

Compact modeling of hysteresis effects in ReRAM devices

Enrique Miranda Universitat Autònoma de Barcelona, Spain Distinguished Lecturer EDS

> SBMICRO, Bento Gonçalves, Brazil August 2018

Evolution of the memory market

Memory Production Relative to the Rest of Semiconductors

Important increase of memory market in the last years

Motivation

• Increasing need of information storage systems

Reaching the limits of conventional memory devices?

Classification of ReRAM or RRAM

Physical mechanism: thermo- and electro-chemical phenomena

Optane SSD: 3D-XPoint Technology

- Selectors and memory cells are located at the intersection of perpendicular wires
- Each cell is individually accessed through the top and bottom wires touching each cell
- Cells stacked in 3D improve storage density
- Optane SSD 905P SSD (960GB)

Bit storage is based on a change of resistance

Neuromorphic application

• Memristor devices are capable of emulating the biological synapses with properly designed CMOS neuron components

Synaptic weight is based on a change of resistance

Recent announcement

July 2018

C APPLIED MATERIALS

- ... to develop a switch that functions like the neuron and synapses of the human brain, based on Correlated-Electron RAM (CeRAM) technology.
- ... to speed up neural network processing while improving power efficiency through the use of analog signal processing as compared to current digital approaches.

This talk: filamentary-type ReRAM

- Capacitor-like structure with a conducting pathway
 - CBRAM: metal ions (usually Ag or Cu)
 - OxRAM: oxygen vacancies (usually TMO)
- Nonvolatile effect: interplay of ions and electrons
- Complex physics: relies on natural parameters

- Introduction to filamentary-type ReRAM
- Physical models and quantum limit
- The circuital approach
- Model implementation
- The problem of variability
- Final comments

- Introduction to filamentary-type ReRAM
- Physical models and quantum limit
- The circuital approach
- Model implementation
- The problem of variability
- Final comments

Phenomenology of filamentary-type RS

By applying pulsed or ramped voltages, the resistance of some oxides can reversibly change between a high (HRS) and a low (LRS) state

Formation and rupture of a filamentary path

This phenomenon is the working principle of RRAMs: two stable states

Cycling experiments in MIM structures

... exhibiting a wide variety of hysteretic I-V curves

RS phenomenon observed in many material systems

Figure 46: The periodic table, showing the materials for the top and bottom electrodes as well as the transition metal-oxide materials used in ReRAM structures. The elements in blue are the candidates for the electrodes. The red and green elements are binary oxides and the ternary oxides (perovskite type) respectively (reprinted with permission from [60]).

Some electrode materials favour the switching process

Newcomers: 2D materials

- h-boron nitride
- MoS₂
- Graphene

Variability and reliability: big problems for industry!

EGG: the material of the future?

Eggs used to make memristors: biocompatible and dissolvable electronic devices

Researchers at two Chinese universities, the Cavendish Laboratory at Cambridge University and the University of Bolton, UK, have produced a memristor made from egg proteins, magnesium and tungsten

EETimes, April 2016

Forming, set and reset: unipolar mode

RESET and SET events: rupture and regeneration of the filamentary path (antifuse behavior)

Forming, set and reset: bipolar mode

Memory effect: how information is stored

Memory effect: how information is stored

READ OPERATION: high current \rightarrow logic state "1"

Forming process

Corresponds to a breakdown event in dielectrics (defects & percolation path generation)

Thickness (nm)

For very thin oxides no forming seems to be required: Forming should be avoided

Weibits independent of device area: BD events follow a Poisson process

B.Govoreanu, SSDM 2011

Area scaling of RS

"... neither the set nor the reset current shows any area dependence due to the filamentary nature of conduction."

D. Ielmini, NiO RRAMs

"Experimental data do not display any obvious dependence on area, indicating that resistive switching is a filamentary process"

F. Nardi et al, IEEE TED (2012)

Thickness scaling of RS

"...little or weak dependence on film thickness is observed, which means that the bias voltage mainly drops on a local effective region, and the thickness of this region does not significantly vary with bulk thickness."

