
Neandertal admixture in Eurasia confirmed by Maximum likelihood

analysis of three genomes

Konrad Lohse1, Laurent A. F. Frantz2

1 Institute of Evolutionary Biology, University of Edinburgh, UK

2 Animal Breeding and Genomics Group, Wageningen University, The Netherlands

∗ E-mail: konrad.lohse@ed.ac.uk

Abstract1

Although there has been much interest in estimating histories of divergence and admixture from genomic2

data, it has proven difficult to distinguish recent admixture from long-term structure in the ancestral pop-3

ulation. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about4

the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the5

probability of full mutational configurations in non-recombining sequence blocks under both admixture and6

ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute7

maximum likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Ne-8

andertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian9

populations after their expansion out of Africa against a history of persistent structure in their common an-10

cestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in11

Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4%−7.3%)12

than suggested previously. Using analysis and simulations we show that our inference is more powerful than13

previous summary statistics and robust to realistic levels of recombination.14

1

 Genetics: Early Online, published on February 13, 2014 as 10.1534/genetics.114.162396

 Copyright 2014.



Introduction15

Whole genome sequence data have made it feasible to detect low levels of ancestral admixture between re-16

cently diverged populations and species even from few individuals. An increasing number of genome-wide17

analyses are uncovering signatures of introgression between sister species in a large range of taxa (Cui et al.,18

2013; Eaton & Ree, 2013; Lawniczak et al., 2010; Kulathinal et al., 2009; Heliconius Genome Consortium,19

2012; Martin et al., 2013) suggesting that reticulations may be an ubiquitous feature of speciation. Similar20

evidence for gene flow after divergence has been found in Hominid lineages (Patterson et al., 2006). A num-21

ber of recent studies analyzing the Neandertal genome have suggested that admixture also occurred in the22

genus Homo (i.e. from Neandertals and other archaic lineages into modern Eurasian populations) following23

the expansion of modern Humans out of Africa (Green et al., 2010; Yang et al., 2012; Sankararaman et al.,24

2012).25

To test for admixture between Neandertal and Eurasian populations, Green et al. (2010) have developed a26

simple summary statistic. The D-statistic assesses the fit of a strictly bifurcating species tree. For a triplet of27

African, Eurasian and Neandertal genomes, and an outgroup (Chimpanzee), in which the underlying species28

tree is (African, Eurasian, (Neandertal)), incomplete lineage sorting leads to two diagnostic site patterns.29

Denoting the ancestral state at a polymorphic site as A and the derived state as B, mutations incongruent30

with the species tree may either be "ABBA" (i.e. shared by Eurasian and Neandertal) or "BABA" (shared by31

African and Neandertal). Given the inherent symmetry of coalescence in the common ancestral population32

under a null model of strict divergence without gene flow, the ratio D = (NABBA −NBABA)/(NABBA +33

NBABA) is not expected to be significantly different from 0 (Durand et al., 2011; Green et al., 2010).34

In contrast, an excess of either ABBA or BABA sites cannot be explained by incomplete lineage sorting,35

suggesting population structure or gene flow (Figure 1).36

Positive D has been found and interpreted as evidence for gene flow not only in the Neandertal analysis37
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(Green et al., 2010), but also in genome wide studies of closely related species of Heliconius butterflies38

(whose origin is thought to have involved the introgression of color pattern genes (Heliconius Genome Con-39

sortium, 2012; Martin et al., 2013)) and an island radiation of pigs in South East Asia (Frantz et al., 2013).40

HoweverD is a drastic summary of genetic variation and – like other population genetic summary statis-41

tics such as FST – is fundamentally limited in the sense that it is not diagnostic of any specific historical42

scenario. In particular, Durand et al. (2011) have compared the expectation of D under a model of instan-43

taneous unidirectional admixture (IUA) (Figure 1A) and a different divergence model, involving structure44

in the ancestral population (AS) (Figure 1B). The AS model assumes a genetic barrier (with gene flow of45

M = 4Nem migrants per generation) which arises in the common ancestral population and persists until46

the most recent split (Durand et al., 2011). Under this model, increasing barrier strength leads to increasing47

topological asymmetries (Slatkin & Pollack, 2008) and hence positive D. Thus a key finding of the Durand48

et al. (2011) analysis is that it is impossible to distinguish between gene flow after divergence and structure49

in the ancestral population using D. Although Green et al. (2010) argue that admixture from Neandertals50

into Eurasians is the most plausible history, they conclude that "we cannot currently rule out a scenario in51

which the ancestral population of present-day non-Africans was more closely related to Neandertals than52

the ancestral population of present-day Africans due to ancient substructure within Africa." This has lead to53

recent controversy about the genomic signature of Neandertal admixture. In particular, Eriksson & Manica54

(2012) have used Approximate Bayesian Computation to show that D values identical to those observed in55

the Neandertal-Eurasian-African triplets can be generated under stepping-stone type models of colonization56

and structure without admixture and recommend caution in inferring admixture from geographic patterns of57

shared polymorphisms. While recent studies examining patterns of linkage disequilibrium (Sankararaman58

et al., 2012) and allele frequency spectra of modern human populations (Yang et al., 2012) provide quali-59

tative support for Neandertal admixture, a rigorous statistical comparison of these alternative scenarios of60
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human history is lacking.61

