6 14.4 19.5 24.3 16.3 22.1 23.0

Treadmill (y) 11.3 5.3 9.1 15.2 10.1 19.6 20.8

Subject 8 9 10 11 12 13 14 15

Weight (x) 18.7 19.0 17.0 19.1 19.6 23.2 18.5 15.9

Treadmill (y) 10.3 10.3 2.6 16.6 22.4 23.6 12.6 4.4

a. Construct a comparative boxplot of the weight and tread-
mill observations, and comment on what you see.

b. Because the data is in the form of (x, y) pairs, with x and
y measurements on the same variable under two different
conditions, it is natural to focus on the differences within
pairs: . Construct a
boxplot of the sample differences. What does it suggest?

71. The accompanying frequency distribution of fracture strength
(MPa) observations for ceramic bars fired in a particular kiln
appeared in the article “Evaluating Tunnel Kiln Performance”
(Amer. Ceramic Soc. Bull., Aug. 1997: 59–63).

d1 5 x1 2 y1, c, dn 5 xn 2 yn

F 5  
9
5

C 1 32

sy
2sx

2y
xi 5 1, 2, c, n

yi 5 axi 1 b

x 2 m

g (xi 2 m)2g (xi 2 x)2

g (xi 2 c)2

Class
Frequency 6 7 17 30 43
Class
Frequency 28 22 13 3

a. Construct a histogram based on relative frequencies, and
comment on any interesting features.

b. What proportion of the strength observations are at least
85? Less than 95?

c. Roughly what proportion of the observations are less
than 90?

72. Anxiety disorders and symptoms can often be effectively
treated with benzodiazepine medications. It is known that
animals exposed to stress exhibit a decrease in benzodi-
azepine receptor binding in the frontal cortex. The paper
“Decreased Benzodiazepine Receptor Binding in Prefrontal
Cortex in Combat-Related Posttraumatic Stress Disorder”
(Amer. J. of Psychiatry, 2000: 1120–1126) described the
first study of benzodiazepine receptor binding in individuals
suffering from PTSD. The accompanying data on a receptor
binding measure (adjusted distribution volume) was read
from a graph in the paper.

PTSD: 10, 20, 25, 28, 31, 35, 37, 38, 38, 39, 39,
42, 46

Healthy: 23, 39, 40, 41, 43, 47, 51, 58, 63, 66, 67,
69, 72

Use various methods from this chapter to describe and sum-
marize the data.

73. The article “Can We Really Walk Straight?” (Amer. J. of
Physical Anthropology, 1992: 19–27) reported on an exper-
iment in which each of 20 healthy men was asked to walk
as straight as possible to a target 60 m away at normal
speed. Consider the following observations on cadence
(number of strides per second):

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

Use the methods developed in this chapter to summarize the
data; include an interpretation or discussion wherever
appropriate. [Note: The author of the article used a rather
sophisticated statistical analysis to conclude that people
cannot walk in a straight line and suggested several expla-
nations for this.]

74. The mode of a numerical data set is the value that occurs
most frequently in the set.
a. Determine the mode for the cadence data given in

Exercise 73.
b. For a categorical sample, how would you define the

modal category?

75. Specimens of three different types of rope wire were
selected, and the fatigue limit (MPa) was determined for
each specimen, resulting in the accompanying data.

Type 1 350 350 350 358 370 370 370 371
371 372 372 384 391 391 392

972,99952,97932,95912,93

892,91872,89852,87832,85812,83
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48 CHAPTER 1 Overview and Descriptive Statistics

Type 2 350 354 359 363 365 368 369 371
373 374 376 380 383 388 392

Type 3 350 361 362 364 364 365 366 371
377 377 377 379 380 380 392

a. Construct a comparative boxplot, and comment on simi-
larities and differences.

b. Construct a comparative dotplot (a dotplot for each sam-
ple with a common scale). Comment on similarities and
differences.

c. Does the comparative boxplot of part (a) give an inform-
ative assessment of similarities and differences? Explain
your reasoning.

76. The three measures of center introduced in this chapter are the
mean, median, and trimmed mean. Two additional measures
of center that are occasionally used are the midrange, which is
the average of the smallest and largest observations, and the
midfourth, which is the average of the two fourths.Which of
these five measures of center are resistant to the effects of out-
liers and which are not? Explain your reasoning.