Y. Yang *et al*, NJP (2010)

SET and RESET voltages: "No appreciable dependence of memory switching on thickness"

S. Seo et al, Samsumg Electronics (2011)

The role played by the electrodes

S. Seo et al, Samsumg Electronics

"...resistive switches and memories that use SiO_x as the sole active material and can be implemented in entirely metal-free embodiments."

J. Yao et al, NL (2010)

Switching site in a CNT-SiO_x nanogap system

Localized switching region

"The absence of cell area and oxide thickness effect is indicative of a local filament switching"

B. Govoreanu et al, IEDM (2011)

Generation of filaments during constant voltage stress

Top view of Pt/HfO₂(20nm)/Pt capacitor

Multifilamentary patterns (not reversible)

MIS and MIM capacitors with high-K dielectric

Techniques used to assess BD spot/filament distribution

Spatial statistics using angular wavelet analysis

Multifilamentary conduction

Filaments are neither spatial nor temporal correlated

X. Saura et al, Mic Rel 2013

- Introduction to filamentary-type ReRAM
- Physical models and quantum limit
- The circuital approach
- Model implementation
- The problem of variability
- Final comments

Conventional model for the Set/Reset transition

- SET: generation of a filamentary conduction structure (LRS)
- Chain of oxygen vacancies exhibits ohmic behavior (linear I-V characteristic)

• **RESET**: The constriction vanishes or locally reduces leading to an increment of the structure resistance (HRS)

REDOX model: the movement of oxygen ions by electromigration annihilates the vacancies

K. Szot et al, Nat Mat (2006)

Poole-Frenkel and thermionic conduction

"The value of the extracted dielectric constant ε_r =79 is much higher than the known value 20 for HfO₂. ...fitting to a P-F model is unreasonable."

S. Yu et al, APL (2011)

$$J = A^* T^2 \exp\left(\frac{-q(\Phi_B - \sqrt{qE/4\pi\varepsilon_r\varepsilon_0})}{k_B T}\right)$$

In most of the cases fitting parameters are not reported!!!

"Our observed I – V curves with current compliance higher than 20 mA, are probably in agreement with the prediction of SCLC"

$$J = q^{1-l} \mu_p N_V \left(\frac{2l+1}{l+1}\right)^{l+1} \left(\frac{l}{l+1} \frac{\varepsilon_0 \varepsilon_r}{N_t}\right)^l \frac{V^{l+1}}{d^{2l+1}}$$

SCLC has a precise dependence with oxide thickness !!!

Hopping conduction

Tunneling + diode

"...which was chosen more for its simplicity and ability to reproduce the I-V behaviour than as a detailed physics model."

J. Joshua Yang et al, Nat Nano (2008)

 $w^n\beta\sinh(\alpha V)$ exp

tunneling through a thin residual barrier; w is the state variable of the memristor

I-V approximation for the diode-like rectifier

Both LRS and HRS states are treated as separate entities

Tunneling + diode

Electroformed TiO₂ memristive switch

"... transition between a nearly ohmic LRS and a HRS characterized by conduction through a barrier of width W."

Diode-like conduction with series resistance

$$i = i_0 \left[\exp\left(\frac{v - iR_s}{v_0}\right) - 1 \right]$$

Borghetti et al, JAP (2009)

Schottky barrier modulation

resistance R"

J. Hur *et al*, PR (2010)

Resistance modulation + trap assisted tunneling

F. Puglisi et al, EDL (2013)

Quantum point-contact (QPC) model

C. Walczyk et al, TED (2011)

Conductance steps measured in the RESET process of a unipolar Pt/HfO₂/Pt RRAM device

Formation of a quantum wire

"The peaks at roughly integer multiples of G_0 can either be due to the CF behaving as a QW or to a nanoscale CF cross section corresponding to few atomic-size conducting defects."

J. Suñé et al, JAP (2012)

Conductance quantization in RS devices

• Bipolar RS in Nb/ZnO/Pt

"Statistics count of the conductance changes from two hundred curves confirms the quantum conductance behaviors, which demonstrates the formation of discrete quantum channels in the device"

X. Zhu *et al*, Adv. Mater. (2012)

Conductance quantization in RS devices

"Fluctuations are likely due to the fluctuation of filament geometry and then the fluctuation of the number of atoms in the contention."