D captures the information contained in the mean length and frequency of two types of genealogical62

branches. However, given the randomness of the coalescent process, much of the signal about population63

history is contained in the higher moments of the distribution of branch lengths. An obvious strategy for64

exploiting this information is to partition the genome into short sequence blocks within which recombination65

can be ignored, and to maximize the joint likelihood across blocks (Nielsen & Wakeley, 2001; Yang, 2002;66

Zhu & Yang, 2012). Because the space of possible genealogies grows super-exponentially with the number67

of sampled individuals, multilocus inference methods are generally computationally intensive and often rely68

on Markov chain Monte Carlo methods (Nielsen & Wakeley, 2001) or simulations. However, for small69

samples of individuals an analytic solution to the likelihood is possible (Yang, 2002; Wilkinson-Herbots,70

2008; Wang & Hey, 2010; Lohse et al., 2011) making inference from whole genome data feasible.71

In this study we compute maximum likelihood estimates of parameters under the AS and IUA models72

from three genomes. We first show how the Generating function (GF) of branch lengths can be used to derive73

the probability of full mutational configurations in short sequence blocks under both models. We then inves-74

tigate the power of this new method to distinguish between IUA, AS and a null model of strict divergence75

and compare it with that of the D statistic. We apply the method to triplet samples of contemporary human76

genomes from Africa and Eurasia and the Neandertal genome sequenced by Green et al. (2010) and quantify77

the relative support for alternative models. Finally, we use simulations to demonstrate the robustness of our78

inferences to recombination.79

Models and Methods80

We consider a history of three populations A, B and C which are related to each other via two divergence81

events. Population B and C split from each other at time T1, their common ancestral population in turn split82
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from population A at a previous time T2 > T1. The IUA model further assumes an instantaneous, unidi-83

rectional admixture (IUA) event which transfers a fraction f of lineages from population A into population84

B (forewards in time) at a more recent time Tgf < T1 (Fig. 1A). Alternatively, the ancestral structure (AS)85

model assumes a barrier in the population ancestral to B and C, which persists into the common ancestral86

population (Fig. 1B). While Durand et al. (2011) assume symmetric migration across the barrier and an87

additional time parameter at which the barrier arises, we consider a slightly simpler model with a permanent88

barrier (Slatkin & Pollack, 2008) and unidirectional gene flow (with M/2 migrants per generation).89

Going backwards in time, we can describe the history of a sample X = {a, b, c} as a discrete-time90

Markov chain. We need to trace both the location and coalescence of the sample as well as the merging91

of the three populations backwards in time (corresponding to splits forwards in time). Fixing the order of92

populations asA,B andC and using / to separate them, we can denote the initial state at the time of sampling93

(∗a/b/c) (where the asterisk indicates that the admixture event is still pending). Under the IUA model,94

there are a further 10 states: (a, b/∅/c), ({a, b}/∅/c), (a, b/c), ({a, b}/c), (a/b, c), (a/{b, c}), (a, {b, c}),95

(b, {a, c}), (c, {a, b}) and (a, b, c). We use {a, b} to denote a new lineage generated by a coalescence event96

between a and b and (a, b/∅/c) a state where population B is empty (because lineage b has traced back to97

population A).98

Assuming an infinite sites mutation model and an outgroup to polarize mutations, the polymorphism99

information in a sample of sequences X can be summarized by counting the number of mutations on each100

possible genealogical branch as a vector k with entries kS where S ⊆ X . For X = {a, b, c} there are six101

mutation types: k = {ka, kb, kc, kab, kac, kbc}, where ka is the number of mutations found only in sample102

a, kab is the number of mutations shared by a and b and so on. Shared derived mutations uniquely define a103

topology: all genealogies have a terminal branch contributing to ka, but only genealogies with topology Gab104

contribute to kab. We are interested in computing P [k|Θ], the probability of a mutational configuration k105
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given parameter values Θ under either the IUA or the AS model. P [k|Θ] can be interpreted as the likelihood106

of the model. In principle, this can be found as:107

P [k|Θ] =

∫
P [t|Θ]× P [k|t, µ]dt (1)

where P [t|Θ] is the joint distribution of genealogical branches and P [k|t, µ] the probability of a muta-108

tional configuration given a genealogy t and mutation rate µ. This decomposition of the likelihood was first109

outlined by Felsenstein (1988) and has been used to derive likelihoods for minimal samples under a num-110

ber of models: Yang (2002) study a divergence model involving three populations and Wilkinson-Herbots111

(2008) and Wang & Hey (2010) a model of isolation with migration between two populations. P [t|Θ] can112

be found as a convolution of the waiting times between all successive sample states. However, this direct113

approach quickly gets out of hand given the large number of possible histories of the sample that need to be114

considered and because the integral in eq. 1 has as many dimensions as there are genealogical branches and115

so is hard to solve.116

Here we use the Generating function (GF) or Laplace Transform of P [t] to derive P [k] under the IUA117

and AS models. The general approach has been described in detail by Lohse et al. (2011). Below, we give a118

brief summary of the main steps involved and derive several genealogical quantities under the IUA and AS119

model that help understand how these scenarios can be distinguished.120

Computing likelihoods from the generating function121

The generating function (GF) of the distribution of branch lengths P [t] is defined as ψ[ω] = E[e−t.ω] where122

the vector of dummy variables ω corresponds directly to the branch lengths t and mutation counts k. As123