77. The authors of the article “Predictive Model for Pitting
Corrosion in Buried Oil and Gas Pipelines” (Corrosion,
2009: 332–342) provided the data on which their investiga-
tion was based.
a. Consider the following sample of 61 observations on

maximum pitting depth (mm) of pipeline specimens
buried in clay loam soil.

0.41 0.41 0.41 0.41 0.43 0.43 0.43 0.48 0.48
0.58 0.79 0.79 0.81 0.81 0.81 0.91 0.94 0.94
1.02 1.04 1.04 1.17 1.17 1.17 1.17 1.17 1.17
1.17 1.19 1.19 1.27 1.40 1.40 1.59 1.59 1.60
1.68 1.91 1.96 1.96 1.96 2.10 2.21 2.31 2.46
2.49 2.57 2.74 3.10 3.18 3.30 3.58 3.58 4.15
4.75 5.33 7.65 7.70 8.13 10.41 13.44

Construct a stem-and-leaf display in which the two
largest values are shown in a last row labeled HI.

b. Refer back to (a), and create a histogram based on eight
classes with 0 as the lower limit of the first class and
class widths of .5, .5, .5, .5, 1, 2, 5, and 5, respectively.

c. The accompanying comparative boxplot from Minitab
shows plots of pitting depth for four different types of
soils. Describe its important features.

78. Consider a sample and suppose that the values
of , s2, and s have been calculated.
a. Let for . How do the values of

s2 and s for the yi’s compare to the corresponding values
for the xi’s? Explain.

b. Let for . What are the values
of the sample variance and sample standard deviation for
the zi

’s?

79. Here is a description from Minitab of the strength data given
in Exercise 17.

Variable N Mean Median TrMean StDev SE Mean
strength 153 135.39 135.40 135.41 4.59 0.37

Variable Minimum Maximum Q1 Q3
strength 122.20 147.70 132.95 138.25

a. Comment on any interesting features (the quartiles and
fourths are virtually identical here).

b. Construct a boxplot of the data based on the quartiles,
and comment on what you see.

80. Lengths of bus routes for any particular transit system will
typically vary from one route to another. The article
“Planning of City Bus Routes” (J. of the Institution of
Engineers, 1995: 211–215) gives the following information
on lengths (km) for one particular system:

Length
Frequency 6 23 30 35 32

Length
Frequency 48 42 40 28 27

Length
Frequency 26 14 27 11 2

402,45352,40302,35282,30262,28

242,26222,24202,22182,20162,18

142,16122,14102,1282,1062,8

i 5 1, c, nzi 5 (xi 2 x)/s

i 5 1, c, nyi 5 xi 2 x
x
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a. Draw a histogram corresponding to these frequencies.
b. What proportion of these route lengths are less than 20?

What proportion of these routes have lengths of at least 30?
c. Roughly what is the value of the 90th percentile of the

route length distribution?
d. Roughly what is the median route length?

81. A study carried out to investigate the distribution of total
braking time (reaction time plus accelerator-to-brake move-
ment time, in ms) during real driving conditions at 60 km/hr
gave the following summary information on the distribution
of times (“A Field Study on Braking Responses During
Driving,” Ergonomics, 1995: 1903–1910):

What can you conclude about the shape of a histogram of
this data? Explain your reasoning.

82. The sample data sometimes represents a time
series, where value of a response variable
x at time t. Often the observed series shows a great deal of
random variation, which makes it difficult to study longer-
term behavior. In such situations, it is desirable to produce
a smoothed version of the series. One technique for doing so
involves exponential smoothing. The value of a smoothing
constant is chosen . Then with

at time t, we set , and for
, .

a. Consider the following time series in which
of effluent at a sewage treatment

plant on day t: 47, 54, 53, 50, 46, 46, 47, 50, 51, 50, 46,
52, 50, 50. Plot each xt against t on a two-dimensional
coordinate system (a time-series plot). Does there appear
to be any pattern?

b. Calculate the using . Repeat using .
Which value of gives a smoother series?xta

a 5 .5a 5 .1xt ’s

xt 5 temperature (8F)

xt 5 axt 1 (1 2 a)xt21t 5 2, 3, c, n
x1 5 x1xt 5 smoothed value

(0 , a , 1)a

xt 5 the observed
x1, x2, c, xn

95th percentile 5 72090th percentile 5 640
10th percentile 5 4305th percentile 5 400

maximum 5 925minimum 5 220sd 5 96
mode 5 500median 5 500mean 5 535

c. Substitute on the right-hand
side of the expression for , then substitute in terms
of and , and so on. On how many of the values

does depend? What happens to the
coefficient on as k increases?

d. Refer to part (c). If t is large, how sensitive is to the ini-
tialization ? Explain.

