CARACTERIZAÇÃO DE DISCIPLINA BACHARELADO EM QUÍMICA FÍSICO-QUÍMICA III B

CURSO/SEMESTRE	Bacharelado em Química/Sexto semestre curricular
DISCIPLINA	FÍSICO-QUÍMICA III B
,	Obrigatório
DISCIPLINA	Obligatorio
PRÉ-REQUISITO	Físico-Química II B ou Físico-química II L 0000000000
CÓDIGO	150076
DEPARTAMENTO	
	Química Analítica e Inorgânica
	85h
TOTAL CRÉDITOS	E oráditos
	5 créditos
NATUREZA	3-0-2
ANO/SEMESTRE	2007/01
PROFESSORES E CARGA HORÁRIA	Profa. Dra. Ruth Néia Teixeira Lessa
OBJETIVOS	GERAIS
	Apresentar os conceitos gerais envolvendo o estudo da Físico-
	química dos processos em superfície, macromoléculas em
	solução, processos em não equilíbrio, cinética e dinâmica
	molecular.
	OBJETIVOS ESPECÍFICOS:
	- apresentar aos acadêmicos a oportunidade de conhecer o
	desenvolvimento na área;
	- discutir o princípios fundamentais envolvendo os fenômenos
	de superfície, termodinâmica de macromoléculas,cinética e
	dinâmica molecular, enfatizando os modelos utilizados,
	aplicações e limitações;
	- correlacionar os diversos assuntos referentes à disciplina em
	questão com atividades experimentais;
	- correlacionar os assuntos com questões apresentadas no
	cotidiano da indústria.
EMENTA	Teoria cinética dos gases. Fenômenos de Superfície. Cinética
	química. Dinâmica das Reações moleculares. Fenômenos de
	transporte. Pesquisas atuais envolvendo o conteúdo estudado.
DD0000::::	Abordagem do conteúdo na indústria.
PROGRAMA	UNIDADE I- TEORIA CINÉTICA DOS GASES IDEAIS
	MONOATÔMICOS
	1.1 Equação de estado
	1.2 Distribuição de Maxwell de velocidades
	1.3 Velocidades dos gases
	1.4 Distribuição de energia
	1.5 Colisões Moleculares
	UNIDADE II –FENÔMENOS DE SUPERFÍCIE
	2.1. Energia de superfície e tensão superficial
	2.2. Ascensão e depressão capilar
	2.3. Adsorção
	2.4. Fenômenos elétricos nas interfaces

UNIDADE III - CINÉTICA QUÍMICA

- 3.1. Cinética química empírica
- 3.2. Velocidade das reações químicas
- 3.3 Métodos experimentais na cinética
- 3.4 Ordem de uma reação química
- 3.5 Determinação da ordem de reação
- 3.6 Molecularidade de uma reação química
- 3.7 Mecanismo de reação
- 3.8 Leis da velocidade

UNIDADE IV -CINÉTICA DAS REAÇÕES COMPLEXAS

- 4.1 Reações reversíveis
- 4.2 Constantes de velocidade e constante de equilíbrio
- 4.3 Reações consecutivas
- 4.4 Reações paralelas
- 4.5. Reações em cadeia
- .46 Catalise homogênea
- 4.7 Cinética das reações enzimáticas

UNIDADE V - DINÂMICA DAS REAÇÕES MOLECULARES

- 5.1. Teoria das Colisões
- 5.2. Reações controladas por difusão
- 5.3. Teoria do Complexo Ativado
- 5.4. Coordenada de reação e transição de estado
- 5.5. Equação de Eyring

UNIDADE VI - FENÔMENOS DE TRANSPORTE

- 5.1. Introdução aos fenômenos de transporte
- 5.2 Transporte de massa, energia e momentum
- 5.3. Aplicações

PROGRAMA DAS AULAS PRÁTICAS

- Determinação da tensão superficial de diferentes líquidos
- 2. Determinação da entalpia de superfície
- 3. Determinação de Isoterma de adsorção
- 4. Fenômenos de superfície
- 5. Determinação de ordem de reação
- Determinação de coeficiente catalítico através da medida do desvio da luz polarizada em um composto opticamente ativo
- 8. Determinação de energia de ativação de uma reação química
- Determinação de viscosidade em solução de macromoléculas
- 10. Determinação da viscosidade em líquidos
- 11. Propriedades das soluções coloidais
- 12. Determinação de viscosidade de líquidos
- 13. Rendimento de reações químicas na indústria.
- 14. Catalisadores nos processos industriais
- 15. Apresentação de artigo de escolha do aluno.

Metodologia trabalho	de	Para cada unidade trabalhada haverá experimentos relativos aos assuntos trabalhados. Ao final da disciplina serão discutidas as aplicações industriais e o estado da arte na área estudada.
BIBLIOGRAFIA BÁSICA		 CASTELLAN G.W., Fundamentos de Fisico-Quimica; Rio de Janeiro: Livros Técnicos e Científicos, 1996, 527p. MOORE, W. J., Físico-Química; vols. 1 e 2. 4ª. ed. São Paulo. Edgar Blücher, 1999. 866p
BIBLIOGRAFIA COMPLEMENTAR		3. ATKINS, P.W., Físico-'Química. Vol. 1, Rio de Janeiro: Livros Técnicos e Centíficos, 1996 . 1014p. 4 SHAW, D.J. Introdução à Química dos colóides e de superfícies. São Paulo: Edgar Blucher Ltda. 1975, 185p. 5 ADAMSON, A.w. Physical chemistry of surfaces, 5 th ed. New York:Wiley &Sons, 1976, 377p. 6 MAC QUARRIE, J.D. Simon, Physical Chemistry, University, Science Books, 1997, 1020p 7 PRIGOGINE, I. From Being to Becoming, San Francisco: Freeman and Company, 1980, 272p. 8 SHOEMAKER, D.P. Experiments in physical chemistry,N.Y.: Mc Graw Hill, 1962, 471p. 9 BUENO, W. A. Manual de laboratorio de Físico-química, São Paulo: Mc. Graw Hill, 1980, 264p. 10 RANGEL, R.N., Práticas de Físico-química, 2ª. Ed. São Paulo. Edgar Blücher, 1998. 266p 11 LUCCHESE, A.M, MARZORATI, L. Catálise de Transferência de Fase, Química Nova, 23, 2000, 641-652. 13 Mowry, S. and Ogren, P.J Kinetics of Methylene Blue Reduction by Ascorbic Acid - Journal of Chemical Education 76 (1999) p 970-974. 14 ALBERTY, R.A., SILBEY, R.J. Physical Chemistry, 2 nd ed. New York: Wiley & Sons, 1997, 950p. 15 WEDDLER, G. Manual de Química Física, Lisboa:
		Fundação Lacouste Gubenkian, 4 ^a . Ed., 2001, 1970p.