Lohse et al. (2011) show, for a general class of models in which the waiting times between successive states124

in the history of a sample are exponentially distributed, the GF has a simple recursive form that relates125
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the sample state at a particular time, Ω, to the state Ωi before some event i (which may be coalescence,126

population divergence or admixture) (Lohse et al., 2011, eq. 4):127

ψ[Ω] =

∑
i λiψ[Ωi]∑

i λi +
∑
|S|=1 ωS

(2)

The denominator is given by the total rate of events
∑
i λi plus the sum of dummy variables ωS cor-128

responding to the genealogical branches that increase during this interval. For the first event, these are the129

"leaves" of the genealogy, i.e. |S| = 1. The numerator is a sum of the GFs of all possible previous states,130

each weighted by the rate of the corresponding event λi.131

To be able to apply this recursion to the IUA model, we initially assume that the intervals between

population split and admixture times (τ1, τ2 and Tgf in Figure 1A) are exponentially distributed with rates

Λ1, Λ2 and Λgf . The GF equations for this continuous analog of the IUA model are easy to write down and

(using Mathematica) solve. For instance, consider the GF for the initial state of the sample (∗a/b/c). The

only possible event is admixture (which occurs with rate Λgf ). This leads either to state (a, b/∅/c) if the

lineage in population B traces back to population A (with probability f ) or to state (a/b/c) if it remains in

population B (with probability 1− f ). The GF term is:

ψ[∗a/b/c] =
Λgf

(Λgf + ωa + ωb + ωc)
(fψ[a, b/∅/c] + (1− f)ψ[a/b/c])

Once admixture has occurred, we allow for the merging of populations B and C (at rate Λ1) and finally132

the merging of populations A and the population ancestral to B and C (at rate Λ2). The GF terms for all133

sample states under the IUA model and their solution are given in the Appendix.134

We denote the GF for the original model with discrete population split and admixture times P [ω]. Noting135

that ψ[ω] =
∫

Λ1Λ2ΛgfP [ω]e−Λ.T dT (Lohse et al., 2011, 2012), P [ω] can be obtained by multiplying ψ[ω]136
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by (ΛgfΛ1Λ2)−1 and inverting once for each event with respect to the corresponding Λ parameter.137

We can partition P [ω] into contributions from the three different topologies by setting GF terms in138

the recursion that involve branches that are incompatible with a particular topology to zero. Note that139

P [ω] = P [ω,Gbc] + P [ω,Gac] + P [ω,Gab] (Lohse et al., 2011). This is convenient because the GF for140

a particular topology only depends on the intervals between the two coalescence events. For example, for141

topology Gab we can define corresponding dummy variables ω3 = ωa + ωb + ωc and ω2 = ωc + ωab142

(labeled by the number of lineages during each interval). Using this simplification gives relatively compact143

expressions (eq. 8, Appendix).144

Lohse et al. (2011) show that under an infinite sites mutation model with a uniform mutation rate θ/2 =145

2Neµ, the probability of a particular mutational configuration can be found by taking successive derivatives146

of the GF (eq. 8) with respect to the relevant ω variables (Lohse et al., 2011, 2012). Specifically, the147

probability of k3 and k2 mutations in the two coalescence intervals is:148

p[k3, k2, Gi] = (−1)k2+k3 θ
k2(3θ/2)

k3

k2!k3!

(
∂k2+k3P [ω2, ω3, Gi]

∂ω2
k2ω3

k3

)
ω2=θ

ω3=3θ/2
(3)

We can compute P [k] from the above by considering the possible ways the mutations on each branch149

can fall into the two coalescent intervals (Lohse et al., 2011, Supporting Information). For example, for150

topology Gab, we have:151

P [kab, kc, ka + kb] =

kc∑
j=0

(
ka + kb + kc − j

kc − j

)
1

3

kc−j 2

3

ka+kb
(
kab + j

j

)
1

2

kab+j

×

× p[kab + j, ka + kb + kc − j,Gab]

(4)

This uses the fact that, for a given topology, mutations on the two shorter external branches (e.g. ka and152
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kb for Gab) can be combined because the underlying branches have the same length.153

The logarithm of the likelihood (lnL) for a dataset consisting of an arbitrary number of sequence blocks154

is simply the sum of lnL across blocks. The joint lnL can be maximized using the Mathematica function155

FindMaximum, which takes a few minutes on a modern personal computer. We restricted the computation156

of exact probabilities to configurations that involve up to a maximum of km = 3 mutations on any one157

genealogical branch. The probabilities of rare configurations with more than km mutations on one or several158

branches can also be calculated from the GF by considering the relevant marginal probabilities (see Support-159

ing.nb). Code for the likelihood computation for the IUA and AS models is implemented in Mathematica160

(Wolfram Research, 2010) (File S1).161

Genealogical properties162

We can use the GF to derive several useful genealogical quantities under the IUA and AS model. Firstly, the163

probability of each topology can be found by setting all ω terms in equation 8 (Appendix) to 0. For the IUA164

model this gives:165

p[Gbc] =
1

3
(3− 3f + e−τ1−τ2(2eτ1(f − 1) + f))

p[Gab] =
1

3
(e−τ1−τ2(−eτ1(f − 1)− 2f) + 3f)

p[Gac] =
1

3
e−τ1−τ2(−eτ1(f − 1) + f)