[Note: A relevant reference is the article “Simple Statistics
for Interpreting Environmental Data,” Water Pollution
Control Fed. J., 1981: 167–175.]

83. Consider numerical observations . It is frequently
of interest to know whether the xi s are (at least approxi-
mately) symmetrically distributed about some value. If n is
at least moderately large, the extent of symmetry can be
assessed from a stem-and-leaf display or histogram.
However, if n is not very large, such pictures are not partic-
ularly informative. Consider the following alternative. Let y1

denote the smallest xi, y2 the second smallest xi, and so on.
Then plot the following pairs as points on a two-dimensional
coordinate system: 

There are n/2 points when n is even
and when n is odd.
a. What does this plot look like when there is perfect sym-

metry in the data? What does it look like when observa-
tions stretch out more above the median than below it
(a long upper tail)?

b. The accompanying data on rainfall (acre-feet) from 26
seeded clouds is taken from the article “A Bayesian
Analysis of a Multiplicative Treatment Effect in Weather
Modification” (Technometrics, 1975: 161–166).
Construct the plot and comment on the extent of sym-
metry or nature of departure from symmetry.

4.1 7.7 17.5 31.4 32.7 40.6 92.4
115.3 118.3 119.0 129.6 198.6 200.7 242.5
255.0 274.7 274.7 302.8 334.1 430.0 489.1
703.4 978.0 1656.0 1697.8 2745.6 

(n 2 1)/2
(yn22 2 x|, x| 2 y3), c

(yn21 2 x|, x| 2 y2),(yn 2 x|, x| 2 y1),

x1, c, xn

x1 5 x1

xt

xt2k

xtxt, xt21, c, x1

xt23xt22

xt22xt

xt21 5 axt21 1 (1 2 a)xt22
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1. a. No. All students taking a large statistics course who par-
ticipate in an SI program of this sort.
b. Randomization protects against various biases and helps
ensure that those in the SI group are as similar as possible to
the students in the control group.
c. There would be no firm basis for assessing the effective-
ness of SI (nothing to which the SI scores could reasonably
be compared).

3. a. How likely is it that more than half of the sampled
computers will need or have needed warranty service?
What is the expected number among the 100 that need
warranty service? How likely is it that the number need-
ing warranty service will exceed the expected number by
more than 10?
b. Suppose that 15 of the 100 sampled needed warranty
service. How confident can we be that the proportion of all
such computers needing warranty service is between .08
and .22? Does the sample provide compelling evidence for
concluding that more than 10% of all such computers need
warranty service?

5. a. Los Angeles Times, Oberlin Tribune, Gainesville Sun,
Washington Post
b. Duke Energy, Clorox, Seagate, Neiman Marcus
c. Vince Correa, Catherine Miller, Michael Cutler, Ken Lee
d. 2.97, 3.56, 2.20, 2.97

7. One could generate a simple random sample of all single-
family homes in the city, or a stratified random sample by
taking a simple random sample from each of the 10 district
neighborhoods. From each of the selected homes, values of

Answers to Selected 
Odd-Numbered Exercises

Chapter 1

all desired variables would be determined. This would be an
enumerative study because there exists a finite, identifiable
population of objects from which to sample.

9. a. Possibly measurement error, recording error, differences
in environmental conditions at the time of measurement, etc.
b. No. There is no sampling frame.

11. 6L | 430
6H | 769689
7L | 42014202
7H |
8L | 011211410342
8H | 9595578
9L | 30
9H | 58

The gap in the data—no scores in the high 70s.

13. a. y Freq. Rel. freq. b. z Freq. Rel. freq.

0 17 .362 0 13 .277
1 22 .468 1 11 .234
2 6 .128 2 3 .064
3 1 .021 3 7 .149
4 0 .000 4 5 .106
5 1 .021 5 3 .064

47 1.000 6 3 .064
.362, .638 7 0 .000

8 2 .043
47 1.001

.894, .830

A-29
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A-30 Answers to Selected Odd-Numbered Exercises

15. Am Fr

| 8 | 1
157020153504 | 9 | 00645632

9324 | 10 | 2563
6306 | 11 | 6913

Stem: Hundreds and tens 058 | 12 | 325528
Leaf: Ones 8 | 13 | 7

| 14 |
| 15 | 8

2 | 16 |
Representative values: low 100s for Am and low 110’s
for Fr. Somewhat more variability in Fr times than in
Am times. More extreme positive skew for Am than
for Fr. 162 is an Am outlier, and 158 is perhaps a 
Fr outlier.