S. Blonkowski et al, J. Phys. D (2015)

Data extracted from pulsed measurements on Ti/Ta $_2O_5$ /Pt cells

C. Chen et al, APL (2015)

NATURE COMMUNICATIONS | ARTICLE OPEN

Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors

Wei Yi, Sergey E. Savel'ev, Gilberto Medeiros-Ribeiro, Feng Miao, M.-X. Zhang, J. Joshua Yang, Alexander M. Bratkovsky & R. Stanley Williams

Nature Communications **7**, Article number: 11142 | doi:10.1038/ncomms11142

Received 25 August 2015 | Accepted 25 February 2016 | Published 04 April 2016

The Landauer approach

As occurs in a potential well, a narrow constriction induces the lateral quantization of the electron wave function

R. Landauer, 1927-1999

T: transmission probability V: applied voltage

The Landauer approach

As occurs in a potential well, a narrow constriction induces the lateral quantization of the electron wave function

R. Landauer, 1927-1999

T: transmission probability V: applied voltage

$$I = G_0 TV \quad \Longrightarrow \quad G = \frac{dI}{dV} = G_0 T \stackrel{\text{Ballistic}}{\underset{\mathsf{T}=1}{\overset{\text{Conductor}}{\Longrightarrow}}} G = G_0$$

Finite-bias Landauer approach

β: fraction of the potential that drops at the source side $0<\beta<1$

- T: Transmission probability
- **f**: Fermi function

Quantum point contact model for dielectric breakdown

$$I(V) = \frac{2e}{h} \left\{ e(V - V_0) + \frac{1}{\alpha} \ln \left[\frac{1 + \exp\{\alpha [\Phi - \beta e(V - V_0)]\}}{1 + \exp\{\alpha [\Phi + (1 - \beta) e(V - V_0)]\}} \right] \right\}$$

Miranda & Suñé, IEDM'00, IRPS'01

Application to Au/HfO₂/TiN RS structures

The constriction's cross-section determines the conduction mode: HRS or LRS

E. Miranda et al, EDL (2010), in collaboration with IHP, Germany

ITO/ZnO/ITO

...this conductance quantization behavior is a universal feature in filamentary-based RRAM devices."

X. Zhu *et al*, Adv. Mater. (2012)

Peaks are also observed at half-integer multiples of G_0

Histogram of conductance changes collected from the SET characteristic of SiO_x -based ReRAM devices

A. Mehonic et al, Sci Rep (2012)

IMEC:

The conductance plateaus correspond to integer and half integer multiples of 2e²/h

"These observations confirm the picture of filament conduction being controlled by electron transmission through discrete energy levels."

R. Degraeve *et al*, IEEE (2012)

Cu/SiO₂/W memristor with half-integer quantum conductance states

"This is attributed to the nanoscale filamentary nature of Cu conductance pathways formed inside SiO₂."

S. R. Nandakumar et al, Nano Lett (2016)

Subbands in tube-like constrictions

E. Miranda et al, APL (2012)

Subbands in tube-like constrictions

The quantum point-contact memristor

Modulation of the barrier height/width caused by the movement of atoms/vacancies

Generation of the hysteretic loop in the I-V characteristic of RS devices

E. Miranda et al, EDL (2012)

Filamentary conduction in Graphene/h-BN/Graphene

Equivalent electrical circuit model

This is the starting point of our own memristive approach

- Introduction to filamentary-type ReRAM
- Physical models and quantum limit
- The circuital approach
- Model implementation
- The problem of variability
- Final comments

2008 HP's breakthrough

A practical implementation of a memristor?

nature Vol 453 | 1 May 2008 | doi:10.1038/nature06932

LETTERS

The missing memristor found

Dmitri B. Strukov¹, Gregory S. Snider¹, Duncan R. Stewart¹ & R. Stanley Williams¹

Figure 1 | The four fundamental two-terminal circuit elements: resistor, capacitor, inductor and memristor. Resistors and memristors are subsets of a more general class of dynamical devices, memristive systems. Note that R, C, L and M can be functions of the independent variable in their defining equations, yielding nonlinear elements. For example, a charge-controlled memristor is defined by a single-valued function M(q).

SCIENTIFIC REPORTS The Missing Memristor has Not been Found

Sascha Vongehr & Xiangkang Meng (2015)

Many researchers have raised serious doubts!