(5)

166

An alternative derivation of eq. 5 can be made using discrete-time transition matrices (analogous to167

Slatkin & Pollack, 2008; Lohse, 2010).168

Secondly, the moments of the length of a particular branch can be found from the GF by taking deriva-169

tives with respect to the corresponding ω variable. For example, the expected length of the two incongruent170

9



branches are: E[tab] = −∂P [ω,Gab]
∂ωab

|ωab=0 and E[tac] = −∂P [ω,Gac]
∂ωac

|ωac=0. Multiplying by θ/2 gives171

the expected number of the two incongruent types of shared derived mutations kab and kac. These are172

Pr(ABBA) and Pr(BABA) in the notation of (Durand et al., 2011, eqs. 3 & 4).173

Finally, to find the length distribution for a particular branch, we invert the GF with respect to the174

corresponding ω variable (using Mathematica). Figure 2 contrasts the distributions of branches tab, tac and175

ta under the IUA and AS models.176

Power analyses177

For ease of comparison, we focus on the IUA history previously studied by Durand et al. (2011): Tgf =178

2, 500, T1 = 3, 000, T2 = 12, 000 and f = 0.04. Assuming Ne = 10, 000 (fixed for all populations) these179

roughly match the history previously inferred for Neandertals, African and Eurasian H. sapiens by Green180

et al. (2010). All time parameters are in generations, corresponding values scaled in 2Ne generations are181

given in Table S1.182

Given j possible mutational configurations kj and a true history Θ1, the expected difference in support,183

i.e. E[∆lnL] between the true model Θ1 and an alternative history Θ2 can be computed as:184

E[∆lnL] =
∑
j

(lnL[Θ̂1|kj ]− lnL[Θ̂2|kj ])× P [kj |Θ1] (6)

where Θ̂ denotes the set of parameter values that maximize lnL under a particular model. Analogously,185

the accuracy of the likelihood method to estimate a particular model parameter θ, can be quantified using186

Fisher information which is defined as I = −∂
2lnL
∂θ2 and measures the sharpness of the lnL curve near the187

maximum (Edwards, 1972). The average information about a parameter contained in a sequence block is188

given by summing I over all mutational configurations j weighted by their probability:189
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E[I] =
∑
j

−
∂2lnL[Θ̂|kj ]

∂θ2
× P [kj |Θ̂] (7)

The expected information in a data set consisting of n sequence blocks is simply n × E[I]. Assuming190

parameter values are away from the boundaries, the inverse of I gives a lower bound on the variance (and191

covariance) of parameter estimates (Rao, 1945).192

Application to human-Neandertal data193

We downloaded BAM files (short-read alignment) of the three Vindija bones (SLVi33.16, SLVi33.25 and194

SLVi33.26) that were aligned to the human genome (hg18), from the UCSC genome browser (http://genome.195

ucsc.edu/Neandertal). We only used sites with a minimum mapping quality of 90 and a sequence quality196

of 40 and, to avoid potential duplicates, filtered out positions that were covered by more than 3 reads, as197

the genome wide average depth of coverage was approximately 1.5 fold (Green et al., 2010). We further198

excluded the first and last 5bp of every read, as these positions are enriched for sequencing errors (Green199

et al., 2010). We also excluded transitions from the analysis to limit the effect of ancient DNA damage200

(Briggs et al., 2007) and only used autosomal chromosome sequence. We obtained genotype files for a201

European (CEU; Coriell ID: NA06985), Han (CHB; Coriell: NA18526), and Yoruba (YRI; Coriell ID:202

NA18501) individual from complete genomics (ftp://ftp2.completegenomics.com, release 1.2). We analysed203

two triplet combinations, Neandertal/Eurasian/Yoruba, where the Eurasian genome is either CEU or CHB.204

For the outgroup sequences, we extracted the genotype of the chimpanzee (Pan troglodytes), and the Human-205

Chimp ancestor sequence reconstruction (available from the 4 primates EPO alignment provided by Ensembl206

release 54) in 1:1 human-chimp orthologous regions for each site that was covered in the Neandertal genome.207

Sites were polarized (ancestral vs. derived) using the sequence reconstruction of the Human-Chimp ancestor.208

We partitioned the human genome into 5, 10 and 20kb fixed length blocks. For each block, we sampled209
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the first 2, 4 or 8kb of sequence covered in all samples (three humans sequences, both outgroups and the210

Neandertal) and discarded any block with lower coverage.211

The three human genomes are from a single diploid individual, the Neandertal genome is based on a212

sample of three individuals. To meet the assumption of the likelihood method of a single haploid sample213

per population, we phased blocks at random. Although this may seem drastic (given that only 35 % of214

polymorphic sites are homozygous in all individuals), the potential for phasing error is small for the block215

length we consider fpor two reasons. Firstly, there is no phasing ambiguity for blocks that contain less than216

two heterozygous sites in all individuals which is true for 75% of 2kb blocks. Secondly, the majority (68217

%) of heterozygous sites are unique to one sample but invariable in all others and so due to mutations on218

external branches (shown in red and green in Figure S4). Erroneous phasing of such unique heterozygous219

sites cannot affect the number of shared derived mutations (i.e. kab, kac and kbc). Furthermore, with minimal220

sampling, the two alleles in an individual often trace back to a common ancestor via two external branches221