17. a. 12 2 leaf: ones digit
12 445
12 6667777
12 889999
13 00011111111
13 222222222233333333333333
13 44444444444444444455555555555555555555
13 6666666666667777777777
13 888888888888999999
14 0000001111
14 2333333
14 444
14 77
symmetry

b. Close to bell-shaped, center � 135, not insignificant dis-
persion, no gaps or outliers.

19. a. .99 (99%), .71 (71%) b. .64 (64%), .44 (44%)
c. Strictly speaking, the histogram is not unimodal, but
is close to being so with a moderate positive skew. 
A much larger sample size would likely give a smoother
picture.

21. a. # Nonconforming Frequency Rel. freq.

0 7 .117
1 12 .200
2 13 .217
3 14 .233
4 6 .100
5 3 .050
6 3 .050
7 1 .017
8 1 .017

60 1.001
b.
c. The histogram has a substantial positive skew. It is cen-
tered somewhere between 2 and 3 and spreads out quite a bit
about its center.

.917, .867, 1 2 .867 5 .133

23. Complaint Freq. Rel. freq.

J 10 .1667
F 9 .1500
B 7 .1167
M 4 .0667
C 3 .0500
N 6 .1000
O 21 .3500

60 1.0001

25. Class Freq. Class Freq.

8 2
14 6
8 7
4 9
3 6
2 4
1 5

40 1
40

Original: positively skewed;
Transformed much more symmetric, not far from bell-shaped.

27. a. The observation 50 falls on a class boundary.

b. Class Freq. Rel. freq.

9 .18
19 .38
11 .22
4 .08
4 .08
2 .04
0 .00
1 .02

50 1.00

A representative (central) value is either a bit below or a bit
above 100, depending on how one measures center. There is a
great deal of variability in lifetimes, especially in values at the
upper end of the data. There are several candidates for outliers.

c. Class Freq. Rel. freq.

2 .04
2 .04
3 .06
8 .16

18 .36
10 .20
4 .08
3 .06

50 1.00

There is much more symmetry in the distribution of the
ln(x) values than in the x values themselves, and less vari-
ability. There are no longer gaps or obvious outliers.
d. .38, .14

5.75–,6.25
5.25–,5.75
4.75–,5.25
4.25–,4.75
3.75–,4.25
3.25–,3.75
2.75–,3.25
2.25–,2.75

500–,600
400–,500
300–,400
200–,300
150–,200
100–,150
50–,100
0–,50

1.8–,1.9
1.7–,1.870–,80
1.6–,1.760–,70
1.5–,1.650–,60
1.4–,1.540–,50
1.3–,1.430–,40
1.2–,1.320–,30
1.1–,1.210–,20
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29. The class widths are not equal, so the density scale must
be used. The densities for the six classes are .2030, .1373,
.0303, .0086, .0021, and .0009, respectively. The result-
ing histogram is unimodal with a very substantial positive
skew.

31. Class Freq. Cum. freq. Cum. rel. freq.

2 2 .050
14 16 .400
11 27 .675
8 35 .875
4 39 .975
0 39 .975
1 40 1.000

33. a. 640.5, 582.5
b. 610.5, 582.5
c. 591.2
d. 593.71

35.

37.

39. a. , , . Deletion of the 
largest observation (18.0) causes and to be a bit smaller
than .
b. By at most 4.0 c. No; multiply the values of and 
by the conversion factor 1/2.2.

41. a. .7 b. Also .7 c. 13

43. a. b. .383

45. a. 1264.766, 35.564 b. .351, .593

47. . The magnitude of s indicates a sub-
stantial amount of variation about the center (a “representa-
tive” deviation of roughly 25).

49. a. 56.80, 197.8040 b. .5016, .708

51. a. Yes. 125.8 is an extreme outlier and 250.2 is a mild outlier.
b. In addition to the presence of outliers, there is positive
skewness both in the middle 50% of the data and, excepting
the outliers, overall. Except for the two outliers, there appears
to be a relatively small amount of variability in the data.