- "The devices were not new and the hypothesized device needs magnetism"
- *"The originally hypothesized memristor device is missing and likely impossible"*
- *"The originator of the prediction accepted the discovery"*

and more recently ...

SCIENTIFIC REPORTS The case for rejecting the memristor as a fundamental circuit element Many researchers have raised serious doubts!

Isaac Abraham (July 2018)

- "The ideal memristor is an unphysical active device and any physically realizable memristor is a nonlinear composition of resistors with active hysteresis."
- "We also show that there exists only three fundamental passive circuit elements."

Memristors

- Four fundamental quantities: *i*, *v*, *q*, Φ
- 5 out of 6 pairwise relations known very well
- Using symmetry arguments
 Prof. Chua (1971) proposed the missing link: MEMRISTOR
- Memristor = Memory + Resistor
- M: Memristance

V(t) = M(w)I(t)

M depends on the hystory of the device and retains its value even if the power is turned off

Response to a sinusoidal excitation

Unlike capacitors and inductors, MEMRISTORS do not store energy

MEMRISTORS cannot be constructed by combining the other devices and are characterized by "pinched" Lissajous curves

Memristive devices

• Memristive devices are defined in terms of two coupled equations:

$$y(t) = g(x, u, t)u(t)$$
$$\frac{dx}{dt} = f(x, u, t)$$

u(t) is the input signal (current or voltage) *y(t)* is the output signal (voltage or current) *x* is the variable which describes the state of the device *g* and *f* are continuous functions

• If both g and f are linear functions \Rightarrow linear memristive system

Chua and Kang, Proc IEEE 64, 209 (1976)

HP memristor model (2008)

Undoped:

Doped:

 $\mathcal{R}_{ON} W D$

- TiO_2 film (D) has a region with a high concentration of dopants (R_{ON}) and a region with a low concentration (R_{OFF})
- V(t) across the device moves the ۲ boundary w between the two regions by causing the charged dopants to drift

Transport
Equation
$$V(t) = R(\lambda)I(t)$$
 $\lambda = w/D$ $R(\lambda) = R_{ON}\lambda + R_{OFF}(1-\lambda)$

State Equation
$$\frac{d\lambda}{dt} = \eta I(t)$$

Strukov *et al,* Nature **453**, 80 (2008)

Introduction of the window function

$$V(t) = R(\lambda)I(t)$$
$$R(\lambda) = R_{ON}\lambda + R_{OFF}(1-\lambda)$$

$$\frac{d\lambda}{dt} = \eta \lambda (1 - \lambda) I(t)$$

window function (ad hoc) f(0) = f(1) = 0

- Introduced to control the state variable at the turning points
- Introduction of window functions can lead to serious mathematical problems

Some window functions

Strukov/Benderli
$$f_B(\lambda) = \lambda (1 - \lambda)$$

(2008)

(2009) $f_J(\lambda) = 1 - (2\lambda - 1)^{2p}$

Biolek
(2009)
$$f_B(\lambda) = 1 - (\lambda - H(-I))^{2p}$$

Prodromakis (2011)
 $f_P(\lambda) = \max(f) \left\{ 1 - [(\lambda - 0.5)^2 + 0.75]^p \right\}$

• Required for imposing boundary conditions on λ

Pictures from McDonald et al

Memdiode equations

Transport
Equation
$$I = V / R(\lambda)$$
$$R(\lambda) = R_{ON}\lambda + R_{OFF}(1-\lambda)$$
$$I = \operatorname{sgn}(V) \Big[(\alpha R)^{-1} W \Big\{ \alpha R I_0(\lambda) \exp[\alpha (|V| + R I_0(\lambda))] \Big\} - I_0(\lambda) \Big]$$
$$I_0(\lambda) = I_{0\max}\lambda + I_{0\min}(1-\lambda)$$

State Equation

$$\frac{d\lambda}{dt} = \eta\lambda(1-\lambda)I$$

$$ANALOG$$

$$BEHAVIORAL$$

$$MODEL$$

$$(ABM)$$

E. Miranda, TNANO 14, 787 (2015)

ANALOG

MODEL

(ABM)