(see mutations in green Figure S4), which have the same length. In this case, random phasing error cannot222

bias the number of mutations on external branches.223

Violations of the 4-gamete criterion within a block can arise either due to recombination, back-mutation224

or phasing error, all of which are incompatible with our assumptions. We therefore excluded blocks that225

contained more than one type of shared derived mutation from the analysis (1.5 %, 4.9 % and 14.2 % in the226

2, 4 and 8 kb datasets respectively). Applying the inter-block distance and filtering steps described above227

to the entirety of the human autosomes, yielded 291,620, 146,281 and 71,940 blocks of 2kb, 4kb and 8kb228

length respectively (File S2).229

While the analysis of Green et al. (2010) focuses on shared derived sites, our likelihood computation uses230

all polymorphic sites. In fact, our analytic results show that much of the information to distinguish between231

the IUA and AS models is contained in the distribution of external branches (Figure 2). This presents a232
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problem in practice: given the low sequence coverage of the Neandertal (1.5 fold), the vast majority of233

sites affected by post mortem DNA damage will be visible as (spurious) Neandertal singletons. To address234

this, we made a simple error correction based on the symmetry of genealogical branches. Assuming that235

sequencing error in the modern human data can be ignored and that the mutation rate and generation time236

is the same for Neandertals and modern humans, the expected proportion of true Neandertal singletons can237

be estimated from the difference in the total number of derived sites in modern a modern human and the238

Neandertal genome. We estimated the proportion of true Neandertal singletons as 35 % and randomly sub-239

sampled Neandertal singletons in each block with this probability. Note that both this correction and our240

models assume that the root-tip distance is the same for all samples (ignoring the fact that Neandertals died241

out) and are consistent with each other. To check whether this correction could bias model and parameter242

estimates, we re-ran likelihood analyses without the Neandertal singletons (see Sensitivity analyses).243

We computed maximum likelihood estimates of parameters under the IUA model (with one or two244

ancestral Ne parameters), the AS model and a null model of strict divergence. Given that the likelihood245

computation assumes that blocks are statistically independent, the effect of physical linkage between blocks246

must be accounted for. One could sub-sample blocks that are separated by some threshold distance lmin over247

which the effect of statistical associations can be ignored and then average lnL estimates over all such sub-248

sampled datasets. This is equivalent to rescaling likelihoods obtained from all the data by a factor (l/lmin)249

where l is the block length. We assumed that the effect of physical linkage between blocks separated by a250

distance >100kb can be ignored (Sankararaman et al., 2012). This threshold was chosen to be conservative251

and so our confidence in model and parameter estimates gives a lower bound to linkage-aware estimates. We252

note that the scaling argument above can be used to adjust our results for any level of linkage.253
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Results254

Power analyses255

Our comparison of the likelihood method and the D statistic highlights several advantages of the maximum256

likelihood scheme. Firstly and as shown in Figure 3, the likelihood method can distinguish between admix-257

ture (IUA) and ancestral structure (AS) models regardless of which scenario is true. Secondly, maximum258

likelihood computation from sequence blocks has greater power (as measured by E[∆lnL]) to distinguish259

between the IUA history (when true) and a null model of strict divergence than D calculated from unlinked260

SNPs. This is true even if we set the length of blocks such that they contain a single SNP on average (Fig-261

ure S1A). Finally, we can use Fisher Information to quantify how informative sequence data are about a262

particular model parameter, and hence how accurate one can expect parameter estimates to be. Under the263

IUA history, there is much more information about the admixture fraction f than the time of admixture Tgf264

(Table S1). E.g. given a sample of 10,000 blocks of 2kb length, one would expect a standard deviation (SD)265

of 0.0145 for estimates of f , but 0.178 for Tgf (Table S1). Note that in contrast to the D statistics which266

have been used to derive a lower bound on f (Durand et al., 2011), the maximum likelihood estimate of267

f is unbiased provided the assumption of no recombination within blocks is met (see Sensitivity analyses268

below).269

As expected, increasing the length of sequence blocks sharpens the likelihood surface (Figure S1) and so270

increases the power to distinguish alternative models (Figure S1A) and the accuracy of parameter estimates271

(Table S1, Figure S1B).272
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Application to human-Neandertal data273

We found that a history of recent admixture from Neandertals into Eurasians (IUA model) is better sup-274

ported by both the CEU and CHB data than a null model of divergence without gene flow or a model of275

ancestral structure (AS, Table 1). The estimated differences in support (∆lnL) between the null model and276

the IUA model were highly significant assuming a χ2 distribution, which is conservative (Zhu & Yang,277

2012). Likewise, the increase in support for the IUA and IUA2 model relative to the AS model was sub-278

stantial. Allowing the size of the ancestral population between T1 and T2 to differ from that of the common279

ancestral population, further improved the fit of the admixture model (i.e. the IUA2 model) (Table 1).280

To convert estimated divergence times (scaled in 2Ne generations) into absolute values, we followed281