53. a. Bal: 1.121, 1.050, .536
Gr: 1.244, 1.100, .448

b. Typical ratios are quite similar for the two types. There is
somewhat more variability in the Bal sample, due primarily
to the two outliers (one mild, one extreme). For Bal, there is
substantial symmetry in the middle 50% but positive skew-
ness overall. For Gr, there is substantial positive skew in the
middle 50% and mild positive skewness overall.

55. a. 33 b. No
c. Slight positive skewness in the middle half, but rather
symmetric overall. The extent of variability appears sub-
stantial.
d. At most 32

57. a. ; the deviations are 
b. .482, .694 c. .482 d. .482

.82, .32, 2.98, 2.38, .22x 5 115.58

x 5 116.2, s 5 25.75

x 5 1.0297, x| 5 1.009

x|x
x

xtrx|
xtr(12.5) 5 12.40x| 5 12.50x 5 12.55

xtr(10) 5 11.46

x| 5 68.0, xtr(20) 5 66.2, xtr(30) 5 67.5

24–,28
20–,24
16–,20
12–,16

8–,12
4–,8
0–,4

59. a. ED: .4, .10, 2.75, 2.65;
Non-Ed: 1.60, .30, 7.90, 7.60
b. ED: 8.9 and 9.2 are mild outliers, and 11.7 and 21.0 are
extreme outliers.
There are not outliers in the non-ED sample.
c. Four outliers for ED, none for non-ED. Substantial posi-
tive skewness in both samples; less variability in ED
(smaller fs), and non-ED observations tend to be somewhat
larger than ED observations.

61. Outliers, both mild and extreme, only at 6 A.M. Distributions
at other times are quite symmetric. Variability increases
somewhat until 2 P.M. and then decreases slightly, and the
same is true of “typical” gasoline-vapor coefficient values.

63. , , 
. A histogram consisting of 8 classes

starting at 52, each of width 4, is bimodal but close to uni-
modal with a positive skew. A boxplot shows no outliers,
there is a very mild negative skew in the middle 50%, and
the upper whisker is much longer than the lower whisker.
b. .9231, .9053
c. .48

65. a.
c. 12.53, .532

67. a.

Female values are typically somewhat smaller than male
values, and show somewhat more variability. An M boxplot
shows negative skew whereas an F boxplot shows positive
skew.
b.

69. a. b. 189.14, 1.87

73. small amount of variabil-
ity, slight bit of skewness

75. a. The “five-number summaries” ( , the two fourths, and
the smallest and largest observations) are identical and there
are no outliers, so the three individual boxplots are identical.
b. Differences in variability, nature of gaps, and existence of
clusters for the three samples.
c. No. Detail is lost.

77. c. Representative depths are quite similar for the four types of
soils—between 1.5 and 2. Data from the C and CL soils shows
much more variability than for the other two types. The box-
plots for the first three types show substantial positive skew-
ness both in the middle 50% and overall. The boxplot for the
SYCL soil shows negative skewness in the middle 50% and
mild positive skewness overall. Finally, there are multiple out-
liers for the first three types of soils, including extreme outliers.

79. a. The mean, median, and trimmed mean are virtually iden-
tical, suggesting a substantial amount of symmetry in the
data; the fact that the quartiles are roughly the same distance
from the median and that the smallest and largest observa-
tions are roughly equidistant from the center provides addi-
tional support for symmetry. The standard deviation is quite
small relative to the mean and median.

x|

x 5 .9255, s 5 .0809, x| 5 .93,

y 5 ax 1 b, sy
2 5 a2sx

2

F: xtr(10) 5 3.24 M: xtr(10) 5 3.652 < 3.65

F: x 5 3.28, x| 5 3.15, s 5 .478, fs 5 .50
M: x 5 3.64, x| 5 3.70, s 5 .269, fs 5 .40

xn11 5 (nxn 1 xn11)/(n 1 1)

4th 5 70.4, fs 5 12.6
upperlower 4th 5 57.8x 5 64.89, x| 5 64.70, s 5 7.803

Answers to Selected Odd-Numbered Exercises A-31
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A-32 Answers to Selected Odd-Numbered Exercises

b. See the comments of (a). In addition, using 
as a yardstick, the two largest and three smallest observations
are mild outliers.

81. A substantial positive skew (assuming unimodality)

1.5(Q3 2 Q1) 83. a. All points fall on a 45° line. Points fall below a 45° line.
b. Points fall well below a 45° line, indicating a substantial
positive skew.
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