The memdiode concept

Transport Equation (electrons) State Equation (ions or vacancies: channels) Instead of resistor-like behavior, diode-like conduction is assumed:

$$I = I_0 \left[\exp(\alpha V) - 1 \right]$$

- Schottky emission
- Electrochemical filamentation
- Tunneling through a gap barrier
- Quantum point-contact conduction

Origin of the nonlinear transport equation

$$\mathbf{V} = I_0 \left\{ \exp[\alpha \left(V - IR \right)] - 1 \right\}$$

Exponential HRS

$$V >> IR \qquad \qquad V >> 0: \quad I = I_0 [\exp(\alpha V) - 1] \qquad \text{HRS}$$

$$V \approx 0: \quad I = I_0 \alpha V \qquad \qquad \text{Linear}$$

T

~

$$V \approx IR \longrightarrow I = \frac{I_0 \alpha}{1 + I_0 \alpha R} V$$

- The series resistance R acts as a feedback that controls the shape of the *I*-*V* through I_0
- Consistent with the experimental I-V curves of many RS devices

Origin of the nonlinear transport equation

$$I = I_0 \{ \exp[\alpha (V - IR)] - 1 \}$$

$$V = I_0 \{ \exp[\alpha (V - IR)] - 1 \}$$

$$V = I_0 \{ \exp[\alpha (V - IR)] - 1 \}$$

$$V = I_0 \{ \exp[\alpha (V - IR)] - 1 \}$$

$$I = \operatorname{sgn}(V) \left[\left(\alpha R \right)^{-1} W \left\{ \alpha R I_0(\lambda) \exp \left[\alpha \left(|V| + R I_0(\lambda) \right) \right] \right\} - I_0(\lambda) \right]$$
$$I_0(\lambda) = I_{0\max} \lambda + I_{0\min} \left(1 - \lambda \right)$$

W is the Lambert function $We^W = x$

- Analytic model (good approximations for *W*)
- Continuous and differentiable
- Linear (large I_0) or nonlinear (small I_0)
- Pinched I-V: *I*(*V*=0)=0

Origin of the state equation

 Let's assume Gaussian-distributed SET voltages for the individual channels

$$f(V) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{\left(V - V^{+}\right)^{2}}{2\sigma^{2}}\right]$$

 Normalized number of activated channels at voltage V

 $\lambda(V) = \int_{-\infty}^{+\infty} H(V - \xi) f(\xi) d\xi$ CONVOLUTION

Origin of the state equation

$$\lambda(V) = \frac{1}{2} \left[1 + erf\left(\frac{V - V^+}{\sqrt{2}\sigma}\right) \right] \approx \left\{ 1 + \exp\left[-\eta\left(V - V^+\right)\right] \right\}^{-1}$$

• Number of conducting channels grows up as a logistic curve

Origin of the state equation

$$\lambda(V) = \left\{ 1 + \exp\left[-\eta\left(V - V^{+}\right)\right] \right\}^{-1}$$
$$\frac{d\lambda}{dV} = \eta\lambda(1 - \lambda)$$
$$\frac{d\lambda}{dt} = \frac{d\lambda}{dV}\frac{dV}{dt} = \eta\lambda(1 - \lambda)\frac{dV}{dt}$$
First-order
State Equation
$$\frac{d\lambda}{dt} = \eta\lambda(1 - \lambda)\dot{V}$$

Major hysteretic loop

Ridge functions $\Gamma^{\pm}(V) = \left\{ 1 + \exp\left[-\eta^{\pm}\left(V - V^{\pm}\right)\right] \right\}^{-1}$ Admissible inputs: $-\infty \le V \le \infty$

Bounded output: $0 < \lambda < 1$

Describe the creation and rupture of conducting channels

Logistic hysteron

Controlling the shape of the hysteron

Control of SET/RESET VOLTAGES

Control of **TRANSITION RATES**

$$\Gamma^{\pm}(V) = \left\{ 1 + \exp\left[-\eta^{\pm} \left(V - V^{\pm}\right)\right] \right\}^{-1}$$

Experimental hysterons (current@low voltage)

TiN-Ti/HfO₂/W devices Results from Universidad de Valladolid

TiN/HfO₂/Ti devices Results from LETI, Grenoble

Experimental and model results

Minor hysteretic loops (neuromorphic applications)