Green et al. (2010) and assumed an average gene divergence time between chimps and humans of 6.5 MY282

and a generation time of 25 years. Given this calibration, we estimated that Neandertals diverged from the283

ancestor of modern humans 329–349 KYA (T2). The divergence between modern African and non-African284

human populations (T1) occurred 122–141 KYA. Estimates for T1 and T2 generally agreed well between285

the CEU and CHB analyses (Table 2, Table S2). We inferred a fraction of Neandertal admixture (f ) of 5.9286

and 5.3 % in the CHB and CEU analyses respectively with 95 % C.I. broadly overlapping between the two287

analyses (Figure S2). There was little information about the time of admixture and the 95 % C.I. for this288

parameter included T1 in all analyses (Table 2, S2).289

Sensitivity analyses290

In practice, the assumption of no intra-locus recombination limits multilocus analyses to relatively short291

blocks. Thus, the usefulness of our method clearly depends on the relative rates of recombination and292

mutation and the heterogeneity of both processes along the genome. There is a trade-off between power293

and bias: if blocks are too short, they contain little additional information compared to SNP frequency294
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spectra. Making blocks excessively long on the other hand potentially biases parameter estimates because295

recombination within blocks reduces the variance in inferred branch lengths (Hudson & Kaplan, 1985) and296

blocks with detectable recombination breakpoints (4-gamete criterion) are excluded. We investigated the297

effect of intra-locus recombination on parameter estimates in two ways.298

Firstly, we repeated all analyses with longer (4kb and 8kb) blocks. Reassuringly, increasing block length299

did not change the relative support for alternative models (Table 1). However, as expected from the analytic300

results (Table S1 and Figure S1), using longer blocks increased power (Table 1). Although in general, param-301

eter estimates were little affected by block length (Table 1 and S2 and Figure S2), we observed some subtle302

shifts that are consistent with the known effects of recombination (Wall, 2003): estimates of divergence and303

admixture times increased, whereas ancestral Ne decreased with block length (Table S2). However, some of304

these shifts may at least be partially due to phasing error (which also increases with block length). Secondly,305

we quantified the bias in parameter estimates due to intra-locus recombination by testing the maximum306

likelihood method on data simulated with realistic levels of recombination. We used ms (Hudson, 2002) to307

simulate data under the best fitting model (estimated from the 2kb CEU data, Table 2) for varying block308

lengths (1-8kb) and assuming a recombination rate of 1.3 cM/Mb. Our robustness analyses confirmed that309

ignoring recombination within loci resulted in a slight upward bias of divergence times and a downward bias310

of ancestral Ne, as expected (Wall, 2003). Importantly however, these effects were small for the block sizes311

considered (Figure S3).312

To investigate the effect of our correction for Neandertal singletons, we re-ran the likelihood inference313

without Neandertal singletons (by removing them from the data and setting the mutation rate on the Ne-314

andertal branch to zero). Reassuringly, this did not alter our main finding of greater support for the IUA315

compared to the AS model (Table S3). In fact, the difference in support (∆lnL) between these models316

increased slightly. Likewise, parameter estimates were little affected (Table S4). However, we found that317
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without Neandetal singletons, there was virtually no information to estimate Tgf . This is perhaps unsurpris-318

ing given that the ability to estimate this most recent event should be disproportionally influenced by the319

removal of an external branch and because there is already very little information on this parameter in the320

full dataset.321

Our analysis ignores mutational heterogeneity across loci. To test whether this could affect inference, we322

partitioned 2kb blocks into 10 bins of equal size according to their relative distance to the chimpanzee. Incor-323

porating relative mutation rates for each bin resulted in lower support overall but little change in parameter324

estimates (not shown).325

To check how well the data fit the inferred history overall, we compared the observed distribution of the326

total number of mutations (S) in each topology class with its expectation. Table S5 shows a close match327

between observed and expected frequencies of blocks. The only notable disagreement are a slight excess of328

topologically resolved blocks (2 %) and a subtle excess of blocks that have an incongruent topology (e.g.329

(YRI,(N,CEU)) or (CEU,(N,YRI))) and a shallow genealogy in the real data (see S = 1 in Table S5). This330

may be a result of selective constraints on some sequences, which are not captured by our method.331

Discussion332

We have developed a method to fit alternative models of divergence between three populations with either333

recent gene flow or ancient structure to genomic data. We show that partitioning the genome into short blocks334

within which recombination can be ignored gives an efficient way for computing genome-wide maximum335

likelihood estimates under these models. The robustness of this approach to recombination is highlighted336

both by our sensitivity tests on simulated data (Figure S4) and the agreement of parameter estimates across337

a range of block sizes (Table S2). The latter also suggest that the potential effects of phasing error (which338

increases with block size) is small for the block sizes we consider. Clearly, treating nearby SNPs as linked339

17



over short distances is a realistic approximation that adds substantial information to historical inference.340

Our maximum likelihood scheme has several advantages over theD statistic (Green et al., 2010; Durand341

et al., 2011): First, it is statistically optimal in the sense that all available information is used and there-342

fore has greater power. Second, instead of testing a null model, one obtains joint estimates of all relevant343

parameters under a set of alternative models. This constitutes an improvement over previous genomic anal-344

yses which generally have estimated divergence and admixture parameters separately and using different345

approaches. Finally, and in contrast to the assertion of Durand et al. (2011) that distinguishing between346

ancestral admixture (IUA) and population structure (AS) "[...] will require using more than one sample per347

population", our analysis shows that the two scenarios can be distinguished using minimal samples. Consid-348

ering the difference in the length distribution of branches between these models (Figure 2), it is clear where349

the signal comes from. While the length distribution of internal branches differs only subtly between the two350

models, there is a marked difference in the distribution of external branches: incongruent genealogies with351

short external branches (i.e. ta < T1) are possible under the IUA model, but not the AS model (compare A352

vs. B in Figure 2).353

Conclusions about Human history354

Our analysis of human-Neandertal data provides strong statistical support for the IUA model and confirms355

previous claims that Neandertals contributed genetically to contemporary Eurasian populations (Green et al.,356

2010; Yang et al., 2012; Sankararaman et al., 2012). However, in contrast to previous studies we can conclu-357

sively reject long-term population structure in the ancestral African population as an alternative explanation358

for the excess sharing of derived mutations by Neandertal and Eurasians.359

The parameter estimates we infer agree well with a number of recent population genomic studies on360

human history (Green et al., 2010; Yang et al., 2012; Sankararaman et al., 2012; Wall et al., 2013). For361
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example, our population divergence times match those of Green et al. (2010) and the ancestral population362

size is close to the average Ne inferred by Li & Durbin (2011) during that period (120-500KY). Similarly,363

our inference of a slightly higher fraction of Neandertal admixture in the Han compared to the European364

genome (Tables 2 and S2) mirrors recent findings based on comparing average D in Asian and European365

individuals (Wall et al., 2013).366

It is notable that we infer a larger fraction of Neandertal admixture (3.4% > f > 7.9%) than previous367

studies (1-6 % Green et al., 2010; Durand et al., 2011). However, this difference is to be expected given that368

the D-based estimator is a lower bound of f (Durand et al., 2011). While our exploration of simulated data369

shows that ignoring recombination within blocks slightly biases f estimates upwards potentially leading370

to larger f estimates for longer blocks (Figure S3), we observe little such bias in the Neandertal analysis371

(Figures S2 and S3). We also re-iterate the point made by Durand et al. (2011) that f estimates are rather372

sensitive to assumptions about the effective population sizes of Neandertals. We have followed Durand et al.373

(2011) in assuming that the Ne of Neandertals equals that of the common ancestral population. It will be374

interesting to incorporate information about the Ne of Neandertals into such analyses in the future.375

Although in principle our method allows us to estimate the time of admixture Tgf and our estimates for376

this parameter encompass those of Sankararaman et al. (2012) (37KY–86KY), our power analysis shows that377

multilocus data contain very little information about this parameter (Table S1). This makes intuitive sense378

considering that only mutations that arise between Tgf and T1 contribute information about this parameter.379

Methods that use information contained in patterns of linkage (Sankararaman et al., 2012; Ralph & Coop,380

2013) are more informative over such recent time scales.381

In conclusion, we show that maximum likelihood calculations on blocks of sequences allow for a joint382

estimation of divergence times, ancestral effective population sizes and the fraction and time of admix-383

ture. This approach has greater power than summary statistics and can distinguish between subtly different384
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scenarios of admixture and ancestral population structure. Our results allows us to conclusively reject the385

ancestral structure model and demonstrate that secondary admixture from Neandertals into Eurasians took386

place after the expansion of modern humans out of Africa. This has important implications for our under-387

standing of human evolution. Future studies, based on ancient and/or modern DNA will likely shed light on388

the frequency at which such reticulation events took place in the Hominin lineage. Because our approach389

maximizes the information contained in individual genomes, it will be particularly useful for revealing the390

history of rare and extinct species and populations for which samples are limited. Another advantage of con-391

sidering minimal samples is that it renders inferences of ancestral parameters robust to the details of more392

recent demographic events which would otherwise need to be modeled explicitly. Given that the analytic393

basis of our method is not restricted to any particular model (Lohse et al., 2011), it should be possible to394

develop analogous calculations for other histories and incorporate recombination or useful approximations395

such as the sequential Markov coalescent (McVean & Cardin, 2005) in these inferences in the future.396
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Figures487

Figure 1: Models of divergence between three populations with either A) a recent instantaneous, unidirec-
tional admixture event (IUA model) or B) persistent structure in the ancestral population (AS model). Both
histories lead to an excess of incongruent genealogies characterized by an internal branch tab (in green).
However the distribution of branch lengths, in particular that of the external branch ta (in red), differs be-
tween the IUA and AS models (Fig. 2).
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Figure 2: The length distribution of the internal branches tab (coloured in green in Figure 1) and tac that
specify genealogies that are incongruent with the order of population divergence and the shorter external
branch ta (coloured in red in Figure 1) under A) the admixture (IUA) model or B) a model of ancestral
structure (AS) (Figure 1). Branch length distributions for genealogies with topologies tab (the frequency of
which is increased by admixture or population structure) are shown as solid lines, those for the alternative
incongruent topology tac as dashed lines. A) is based on the parameters of (Durand et al., 2011) with high
admixture (f = 0.2); the parameters in B) are chosen to give the same expected D value.
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Figure 3: A) The expected difference in support (E[∆lnL]) between the IUA model and the AS model (bold)
and between the IUA and a null model of strict divergence (dashed), when IUA is true plotted against the
admixture fraction f . B) shows analogous results for E[∆lnL] against barrier strength (1/M ) when the AS
model is true. Plots are based on analytic results for the likelihood and assuming 10,000 sequence blocks,
θ = 3 and the time parameters of Durand et al. (2011) (Table 6).
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Tables488

Table 1: Support ∆lnL relative to the best fitting model (IUA2) for alternative models of history.
Dataset IUA2 (5) IUA **(4) AS (4) Null* (3)
CEU, 2kb 0 0.142 9.13 9.13
CHB, 2kb 0 0.249 6.49 9.45
CEU, 4kb 0 6.67 15.3 33.7
CHB, 4kb 0 5.17 16.8 33.1
CEU, 8kb 0 28.0 34.3 82.4
CHB, 8kb 0 27.9 37.8 87.0

Strict divergence (Null), divergence with admixture (IUA) or ancestral population structure (AS). The IUA2

model allows for two different ancestral Ne.