Simplest case:

$$\frac{d\lambda}{dV} = 0 \quad if \ (V,\lambda) \in \Omega$$

Channels can neither be created nor destructed inside Ω

$$\tau_{ions} >> \tau_{signal}$$

Krasnosel'skii-Pokrovskii (KP) hysteresis operator

M. Krasnosel'skii and A. Pokrovskii, Systems with hysteresis, Springer, 1989

Krasnosel'skii-Pokrovskii (KP) hysteresis operator

$$L[t_0, \lambda_0]V(t) \equiv \min\left\{\Gamma^{-}[V(t)], \max[\lambda_0, \Gamma^{+}[V(t)]]\right\}$$

The previous output is the next initial state

$$\lambda_t = \min\left\{\Gamma^{-}(V_t), \max\left[\lambda_{t-1}, \Gamma^{+}(V_t)\right]\right\}$$

- State of the system described by a recursive relationship
- Deterministic and rate-independent process
- Short memory transducer with wiping-out property
- No need to control the simulation timestep (algorithmic modeling)
- Applicable to arbitrary inputs (continuous or discontinuous)

Systems with hysteresis (1989)

Mark Krasnosel'skii (1920-1997)

Alexei V. Pokrovskii 1948-2010

Time-independent model

Model and simulation results for LCMO

Remember: we are interested in simulating the synaptic weight which is a continuous variable

Superposition of hysterons: super-hysteron

EU project PANACHE 2014-2017

Pilot line for Advanced Nonvolatile memory technologies for Automotive microControllers, High security applications and general Electronics

Typical switching behavior

Transistor as selector

Set statistics: accurate determination of acceleration law

Constant voltage stress experiments

Experimental results for CVS confirm this model for the switching time

Pulsed measurements with different ramp rates

Pulsed measurements with different ramp rates

Time-dependent model

- Introduction to filamentary-type ReRAM
- Physical models and quantum limit
- The circuital approach
- Model implementation
- The problem of variability
- Final comments

Memristor simulation using SPICE

 It is of great benefit for circuit designers to be able to model memristive devices in SPICE-type simulators

Memristor simulation using **PSPICE**

* RESISTIVE PORT MODELING * Emem plus aux value={-I(Emem)*V(x)*(Roff-Ron)} Roff aux minus {Roff}

* WINDOW FUNCTION MODELING * .func f(x,p)={1-(2*x-1)^(2*p)} .ENDS memristor $V_{mem} \bigvee_{Roff}^{E_{mem}} E_{mem} \xrightarrow{x_0} f(V(x)) \xrightarrow{T_{mem}} f(V(x)) \xrightarrow{T_{mem}} C_x$

Memristor simulation using **PSPICE**

The figures show how this memristor model reacts to a simple sinusoidal input voltage

Memristor simulation using **PSPICE**

The figure shows that the memristor current is not only related to the applied voltage but also to the history of the device as expected for a hysteretic system

Memristor models in LTSPICE (free software)

A complete library of memristor models in LTSPICE can be found in: "MEMRISTOR DEVICE MODELING AND CIRCUIT DESIGN FOR READ OUT INTEGRATED CIRCUITS, MEMORY ARCHITECTURES, AND NEUROMORPHIC SYSTEMS", PhD Thesis, Chris Yakopcic, University of Dayton, May 2014

Memristor models in Verilog-A

 Industry standard modeling language for analog circuits (subset of Verilog-AMS)

```
// VerilogA model for memristor
// kerentalis@gmail.com
// Dimafliter@gmail.com
// skva@tx.technion.ac.il
11
// Technion - Israel institute of technology
// EE Dept. December 2011
11
`include "disciplines.vams"
`include "constants.h"
// define meter units for w parameter
nature distance
  access = Metr;
  units = "m";
  abstol = 0.01n;
endnature
discipline Distance
  potential distance;
enddiscipline
if (model==0) begin // Linear Ion Drift model
   dwdt =(uv*Ron/D)*I(p,n);
    //change the w width only if the
    // threshhold_voltage permits!
      if(abs(I(p,n))<threshhold_voltage/R) begin
          w=w last;
       dwdt=0;
      end
   // No window
   if ((window_type==0) || (window_type==4)) begin
       w=dwdt*dt+w_last;
   end // No window
  // Jogelkar window
    if (window_type==1) begin
       if (sign(I(p,n))==1) begin
          sign_multply=0;
          if(w==0) begin
          sign_multply=1;
          end
       end
       if (sign(I(p,n))==-1) begin
              sign_multply=0;
              if(w==D) begin
```


Memristor models in MODELICA

MODELICA LIBRARY: MEMRISTORS

The Library

- Includes all the current memristor models
- Provides extendable application examples
- Can be used flexibly by linking to other physical domains
- Is available in the modern, objectoriented language of Modelica

The Benefits for You

- Open and easily extendable library
- Models of various degrees of abstraction
- Valid parameterization already integrated in models
- Extensive collection of examples to test the memristor in analog circuits and cellular non-linear networks

Fraunhofer Institute for Integrated Circuits IIS Design Automation Division EAS

Open-source Modelica-based modeling and simulation environment intended for industrial and academic usage (<u>https://www.openmodelica.org/</u>) (free software)

Memdiode model in LTSPICE

.subckt memdiode + -

.params

* AUXILIARY FUNCTIONS *

.func w(x)=log(1+x)*(1-(log(1+log(1+x)))/(2+log(1+x))) .func l0(x)=ion*x+ioff*(1-x)

```
.func a(x)=aon*x+aoff*(1-x)
.func RS(x)=ron*x+roff*(1-x)
```

```
func S(x)=1/(1+exp(-nset*(x-vset)))
```

```
.func R(x)=1/(1+exp(-nres*(x-vres)))
```

.ends memdiode

G. Patterson et al, IEEE Trans Comp Aided Design, 2017

Simple circuits with memdiodes

Memdiodes driven by voltage and current sources

Simple circuits with memdiodes

Parallel and series memdiodes driven by voltage and current sources

Simulations of 1T1R structures (EU Project PANACHE)

Model and simulation results for SiO_x

50.000E-6

5.0000E-

Simulation of MEMDIODE using LTSpice

Modeling multi-level conduction

In collaboration with UCL, UK

Resistance Switching Technologies

Silicon Oxide (SiO_x): A Promising Material for Resistance Switching?

Adnan Mehonic,* Alexander L. Shluger, David Gao, Ilia Valov, Enrique Miranda, Daniele Ielmini, Alessandro Bricalli, Elia Ambrosi, Can Li, J. Joshua Yang, Qiangfei Xia, and Anthony J. Kenyon*

- Introduction to filamentary-type ReRAM
- Physical models and quantum limit
- The circuital approach
- Model implementation
- The problem of variability
- Final comments

Variability in SiO_x-based ReRAM devices

Origin of variability

Variability is also affected by the way we measure

Effects of cycling on SiO_x (C2C)

- Excellent cyclability
- Good resistance window
- Trend in HRS

Effects of cycling on SiO_x (C2C)

- The trend in HRS is associated with the end point of the reset curve
 - C2C is a stochastic process: trend + volatility

- Introduction to filamentary-type ReRAM
- Physical models and quantum limit
- The circuital approach
- Model implementation
- The problem of variability
- Final comments

- Fujitsu and Panasonic are jointly ramping up a secondgeneration ReRAM device (OxRAM)
- Crossbar is sampling a 40nm ReRAM technology (CBRAM)
- TSMC and UMC recently put ReRAM on their roadmaps
- HP has moved towards a more traditional memory scheme for the system ("The machine") and has backed away from the memristor
- 4DS, Adesto, Micron, Samsung, Sony and others are also developing ReRAM
- GlobalFoundries is not pushing ReRAM today

- ReRAM has proven to be far more difficult to develop than anyone initially expected
- NAND has scaled farther than previously thought, causing many to delay or scrap efforts in ReRAM
- ReRAM won't replace NAND or other memories, but it is expected to find its place, particularly in embedded memory applications
- ReRAMs are well-positioned as a low-cost solution for IoT, wearable devices, and neuromorphic computing
- Today, 3D-XPoint and STT-MRAM have the most momentum

Muito obrigado!

Any doubt? Write me: enrique.miranda@uab.cat