Table 2: Maximum likelihood estimates of parameters under the divergence with admixture (IUA) model.

dataset θ T1 T2 Tgf f

CEU, 2kb 0.42 0.379 0.967 0.12 0.053, (0.034–0.073)
7,012, (6,950–7,190) 133, (124–141) 339, (329–349) 55.1, (0–T1)

CHB, 2kb 0.42 0.376 0.968 0.16 0.059, (0.039–0.079)
7,000, (6,950–7,190) 132, (123–140) 339, (329–349) 75.8, (0–T1)

10,000 n/a 270–440KY n/a 0.01–0.06*

Time parameters are scaled in 2Ne generations and measured from the present. The second row (in bold)
gives absolute parameter values, i.e. effective population sizes in individuals and divergence in KY. 95%
confidence intervals (in brackets) were calculated assuming that LD between blocks > 100kb apart can be
ignored. Estimates obtained by Green et al. (2010) and Durand et al. (2011) for comparison.
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Appendix489

Using recursion eq. 2 we can write down the GF equations for the continuous analog of the IUA model490

where the times between population divergence and admixture events (i.e. Tgf , τ1 and τ2, figure 1A) are491

exponentially distributed. The terms for the four sample states that arise as a result of the admixture event:492

ψ[∗a/b/c] =
Λgf

(Λgf + ωa + ωb + ωc)
(fψ[a, b/∅/c] + (1− f)ψ[a/b/c])

ψ[a, b/∅/c] =
1

(1 + Λ1 + ωa + ωb + ωc)
(ψ[{a, b}/∅/c] + Λ1ψ[a, b/c])

ψ[{a, b}/∅/c] =
Λ1ψ[{a, b}/c]
Λ1 + ωab + ωc

ψ[{a, b}/c] =
Λ2

Λ2 + ωab + ωc

(
1

1 + ωa + ωab

)

The remaining states and their GF terms are identical to those in the divergence model without admixture493

(see eq. 1 Lohse et al., 2012, Appendix, with β = 1):494

ψ[a/b/c] =
1

Λ1 + ωa + ωb + ωc
Λ1ψ[a/b, c]

ψ[a/b, c] =
1

1 + Λ2 + ωa + ωb + ωc
(Λ2ψ[a, b, c] + ψ[a/{b, c}])

ψ[a/{b, c}] =
Λ2

(Λ2 + ωa + ωbc) (1 + ωa + ωbc)

ψ[a, b, c] =
1

3 + ωa + ωb + ωc

(
1

1 + ωa + ωab
+

1

1 + ωb + ωac
+

1

1 + ωc + ωbc

)

Using Mathematica, this set of equations is easily solved. Although the expression is cumbersome (see495

Supporting.nb), decomposing it into the contributions from the three different topologies (Lohse et al., 2011)496

yields relatively compact formulae:497
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P [ω2, ω3, Gbc] =
e−(τ1+Tgf )ω3(e−ω2τ2(f − 1)(3 + ω3) + e−τ1−(1+ω3)τ2(eτ1(f − 1)(2 + ω2) + f(1− ω2 + ω3)

(1 + ω2)(3 + ω3)(1− ω2 + ω3)

P [ω2, ω3, Gab] =
e−Tgfω3(e−ω2(τ1+τ2)f(3 + ω3) + e−(1+ω3)(τ1+τ2)(−f(2 + ω2)− eτ1(f − 1)(1− ω2 + ω3)

(1 + ω2)(3 + ω3)(1− ω2 + ω3)

P [ω2, ω3, Gac] =
e−τ1(1+ω3)−τ2−ω3(τ2+Tgf )(−eτ1(f − 1) + f)

(1 + ω2)(3 + ω3)

(8)

498

The above uses the fact that the GF for each topology only depends on the intervals between the two499

coalescence events with corresponding dummy variables ω3 and ω2. Note also that τ1 and τ2 are the times500

between admixture and divergence events (Figure 1A). The corresponding times from the present are: T1 =501

Tgf + τ1 and T2 = Tgf + τ1 + τ2.502

Without admixture (i. e. f → 0 and Tgf → 0) eq. 8 above reduces to eqs. 3 and 4 in Lohse et al. (2012).503

For simplicity, the model described above assumes that both ancestral populations are of the same size. To504

relax this assumption we define a rate α of pairwise coalescence in the population ancestral to A and B (the505

IUA2 model, see Supporting.nb) giving:506

ψ[a/b, c] =
1

α+ Λ2 + ωa + ωb + ωc
(Λ2ψ[a, b, c] + αψ[a/{b, c}]) (9)

Using eq. 2, the GF for a model of ancestral structure (AS) can be derived analogously (see Support-507

ing.nb).508
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